Line search methods with guaranteed asymptotical convergence to an improving local optimum of multimodal functions

•We define and analyze a pattern, called v-pattern, for general line search methods.•We derive enhanced golden section, bisection and Brent’s algorithm•The algorithms convergence using composite maps is proven under mild conditions.•We analyze the performance of the three enhanced line search method...

Full description

Saved in:
Bibliographic Details
Published in:European journal of operational research Vol. 235; no. 1; pp. 38 - 46
Main Authors: Vieira, Douglas Alexandre Gomes, Lisboa, Adriano Chaves
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 16.05.2014
Elsevier Sequoia S.A
Subjects:
ISSN:0377-2217, 1872-6860
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •We define and analyze a pattern, called v-pattern, for general line search methods.•We derive enhanced golden section, bisection and Brent’s algorithm•The algorithms convergence using composite maps is proven under mild conditions.•We analyze the performance of the three enhanced line search methods in practice. This paper considers line search optimization methods using a mathematical framework based on the simple concept of a v-pattern and its properties. This framework provides theoretical guarantees on preserving, in the localizing interval, a local optimum no worse than the starting point. Notably, the framework can be applied to arbitrary unidimensional functions, including multimodal and infinitely valued ones. Enhanced versions of the golden section, bisection and Brent’s methods are proposed and analyzed within this framework: they inherit the improving local optimality guarantee. Under mild assumptions the enhanced algorithms are proved to converge to a point in the solution set in a finite number of steps or that all their accumulation points belong to the solution set.
AbstractList This paper considers line search optimization methods using a mathematical framework based on the simple concept of a v-pattern and its properties. This framework provides theoretical guarantees on preserving, in the localizing interval, a local optimum no worse than the starting point. Notably, the framework can be applied to arbitrary unidimensional functions, including multimodal and infinitely valued ones. Enhanced versions of the golden section, bisection and Brent's methods are proposed and analyzed within this framework: they inherit the improving local optimality guarantee. Under mild assumptions the enhanced algorithms are proved to converge to a point in the solution set in a finite number of steps or that all their accumulation points belong to the solution set.
This paper considers line search optimization methods using a mathematical framework based on the simple concept of a v-pattern and its properties. This framework provides theoretical guarantees on preserving, in the localizing interval, a local optimum no worse than the starting point. Notably, the framework can be applied to arbitrary unidimensional functions, including multimodal and infinitely valued ones. Enhanced versions of the golden section, bisection and Brent's methods are proposed and analyzed within this framework: they inherit the improving local optimality guarantee. Under mild assumptions the enhanced algorithms are proved to converge to a point in the solution set in a finite number of steps or that all their accumulation points belong to the solution set. [PUBLICATION ABSTRACT]
•We define and analyze a pattern, called v-pattern, for general line search methods.•We derive enhanced golden section, bisection and Brent’s algorithm•The algorithms convergence using composite maps is proven under mild conditions.•We analyze the performance of the three enhanced line search methods in practice. This paper considers line search optimization methods using a mathematical framework based on the simple concept of a v-pattern and its properties. This framework provides theoretical guarantees on preserving, in the localizing interval, a local optimum no worse than the starting point. Notably, the framework can be applied to arbitrary unidimensional functions, including multimodal and infinitely valued ones. Enhanced versions of the golden section, bisection and Brent’s methods are proposed and analyzed within this framework: they inherit the improving local optimality guarantee. Under mild assumptions the enhanced algorithms are proved to converge to a point in the solution set in a finite number of steps or that all their accumulation points belong to the solution set.
