Contiguous relations of hypergeometric series

The 15 Gauss contiguous relations for 2F1 hypergeometric series imply that any three 2F1 series whose corresponding parameters differ by integers are linearly related (over the field of rational functions in the parameters). We prove several properties of coefficients of these general contiguous rel...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics Vol. 153; no. 1-2; pp. 507 - 519
Main Author: VIDUNAS, Raimundas
Format: Journal Article Conference Proceeding
Language:English
Published: Amsterdam Elsevier B.V 01.04.2003
Elsevier
Subjects:
ISSN:0377-0427, 1879-1778
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The 15 Gauss contiguous relations for 2F1 hypergeometric series imply that any three 2F1 series whose corresponding parameters differ by integers are linearly related (over the field of rational functions in the parameters). We prove several properties of coefficients of these general contiguous relations, and use the results to propose effective ways to compute contiguous relations. We also discuss contiguous relations of generalized and basic hypergeometric functions, and several applications of them.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0377-0427
1879-1778
DOI:10.1016/S0377-0427(02)00643-X