Intercomparison of Automated Near-Real-Time Flood Mapping Algorithms Using Satellite Data and DEM-Based Methods: A Case Study of 2022 Madagascar Flood

Numerous algorithms have been developed to automate the process of delineating water surface maps for flood monitoring and mitigation purposes by using multiple sources such as satellite sensors and digital elevation model (DEM) data. To better understand the causes of inaccurate mapping information...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Hydrology Ročník 10; číslo 1; s. 17
Hlavní autoři: Li, Wenzhao, Li, Dongfeng, Fang, Zheng N.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.01.2023
Témata:
ISSN:2306-5338, 2306-5338
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Numerous algorithms have been developed to automate the process of delineating water surface maps for flood monitoring and mitigation purposes by using multiple sources such as satellite sensors and digital elevation model (DEM) data. To better understand the causes of inaccurate mapping information, we aim to demonstrate the advantages and limitations of these algorithms through a case study of the 2022 Madagascar flooding event. The HYDRAFloods toolbox was used to perform preprocessing, image correction, and automated flood water detection based on the state-of-the-art Edge Otsu, Bmax Otsu, and Fuzzy Otsu algorithms for the satellite images; the FwDET tool was deployed upon the cloud computing platform (Google Earth Engine) for rapid estimation of flood area/depth using the digital elevation model (DEM) data. Generated surface water maps from the respective techniques were evaluated qualitatively against each other and compared with a reference map produced by the European Union Copernicus Emergency Management Service (CEMS). The DEM-based maps show generally overestimated flood extents. The satellite-based maps show that Edge Otsu and Bmax Otsu methods are more likely to generate consistent results than those from Fuzzy Otsu. While the synthetic-aperture radar (SAR) data are typically favorable over the optical image under undesired weather conditions, maps generated based on SAR data tend to underestimate the flood extent as compared with reference maps. This study also suggests the newly launched Landsat-9 serves as an essential supplement to the rapid delineation of flood extents.
Bibliografie:ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:2306-5338
2306-5338
DOI:10.3390/hydrology10010017