Author Lisboa, Adriano Chaves
Vieira, Douglas Alexandre Gomes
Author_xml – sequence: 1
  givenname: Douglas Alexandre Gomes
  surname: Vieira
  fullname: Vieira, Douglas Alexandre Gomes
  email: douglas.vieira@enacom.com.br
– sequence: 2
  givenname: Adriano Chaves
  surname: Lisboa
  fullname: Lisboa, Adriano Chaves
  email: adriano.lisboa@enacom.com.br
BookMark eNp9kU1r3DAQhkVJoZu0f6AnQS-92NVIlj-glxKatrCQS3oWWmm8K2NLW0nekn9fme0ph5xmEM8rhue9JTc-eCTkI7AaGLRfphqnEGvOQNTAa9bAG7KDvuNV27fshuyY6LqKc-jekduUJsYYSJA7EvfOI02ooznRBfMp2ET_unyix1VH7TOipTo9L-ccsjN6pib4C8YjeoM0B6o9dcs5hovzRzqHjQjn7JZ1oWGkyzqXPdjyOq7eZBd8ek_ejnpO-OH_vCO_H74_3f-s9o8_ft1_21emAZkrOfARtECJFnreNe2h77AX2kJXJtqD1W0r9QACmZCj1KxnB2v1IEWnzYDijny-_luu-7NiympxyeA8a49hTQqkKO5kK6Cgn16gU1ijL9cpaIauyBNNXyh-pUwMKUUc1Tm6RcdnBUxtNahJbTWorQYFXJUaSqh_ETIu601EjtrNr0e_XqNYLF0cRpWM27xbF9FkZYN7Lf4PbDOnwA
CODEN EJORDT
CitedBy_id crossref_primary_10_3390_computation7030043
crossref_primary_10_1016_j_ejor_2015_06_044
crossref_primary_10_1016_j_asoc_2018_09_034
crossref_primary_10_1016_j_neucom_2017_08_037
crossref_primary_10_1186_s13362_018_0046_3
crossref_primary_10_1016_j_ijmecsci_2020_106175
crossref_primary_10_1109_TPWRS_2016_2641390
crossref_primary_10_3390_math6040063
crossref_primary_10_1016_j_asoc_2017_06_039
Cites_doi 10.1080/00150517.1966.12431364
10.1016/j.cam.2007.07.008
10.1090/S0002-9939-1953-0055639-3
10.1137/1011036
10.1007/s10107-010-0347-9
10.1007/s10957-005-6553-6
10.4236/jsea.2010.35057
10.1007/s10915-009-9314-0
10.2140/pjm.1966.16.1
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Copyright Elsevier Sequoia S.A. May 16, 2014
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: Copyright Elsevier Sequoia S.A. May 16, 2014
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
7TA
JG9
DOI 10.1016/j.ejor.2013.12.041
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Materials Business File
Materials Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Materials Research Database
Materials Business File
DatabaseTitleList Materials Research Database
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1872-6860
EndPage 46
ExternalDocumentID 3215307671
10_1016_j_ejor_2013_12_041
S0377221713010254
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
XPP
ZMT
~02
~G-
1OL
29G
41~
9DU
AAAKG
AALRI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HVGLF
HZ~
R2-
SEW
VH1
WUQ
~HD
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
7TA
JG9
ID FETCH-LOGICAL-c415t-592f1a3e5ed182746b87e83ad177e8edbda665a913e035f5a080bdda9537ac9e3
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000346319100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-2217
IngestDate Sun Sep 28 08:57:46 EDT 2025
Sun Nov 09 08:53:58 EST 2025
Sat Nov 29 07:59:00 EST 2025
Tue Nov 18 22:29:23 EST 2025
Fri Feb 23 02:32:28 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Line search
Brent’s algorithm
Bisection
Nonlinear programming
Golden section method
Multimodal functions
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c415t-592f1a3e5ed182746b87e83ad177e8edbda665a913e035f5a080bdda9537ac9e3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1497037348
PQPubID 45678
PageCount 9
ParticipantIDs proquest_miscellaneous_1531015631
proquest_journals_1497037348
crossref_primary_10_1016_j_ejor_2013_12_041
crossref_citationtrail_10_1016_j_ejor_2013_12_041
elsevier_sciencedirect_doi_10_1016_j_ejor_2013_12_041
PublicationCentury 2000
PublicationDate 2014-05-16
PublicationDateYYYYMMDD 2014-05-16
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-16
  day: 16
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle European journal of operational research
PublicationYear 2014
Publisher Elsevier B.V
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier B.V
– name: Elsevier Sequoia S.A
References Hu, Huang, Lu (b0035) 2010; 42
Luenberger, Ye (b0045) 2010
Yu, Pu (b0065) 2008; 219
Avriel, Wilde (b0010) 1966; 4
Wolfe (b0060) 1969; 1
Bertsekas (b0020) 2008
Brent (b0025) 1973
Yuan (b0070) 2010; 3
Bazaraa, Shetty (b0015) 2006
Goldstein (b0030) 1965; 3
Vieira (b0055) 2012; 131
Shi, Shen (b0050) 2005; 2
Armijo (b0005) 1966; 16
Kiefer (b0040) 1953; 4
Shi (10.1016/j.ejor.2013.12.041_b0050) 2005; 2
Kiefer (10.1016/j.ejor.2013.12.041_b0040) 1953; 4
Avriel (10.1016/j.ejor.2013.12.041_b0010) 1966; 4
Wolfe (10.1016/j.ejor.2013.12.041_b0060) 1969; 1
Luenberger (10.1016/j.ejor.2013.12.041_b0045) 2010
Bertsekas (10.1016/j.ejor.2013.12.041_b0020) 2008
Hu (10.1016/j.ejor.2013.12.041_b0035) 2010; 42
Vieira (10.1016/j.ejor.2013.12.041_b0055) 2012; 131
Yuan (10.1016/j.ejor.2013.12.041_b0070) 2010; 3
Goldstein (10.1016/j.ejor.2013.12.041_b0030) 1965; 3
Bazaraa (10.1016/j.ejor.2013.12.041_b0015) 2006
Yu (10.1016/j.ejor.2013.12.041_b0065) 2008; 219
Armijo (10.1016/j.ejor.2013.12.041_b0005) 1966; 16
Brent (10.1016/j.ejor.2013.12.041_b0025) 1973
References_xml – volume: 1
  start-page: 226
  year: 1969
  end-page: 235
  ident: b0060
  article-title: Convergence conditions for ascent methods
  publication-title: SIAM Review
– volume: 3
