A Novel Unsupervised Structural Damage Detection Method Based on TCN-GAT Autoencoder

Over the service life of several decades, structural damage detection is crucial for ensuring the safety and durability of engineering structures. However, existing methods often overlook the spatiotemporal coupling in multi-sensor data, hindering the full exploitation of structural dynamic evolutio...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 25; no. 21; p. 6724
Main Authors: Ni, Yanchun, Jin, Qiyuan, Hu, Rui
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 03.11.2025
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Over the service life of several decades, structural damage detection is crucial for ensuring the safety and durability of engineering structures. However, existing methods often overlook the spatiotemporal coupling in multi-sensor data, hindering the full exploitation of structural dynamic evolution and spatial correlations. This paper proposes an autoencoder model integrating Temporal Convolutional Networks (TCN) and Graph Attention Networks (GAT), termed TCNGAT-AE, to establish an unsupervised damage detection method. The model utilizes the TCN module to extract temporal dependencies and dynamic features from vibration signals, while leveraging the GAT module to explicitly capture the spatial topological relationships within the sensor network, thereby achieving deep fusion of spatiotemporal features. The proposed method adopts an “offline training-online detection” framework, requiring only data from the healthy state of the structure for training, and employs reconstruction error as the damage indicator. To validate the proposed method, two sets of experimentally measured data are utilized: one from the Z-24 concrete box-girder bridge under ambient excitation, and the other from the Old Ada Bridge under vehicle load excitation. Additionally, ablation studies are conducted to analyze the effectiveness of the spatiotemporal fusion mechanism. Results demonstrate that the proposed method achieves effective damage detection in both different structural types and excitation scenarios. Furthermore, the explicit modeling of spatiotemporal features significantly enhances detection performance, with the anomaly detection rate showing substantial improvement compared to baseline models utilizing only temporal or spatial modeling. Moreover, this end-to-end framework processes raw vibration signals directly, avoiding complex preprocessing. This makes it highly suitable for practical and near-real-time monitoring. The findings of this study demonstrate that the damage detection method based on TCNGAT-AE can be effectively applied to structural safety monitoring in complex engineering environments, and can be further integrated with real-time monitoring systems of critical structures for online analysis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s25216724