  start-page: 503
  year: 2010
  end-page: 509
  ident: b0070
  article-title: A line search algorithm for unconstrained optimization
  publication-title: Journal of Software Engineering and Applications
– volume: 4
  start-page: 265
  year: 1966
  end-page: 269
  ident: b0010
  article-title: Optimality proof for the symmetric fibonacci search technique
  publication-title: Fibonacci Quarterly
– volume: 4
  start-page: 502
  year: 1953
  end-page: 506
  ident: b0040
  article-title: Sequential minimax search for a maximum
  publication-title: Proceedings of the American Mathematical Society
– volume: 3
  start-page: 147
  year: 1965
  end-page: 151
  ident: b0030
  article-title: On steepest descent
  publication-title: SIAM Journal of Control
– volume: 16
  start-page: 1
  year: 1966
  end-page: 3
  ident: b0005
  article-title: Minimization of functions having Lipschitz conditions for partial derivatives
  publication-title: Pacific Journal of Mathematics
– volume: 219
  start-page: 134
  year: 2008
  end-page: 144
  ident: b0065
  article-title: A new nonmonotone line search technique for unconstrained optimization
  publication-title: Journal of Computational and Applied Mathematics
– year: 2010
  ident: b0045
  article-title: Linear and nonlinear programming
– year: 2008
  ident: b0020
  article-title: Nonlinear programming
– volume: 42
  start-page: 38
  year: 2010
  end-page: 53
  ident: b0035
  article-title: A non-monotone line search algorithm for unconstrained optimization
  publication-title: Journal of Scientific Computing
– year: 2006
  ident: b0015
  article-title: Nonlinear programming – Theory and algorithms
– volume: 2
  start-page: 425
  year: 2005
  end-page: 446
  ident: b0050
  article-title: New inexact line search method for unconstrained optimization
  publication-title: Journal of Optimization Theory and Applications
– volume: 131
  start-page: 131
  year: 2012
  end-page: 161
  ident: b0055
  article-title: Multicriteria optimization with a multiobjective golden section line search
  publication-title: Mathematical Programming
– year: 1973
  ident: b0025
  article-title: Algorithms for minimization without derivatives
– volume: 4
  start-page: 265
  year: 1966
  ident: 10.1016/j.ejor.2013.12.041_b0010
  article-title: Optimality proof for the symmetric fibonacci search technique
  publication-title: Fibonacci Quarterly
  doi: 10.1080/00150517.1966.12431364
– volume: 3
  start-page: 147
  year: 1965
  ident: 10.1016/j.ejor.2013.12.041_b0030
  article-title: On steepest descent
  publication-title: SIAM Journal of Control
– volume: 219
  start-page: 134
  year: 2008
  ident: 10.1016/j.ejor.2013.12.041_b0065
  article-title: A new nonmonotone line search technique for unconstrained optimization
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2007.07.008
– volume: 4
  start-page: 502
  issue: 3
  year: 1953
  ident: 10.1016/j.ejor.2013.12.041_b0040
  article-title: Sequential minimax search for a maximum
  publication-title: Proceedings of the American Mathematical Society
  doi: 10.1090/S0002-9939-1953-0055639-3
– volume: 1
  start-page: 226
  year: 1969
  ident: 10.1016/j.ejor.2013.12.041_b0060
  article-title: Convergence conditions for ascent methods
  publication-title: SIAM Review
  doi: 10.1137/1011036
– year: 2010
  ident: 10.1016/j.ejor.2013.12.041_b0045
– volume: 131
  start-page: 131
  issue: 1–2
  year: 2012
  ident: 10.1016/j.ejor.2013.12.041_b0055
  article-title: Multicriteria optimization with a multiobjective golden section line search
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-010-0347-9
– volume: 2
  start-page: 425
  year: 2005
  ident: 10.1016/j.ejor.2013.12.041_b0050
  article-title: New inexact line search method for unconstrained optimization
  publication-title: Journal of Optimization Theory and Applications
  doi: 10.1007/s10957-005-6553-6
– year: 2008
  ident: 10.1016/j.ejor.2013.12.041_b0020
– year: 1973
  ident: 10.1016/j.ejor.2013.12.041_b0025
– volume: 3
  start-page: 503
  issue: 5
  year: 2010
  ident: 10.1016/j.ejor.2013.12.041_b0070
  article-title: A line search algorithm for unconstrained optimization
  publication-title: Journal of Software Engineering and Applications
  doi: 10.4236/jsea.2010.35057
– volume: 42
  start-page: 38
  year: 2010
  ident: 10.1016/j.ejor.2013.12.041_b0035
  article-title: A non-monotone line search algorithm for unconstrained optimization
  publication-title: Journal of Scientific Computing
  doi: 10.1007/s10915-009-9314-0
– year: 2006
  ident: 10.1016/j.ejor.2013.12.041_b0015
– volume: 16
  start-page: 1
  year: 1966
  ident: 10.1016/j.ejor.2013.12.041_b0005
  article-title: Minimization of functions having Lipschitz conditions for partial derivatives
  publication-title: Pacific Journal of Mathematics
  doi: 10.2140/pjm.1966.16.1
SSID ssj0001515
Score 2.1770859
Snippet •We define and analyze a pattern, called v-pattern, for general line search methods.•We derive enhanced golden section, bisection and Brent’s algorithm•The...
This paper considers line search optimization methods using a mathematical framework based on the simple concept of a v-pattern and its properties. This...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 38
SubjectTerms Algorithms
Asymptotic methods
Asymptotic properties
Bisection
Brent’s algorithm
Convergence
Decision making models
Functions (mathematics)
Golden section method
Intervals
Line search
Mathematical analysis
Mathematical functions
Mathematical problems
Multimodal functions
Nonlinear programming
Operational research
Optimization
Optimization algorithms
Studies
Title Line search methods with guaranteed asymptotical convergence to an improving local optimum of multimodal functions
URI https://dx.doi.org/10.1016/j.ejor.2013.12.041
https://www.proquest.com/docview/1497037348
https://www.proquest.com/docview/1531015631
Volume 235
WOSCitedRecordID wos000346319100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2021
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELVKFyH2wEcBbWFBRkJcqlTruImTY4W6AlQVpO2ueoucxEGttnE3TavlT_KbGMd2mi5QwYFLWuVLbebF82bseYPQOz-mIuOUOanq4T4gg8yJAyV3B2zC9WOfZVU7oKsxm0yC2Sz82mr9sLUw22uW58Htbbj6r6aGfWBsVTr7D-aubwo74DsYHbZgdtj-leHHijeaZIbuD20q2L4BGtRzBIrJ19-Xq1KWRh4k3-oazKqNBrzw8zrTULm6noRxZblZVnPxagHiUqaq7hFc4i7d97vsvmG6sKOwOUcjLlQnoa_mYl7wBpW3JTcFwFc2ylPGEI1KnQRO4SnmUq0U2Iq9tAUZqBl3XVWpc2m2nuZC3GzknPcu-sPG0EcZc1xXV3X2hR6aA-Y6fqC7D9ix29VaJ3sg1SOx1oz5xUHoXMWiLxZSqcESWiWDtfbWvhr35Et0fjkeR9PRbLp_VHt_4EowPvqMvF_dOKqLmZrtNy1d7qEjl3lh0EZHw0-j2eeaGyj6WM1rmf9nyrj0isO7v-lPVOkOaaiY0PQJemRCGDzU0HuKWiLvoAe2gqKDHttOIdg4jg46bshePkOFgijWOMAGolhBFO8gipsQxQ2I4lJinuMaoriCKDYQxTLDO4jiGqLP0eX5aPrho2N6fzgJUMrS8UI3I5wKT6QQAbOBHwdMBJSnhMGnSOOU-77HQ0LFGfUyj0PkE6cpDz3KeBIK-gK1c5mLE4S9hGSBKyDWoMEAooOAZm4cUpqc8ZglIuwiYh9zlBhhfNWf5TqyKyAXkTJNpEwTETcC03RRr75mpWVhDp7tWetFhthqwhoBLA9ed2pNHZm3dg2xegheWolSddHb-jA4BTXTx3MhN3AOeFalkUDJy8O3eIUe7l7OU9Qui414je4n23K-Lt4Y9P4EaZbemA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Line+search+methods+with+guaranteed+asymptotical+convergence+to+an+improving+local+optimum+of+multimodal+functions&rft.jtitle=European+journal+of+operational+research&rft.au=Vieira%2C+Douglas+Alexandre+Gomes&rft.au=Lisboa%2C+Adriano+Chaves&rft.date=2014-05-16&rft.pub=Elsevier+Sequoia+S.A&rft.issn=0377-2217&rft.eissn=1872-6860&rft.volume=235&rft.issue=1&rft.spage=38&rft_id=info:doi/10.1016%2Fj.ejor.2013.12.041&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3215307671
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon