Research Review for Broad Learning System: Algorithms, Theory, and Applications

In recent years, the appearance of the broad learning system (BLS) is poised to revolutionize conventional artificial intelligence methods. It represents a step toward building more efficient and effective machine-learning methods that can be extended to a broader range of necessary research fields....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on cybernetics Ročník 52; číslo 9; s. 8922 - 8950
Hlavní autoři: Gong, Xinrong, Zhang, Tong, Chen, C. L. Philip, Liu, Zhulin
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2168-2267, 2168-2275, 2168-2275
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In recent years, the appearance of the broad learning system (BLS) is poised to revolutionize conventional artificial intelligence methods. It represents a step toward building more efficient and effective machine-learning methods that can be extended to a broader range of necessary research fields. In this survey, we provide a comprehensive overview of the BLS in data mining and neural networks for the first time, focusing on summarizing various BLS methods from the aspects of its algorithms, theories, applications, and future open research questions. First, we introduce the basic pattern of BLS manifestation, the universal approximation capability, and essence from the theoretical perspective. Furthermore, we focus on BLS's various improvements based on the current state of the theoretical research, which further improves its flexibility, stability, and accuracy under general or specific conditions, including classification, regression, semisupervised, and unsupervised tasks. Due to its remarkable efficiency, impressive generalization performance, and easy extendibility, BLS has been applied in different domains. Next, we illustrate BLS's practical advances, such as computer vision, biomedical engineering, control, and natural language processing. Finally, the future open research problems and promising directions for BLSs are pointed out.
AbstractList In recent years, the appearance of the broad learning system (BLS) is poised to revolutionize conventional artificial intelligence methods. It represents a step toward building more efficient and effective machine-learning methods that can be extended to a broader range of necessary research fields. In this survey, we provide a comprehensive overview of the BLS in data mining and neural networks for the first time, focusing on summarizing various BLS methods from the aspects of its algorithms, theories, applications, and future open research questions. First, we introduce the basic pattern of BLS manifestation, the universal approximation capability, and essence from the theoretical perspective. Furthermore, we focus on BLS’s various improvements based on the current state of the theoretical research, which further improves its flexibility, stability, and accuracy under general or specific conditions, including classification, regression, semisupervised, and unsupervised tasks. Due to its remarkable efficiency, impressive generalization performance, and easy extendibility, BLS has been applied in different domains. Next, we illustrate BLS’s practical advances, such as computer vision, biomedical engineering, control, and natural language processing. Finally, the future open research problems and promising directions for BLSs are pointed out.
In recent years, the appearance of the broad learning system (BLS) is poised to revolutionize conventional artificial intelligence methods. It represents a step toward building more efficient and effective machine-learning methods that can be extended to a broader range of necessary research fields. In this survey, we provide a comprehensive overview of the BLS in data mining and neural networks for the first time, focusing on summarizing various BLS methods from the aspects of its algorithms, theories, applications, and future open research questions. First, we introduce the basic pattern of BLS manifestation, the universal approximation capability, and essence from the theoretical perspective. Furthermore, we focus on BLS's various improvements based on the current state of the theoretical research, which further improves its flexibility, stability, and accuracy under general or specific conditions, including classification, regression, semisupervised, and unsupervised tasks. Due to its remarkable efficiency, impressive generalization performance, and easy extendibility, BLS has been applied in different domains. Next, we illustrate BLS's practical advances, such as computer vision, biomedical engineering, control, and natural language processing. Finally, the future open research problems and promising directions for BLSs are pointed out.In recent years, the appearance of the broad learning system (BLS) is poised to revolutionize conventional artificial intelligence methods. It represents a step toward building more efficient and effective machine-learning methods that can be extended to a broader range of necessary research fields. In this survey, we provide a comprehensive overview of the BLS in data mining and neural networks for the first time, focusing on summarizing various BLS methods from the aspects of its algorithms, theories, applications, and future open research questions. First, we introduce the basic pattern of BLS manifestation, the universal approximation capability, and essence from the theoretical perspective. Furthermore, we focus on BLS's various improvements based on the current state of the theoretical research, which further improves its flexibility, stability, and accuracy under general or specific conditions, including classification, regression, semisupervised, and unsupervised tasks. Due to its remarkable efficiency, impressive generalization performance, and easy extendibility, BLS has been applied in different domains. Next, we illustrate BLS's practical advances, such as computer vision, biomedical engineering, control, and natural language processing. Finally, the future open research problems and promising directions for BLSs are pointed out.
Author Chen, C. L. Philip
Gong, Xinrong
Zhang, Tong
Liu, Zhulin
Author_xml – sequence: 1
  givenname: Xinrong
  orcidid: 0000-0001-5821-6283
  surname: Gong
  fullname: Gong, Xinrong
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 2
  givenname: Tong
  orcidid: 0000-0002-7025-6365
  surname: Zhang
  fullname: Zhang, Tong
  email: tony@scut.edu.cn
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 3
  givenname: C. L. Philip
  orcidid: 0000-0001-5451-7230
  surname: Chen
  fullname: Chen, C. L. Philip
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 4
  givenname: Zhulin
  orcidid: 0000-0003-4145-823X
  surname: Liu
  fullname: Liu, Zhulin
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33729975$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLAzEUhYMovn-ACBJw48LWvGYycdcWX1AQtC5chZi5YyMzk5pMlf57U1tduDCbGw7fudx7zx7abH0LCB1R0qeUqIvJ6HnYZ4TRPid5EsQG2mU0L3qMyWzz95_LHXQY4xtJr0iSKrbRDueSKSWzXXT_ABFMsFP8AB8OPnHlAx4Gb0o8Tnrr2lf8uIgdNJd4UL_64LppE8_xZAo-LM6xaUs8mM1qZ03nfBsP0FZl6giH67qPnq6vJqPb3vj-5m40GPesoFnXE8qYzMoyk5xKK4wolQVFVClAqbzKKsg5UJEDVxWTUKmc5QXJlACgklDC99HZqu8s-Pc5xE43Llqoa9OCn0fNMsIKIiXjCT39g775eWjTdJpJIohSjNNEnayp-UsDpZ4F15iw0D-nSoBcATb4GANU2rrue-kuGFdrSvQyF73MRS9z0etckpP-cf40_89zvPI4APjlFV_uRPgXckeVXQ
CODEN ITCEB8
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3084610
crossref_primary_10_1016_j_ejrh_2025_102708
crossref_primary_10_1016_j_ifacol_2024_08_320
crossref_primary_10_1190_geo2024_0393_1
crossref_primary_10_1016_j_engappai_2024_107856
crossref_primary_10_1016_j_ins_2023_02_048
crossref_primary_10_1109_TFUZZ_2023_3330883
crossref_primary_10_3390_photonics12070737
crossref_primary_10_1109_TCSS_2021_3135425
crossref_primary_10_1109_TCYB_2021_3113709
crossref_primary_10_1109_TCSS_2022_3202249
crossref_primary_10_1049_esi2_12178
crossref_primary_10_1016_j_engappai_2024_108433
crossref_primary_10_1016_j_microc_2025_112840
crossref_primary_10_1029_2022JB025505
crossref_primary_10_1016_j_asoc_2025_113789
crossref_primary_10_1109_TCSS_2022_3188891
crossref_primary_10_1016_j_eswa_2023_121159
crossref_primary_10_1109_ACCESS_2021_3077764
crossref_primary_10_1109_JAS_2024_124821
crossref_primary_10_1109_TASE_2025_3579737
crossref_primary_10_1109_TVT_2024_3497582
crossref_primary_10_1007_s10489_024_05637_1
crossref_primary_10_1016_j_engappai_2023_107508
crossref_primary_10_1002_ett_70242
crossref_primary_10_3390_coatings13030513
crossref_primary_10_1109_TPAMI_2023_3262853
crossref_primary_10_1061_JCEMD4_COENG_13170
crossref_primary_10_1109_JSEN_2024_3492041
crossref_primary_10_1109_TFUZZ_2025_3543369
crossref_primary_10_1109_TCSS_2024_3386621
crossref_primary_10_1109_TNNLS_2024_3491101
crossref_primary_10_1016_j_knosys_2025_113765
crossref_primary_10_1016_j_asoc_2025_113679
crossref_primary_10_1088_1361_6501_ad7e46
crossref_primary_10_1109_TAFFC_2024_3392791
crossref_primary_10_1109_TCYB_2023_3267947
crossref_primary_10_3390_su16093621
crossref_primary_10_1109_TCCN_2024_3522143
crossref_primary_10_1109_TFUZZ_2025_3530458
crossref_primary_10_1109_TAI_2022_3162570
crossref_primary_10_1016_j_imavis_2024_104919
crossref_primary_10_1016_j_patcog_2025_111886
crossref_primary_10_1109_TAI_2021_3105621
crossref_primary_10_1088_1742_6596_2861_1_012010
crossref_primary_10_1109_TNNLS_2023_3291793
crossref_primary_10_1093_tse_tdac065
crossref_primary_10_1109_JSEN_2025_3574436
crossref_primary_10_1016_j_conengprac_2024_105850
crossref_primary_10_1038_s41598_025_92178_3
crossref_primary_10_1016_j_dsp_2024_104869
crossref_primary_10_1109_TIM_2022_3144232
crossref_primary_10_1109_TCYB_2023_3235496
crossref_primary_10_1109_TKDE_2021_3137792
crossref_primary_10_1111_mice_13305
crossref_primary_10_3390_math13142274
crossref_primary_10_1016_j_isprsjprs_2025_08_020
crossref_primary_10_1109_TAFFC_2022_3170369
crossref_primary_10_1109_TNNLS_2023_3256999
crossref_primary_10_1109_TSMC_2024_3487776
crossref_primary_10_1007_s40747_023_01154_9
crossref_primary_10_1142_S0218126625502755
crossref_primary_10_1109_LSP_2023_3263433
crossref_primary_10_3390_e25020338
crossref_primary_10_1016_j_conengprac_2025_106278
crossref_primary_10_1109_TKDE_2024_3390135
crossref_primary_10_1109_TNNLS_2022_3222265
crossref_primary_10_3390_math12132147
crossref_primary_10_1007_s40815_024_01804_1
crossref_primary_10_1088_1361_6501_adb2b2
crossref_primary_10_1016_j_asoc_2025_113543
crossref_primary_10_1016_j_asoc_2024_112552
crossref_primary_10_1016_j_medengphy_2024_104267
crossref_primary_10_1109_TCSS_2021_3130401
crossref_primary_10_1109_TII_2023_3345449
crossref_primary_10_1007_s11760_025_04713_4
crossref_primary_10_1088_1361_6501_ad3d00
crossref_primary_10_1109_TCSS_2022_3223516
crossref_primary_10_1109_TFUZZ_2024_3400898
crossref_primary_10_1016_j_jprocont_2024_103235
crossref_primary_10_1016_j_neucom_2025_130544
crossref_primary_10_1016_j_swevo_2025_102038
crossref_primary_10_1016_j_ins_2024_120876
crossref_primary_10_1109_JAS_2024_124557
crossref_primary_10_1109_TNNLS_2023_3294788
crossref_primary_10_1016_j_bspc_2024_106010
crossref_primary_10_1109_TCYB_2024_3393020
crossref_primary_10_1155_int_1649220
crossref_primary_10_1016_j_knosys_2023_110853
crossref_primary_10_1016_j_measurement_2024_114785
crossref_primary_10_1109_TCYB_2024_3401014
crossref_primary_10_1007_s13042_023_01964_w
crossref_primary_10_3389_fnins_2023_1137567
crossref_primary_10_1109_TITS_2023_3321384
crossref_primary_10_1109_TVT_2024_3390571
crossref_primary_10_3390_electronics12143118
crossref_primary_10_1109_TNNLS_2025_3529219
crossref_primary_10_3390_math11041014
crossref_primary_10_1109_ACCESS_2024_3509923
crossref_primary_10_1080_00207179_2024_2373802
crossref_primary_10_1109_TCSS_2023_3298324
crossref_primary_10_1145_3639063
crossref_primary_10_1109_TITS_2021_3140112
crossref_primary_10_1016_j_conengprac_2025_106284
crossref_primary_10_1109_TIM_2023_3259022
crossref_primary_10_1016_j_knosys_2024_111397
crossref_primary_10_1016_j_lwt_2024_116570
crossref_primary_10_1007_s00521_024_09449_9
crossref_primary_10_1016_j_knosys_2025_113297
crossref_primary_10_1109_TCSI_2022_3189221
crossref_primary_10_3389_fnins_2022_1046268
crossref_primary_10_1016_j_isatra_2025_02_027
crossref_primary_10_1109_TCYB_2023_3271314
crossref_primary_10_1016_j_measurement_2024_116437
crossref_primary_10_1155_2022_7094539
crossref_primary_10_1109_TCYB_2023_3269773
crossref_primary_10_1016_j_knosys_2024_112923
crossref_primary_10_1109_TCSS_2022_3169132
crossref_primary_10_1088_1361_6501_ad26c8
crossref_primary_10_3389_fnins_2023_1137557
crossref_primary_10_1016_j_engappai_2024_108617
crossref_primary_10_1109_TIM_2022_3227995
crossref_primary_10_1088_1361_6501_acc47b
crossref_primary_10_3390_math11194087
crossref_primary_10_1016_j_engappai_2024_109155
crossref_primary_10_1007_s10489_023_04931_8
crossref_primary_10_1109_TNNLS_2023_3264617
crossref_primary_10_1109_TNNLS_2025_3548941
crossref_primary_10_1007_s11432_022_3560_8
crossref_primary_10_1109_TNNLS_2024_3396659
crossref_primary_10_3390_electronics13153014
crossref_primary_10_1016_j_neucom_2025_129421
crossref_primary_10_1109_TNNLS_2024_3416191
crossref_primary_10_1002_rnc_5693
crossref_primary_10_1080_10589759_2025_2521359
crossref_primary_10_1109_TNNLS_2023_3265662
crossref_primary_10_1109_TFUZZ_2022_3215566
crossref_primary_10_1109_TSMC_2022_3211519
crossref_primary_10_1109_TIE_2024_3454429
crossref_primary_10_1109_TIFS_2024_3524157
crossref_primary_10_1109_JIOT_2023_3257479
crossref_primary_10_3233_JIFS_235725
crossref_primary_10_1109_TKDE_2023_3271120
crossref_primary_10_1016_j_foodchem_2025_143831
crossref_primary_10_1007_s10845_022_02054_4
crossref_primary_10_1016_j_aei_2023_102255
crossref_primary_10_1016_j_eswa_2023_121857
crossref_primary_10_1016_j_neucom_2024_127833
crossref_primary_10_1016_j_neucom_2024_127277
crossref_primary_10_1109_JAS_2024_124929
crossref_primary_10_1016_j_ins_2025_122485
crossref_primary_10_1109_TSTE_2025_3549225
crossref_primary_10_1109_TCYB_2024_3403927
crossref_primary_10_1109_TITS_2023_3266256
crossref_primary_10_1007_s11036_024_02325_9
crossref_primary_10_1109_TETCI_2022_3146983
crossref_primary_10_1109_TETCI_2024_3378599
crossref_primary_10_1007_s10462_025_11324_5
crossref_primary_10_1007_s10489_022_04082_2
crossref_primary_10_1016_j_conengprac_2024_106174
crossref_primary_10_1109_TBDATA_2024_3423677
crossref_primary_10_1109_TITS_2023_3274256
crossref_primary_10_1109_TAI_2024_3403953
crossref_primary_10_3390_math13050797
crossref_primary_10_3390_su15010380
crossref_primary_10_1109_TCYB_2025_3549479
crossref_primary_10_1016_j_knosys_2025_113346
crossref_primary_10_3390_a18030130
crossref_primary_10_1109_TII_2024_3361017
crossref_primary_10_1007_s11517_024_03246_1
crossref_primary_10_1016_j_asoc_2025_113577
crossref_primary_10_1109_TCYB_2023_3341804
crossref_primary_10_1016_j_knosys_2025_113184
crossref_primary_10_1109_TMECH_2023_3277102
crossref_primary_10_3390_app15126454
crossref_primary_10_3390_s24113621
crossref_primary_10_1109_TII_2024_3438234
crossref_primary_10_1109_TETCI_2024_3370005
Cites_doi 10.1109/SBCCI.2003.1232813
10.1109/ICARM49381.2020.9195332
10.1109/ACCESS.2020.3032515
10.1109/CVPR.2019.00521
10.1109/72.536316
10.1016/j.molcel.2011.08.018
10.1177/1550147720907830
10.1007/11893295_122
10.1109/5.58326
10.1109/CAC48633.2019.8997269
10.3389/fnins.2016.00508
10.1109/21.97471
10.1109/CVPR.2009.5206848
10.1109/EMBC.2018.8512990
10.1109/ACCESS.2019.2908015
10.1109/TCYB.2020.2978500
10.1162/089976603321780317
10.1016/j.neunet.2019.05.009
10.3390/rs10050685
10.1038/s41586-019-1424-8
10.1007/978-981-13-7403-6_31
10.1155/2020/7463291
10.1109/SMC.2018.00596
10.1103/RevModPhys.34.123
10.1109/21.260667
10.1146/annurev-neuro-062111-150525
10.1109/TCSVT.2020.2974811
10.1109/TNN.2007.903150
10.1109/SURV.2009.090205
10.1109/SMC.2018.00383
10.1016/B978-0-12-741252-8.50010-8
10.1007/978-94-009-1740-8
10.1016/j.neucom.2019.08.084
10.1109/ACCESS.2019.2895909
10.1109/ACCESS.2019.2905528
10.1109/TSMC.2020.3006124
10.1109/SMC42975.2020.9282871
10.1145/2939672.2939785
10.1109/ISCAS.2019.8702583
10.1080/02533839.2019.1694442
10.1038/nn.2276
10.1109/ICCT46805.2019.8947271
10.1007/978-3-319-95933-7_60
10.1109/CYBER46603.2019.9066676
10.1109/34.990138
10.1109/TPAMI.2007.250598
10.1109/TIE.2019.2931255
10.1109/ACCESS.2020.3040340
10.1109/ICICIP47338.2019.9012200
10.1007/978-981-13-3549-5_2
10.1109/SIPROCESS.2019.8868769
10.1109/SMC.2018.00328
10.1016/j.neunet.2020.05.031
10.1007/978-3-030-22971-9_20
10.1109/TCYB.2020.2969705
10.1142/S0219691319500012
10.1109/ACCESS.2020.3006584
10.1038/323533a0
10.1007/978-3-030-26766-7_36
10.1613/jair.301
10.1109/JAS.2017.7510820
10.1016/j.engappai.2020.104139
10.1109/ICPICS50287.2020.9202108
10.1109/TNNLS.2020.3009417
10.1145/3383972.3384054
10.1109/3477.979966
10.1109/CCDC.2019.8832716
10.1109/TNNLS.2017.2648880
10.1109/EI247390.2019.9062263
10.1016/j.neucom.2019.04.017
10.1109/BIBM.2018.8621147
10.1007/s12559-019-09698-0
10.1016/0893-6080(89)90044-0
10.1186/s12864-016-2931-8
10.1109/3477.740166
10.1109/SPAC46244.2018.8965520
10.1109/TSMC.2019.2956022
10.1016/j.robot.2020.103441
10.1109/TAFFC.2019.2937768
10.1109/ISCAS45731.2020.9180445
10.1109/TSMC.2020.2995205
10.1109/JSTSP.2016.2520912
10.1109/TGRS.2009.2037898
10.1016/j.ins.2015.11.039
10.1007/s11263-007-0075-7
10.1016/s0893-6080(05)80131-5
10.1016/j.asoc.2019.01.015
10.1109/TGRS.2014.2381602
10.1061/AJRUA6.0001066
10.7763/IJCTE.2013.V5.795
10.1016/S0031-3203(01)00203-5
10.1016/j.snb.2007.09.060
10.1109/LGRS.2019.2913999
10.1109/MCOM.2017.1600400
10.1109/CYBER46603.2019.9066761
10.1109/SPAC46244.2018.8965603
10.1145/3093337.3037698
10.1109/2.144401
10.1109/TCYB.2014.2307349
10.1109/TSP.2013.2254478
10.1162/neco.1995.7.2.219
10.1109/IROS.2003.1249705
10.1109/TCYB.2021.3050508
10.1007/springerreference_5816
10.1109/TNNLS.2017.2716952
10.1109/72.143378
10.1109/ICCSS.2017.8091501
10.1109/ACCESS.2020.3003916
10.1109/TAMD.2015.2431497
10.1109/ACCESS.2019.2943188
10.1109/ACCESS.2019.2929094
10.1109/TSMCB.2009.2013721
10.1109/BIBM47256.2019.8983025
10.1109/TKDE.2020.3047857
10.1038/nature10887
10.1037/h0042519
10.1016/j.inffus.2017.02.007
10.1126/science.aaf2654
10.5555/2969033.2969153
10.1038/s41563-019-0291-x
10.1109/TEC.2005.847955
10.1109/CAC48633.2019.8996625
10.1109/TITS.2019.2897583
10.1109/COMST.2017.2682318
10.1109/TNNLS.2017.2712793
10.1007/s40815-020-00913-x
10.1109/SEC.2018.00040
10.1126/science.1127647
10.1109/ROBIO49542.2019.8961680
10.4324/9781410605337-29
10.1109/YAC.2017.7967609
10.1134/s1054661816010065
10.1109/LSP.2006.882107
10.1007/s11042-020-09303-9
10.1109/SMC42975.2020.9283159
10.1109/SPAC.2017.8304274
10.1109/TSMC.1985.6313399
10.1109/TSMC.2020.2969686
10.1109/CVPRW.2010.5543262
10.1109/CAC48633.2019.8997252
10.1109/JPROC.2019.2918951
10.1109/JBHI.2017.2688239
10.5555/2999134.2999257
10.1162/neco.1997.9.8.1735
10.1109/ICECCE49384.2020.9179272
10.1109/LGRS.2019.2907598
10.1109/JSEE.2012.00015
10.1109/TNN.2006.889496
10.1109/TCYB.2019.2934823
10.3390/en12244750
10.1109/TNNLS.2020.3004634
10.1109/ICCChina.2019.8855958
10.1016/j.neucom.2017.08.043
10.1109/ICDM.2001.989589
10.3390/s17061356
10.1109/CCDC.2019.8833310
10.1109/TIE.2019.2950853
10.1016/j.jpowsour.2020.228581
10.1109/TIP.2017.2756450
10.1146/annurev.ne.13.030190.000325
10.1109/TSMC.2020.2964684
10.1016/j.knosys.2019.105295
10.1109/SMC.2019.8914249
10.1088/1361-6501/ab8fee
10.1109/TCYB.2018.2863020
10.1016/j.maturitas.2009.07.014
10.1109/ICCSS48103.2019.9115436
10.1016/0925-2312(94)90053-1
10.1007/978-3-540-45167-9_12
10.1109/TIT.2015.2472522
10.1049/iet-com.2012.0222
10.1109/TFUZZ.2020.3009757
10.1109/ACCESS.2019.2950240
10.1109/EMBC.2019.8856666
10.1109/SMC.2019.8914328
10.1109/ACCESS.2018.2886202
10.1007/s40747-020-00139-2
10.1109/TGRS.2016.2524557
10.1145/3364836.3364890
10.1109/ACCESS.2020.2978109
10.1109/SMC.2018.00162
10.1109/TNNLS.2019.2935033
10.23919/CCC50068.2020.9188835
10.1109/72.392253
10.1145/3395245.3395252
10.1007/s11069-009-9392-1
10.1109/CompComm.2018.8780984
10.1109/ICARM.2019.8833648
10.1109/MCOM.2007.4378332
10.1145/3319921.3319955
10.1109/TNNLS.2020.3004253
10.1111/mice.12494
10.1109/5.726791
10.1109/CAC.2018.8623741
10.1109/ICIEA49774.2020.9102007
10.1109/CVPR.2016.90
10.1561/2000000039
10.1016/j.asoc.2020.106698
10.1109/JSTARS.2020.3001198
10.1126/science.1211095
10.1109/TIP.2012.2235849
10.1038/nrn2148
10.1109/CCDC.2019.8832560
10.1109/SPAC49953.2019.237871
10.1109/72.80202
10.1109/SMC.2018.00716
10.1016/j.comnet.2010.05.010
10.1109/72.471375
10.1109/TCYB.2018.2857815
10.1109/ICARCV.2018.8581232
10.1109/TSMC.2019.2958382
10.1016/j.adhoc.2012.02.016
10.1109/ICPR.1992.201708
10.1109/ACCESS.2019.2938349
10.3390/electronics8111273
10.1109/TCYB.2018.2875983
10.1016/j.neucom.2019.01.073
10.1007/bf00058655
10.1109/JIOT.2020.2980198
10.1162/153244303322753616
10.1109/ACCESS.2018.2885164
10.1109/IWCMC48107.2020.9148092
10.1155/2007/12725
10.2200/S00196ED1V01Y200906AIM006
10.1016/j.neucom.2019.10.059
10.1007/s00221-001-0932-5
10.1016/j.ymssp.2020.106738
10.1016/j.neunet.2014.10.001
10.1109/TKDE.2018.2866149
10.1109/TNNLS.2018.2866622
10.1016/j.neunet.2005.04.006
10.1109/SMC.2018.00719
10.1109/CVPR.2017.243
10.1109/TSMC.2020.3043147
10.1109/TCSI.2019.2959886
10.1007/s11263-015-0816-y
10.1109/TCYB.2020.2998984
10.1109/TMI.2015.2458702
10.1109/IJCNN.2019.8852226
10.1109/TSMC.2018.2884996
10.1016/j.neucom.2020.05.025
10.1109/TCYB.2020.3015749
10.1109/TNNLS.2015.2508926
10.1145/1361684.1361686
10.1109/TGRS.2017.2689805
10.1007/BFb0080116
10.1038/nature14236
10.1023/A:1018628609742
10.1109/TMM.2020.2987703
10.1016/j.measurement.2016.04.007
10.1534/genetics.112.146704
10.1109/TNSRE.2020.3003342
10.1016/j.neucom.2007.07.025
10.1007/978-3-319-70139-4
10.1002/stc.2571
10.1016/j.neuron.2016.10.050
10.1109/TBME.2010.2082539
10.1109/TCYB.2016.2588526
10.1109/MNET.001.1900078
10.1088/1741-2560/12/3/036009
10.1007/s40815-019-00739-2
10.1080/00207179208934315
10.1109/59.589648
10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00091
10.1038/s41592-019-0330-1
10.1007/978-1-4419-9326-7_1
10.1016/j.knosys.2020.106319
10.1007/978-3-030-04224-0_6
10.1016/0020-0190(87)90114-1
10.1016/j.ins.2015.09.025
10.1016/j.neucom.2014.08.098
10.1109/SPAC46244.2018.8965623
10.1109/ICACTE.2010.5579543
10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00053
10.1145/3318299.3318318
10.1109/CCNC.2017.7983103
10.1038/nature14539
10.1109/LCOMM.2019.2952072
10.1177/1475921720916923
10.3390/app9061111
10.1109/TCSII.2012.2204112
10.1016/S0925-2312(99)00127-7
10.1109/SPAC46244.2018.8965489
10.1109/TSMCC.2012.2189204
10.1007/978-3-319-46487-9_6
10.1109/TSMC.2019.2957818
10.1016/j.neucom.2005.12.126
10.1162/neco.2006.18.7.1527
10.1109/TKDE.2008.239
10.1007/s11432-017-9421-3
10.1212/01.wnl.0000243257.85592.9a
10.1002/adma.201505898
10.1007/s11042-019-07979-2
10.1109/TCYB.2020.2988792
10.1109/SSCI44817.2019.9002711
10.1109/TITS.2020.3011937
10.1093/nar/28.1.235
10.1109/SMC.2019.8914437
10.1007/978-3-030-01313-4_1
10.1016/j.neucom.2018.09.028
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2021.3061094
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Aerospace Database
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Computer Science
EISSN 2168-2275
EndPage 8950
ExternalDocumentID 33729975
10_1109_TCYB_2021_3061094
9380770
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62076102; U1813203; U1801262
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2019YFA0706200; 2019YFB1703600
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of Guangdong for Distinguished Young Scholar
  grantid: 2020B1515020041
  funderid: 10.13039/501100003453
– fundername: Science and Technology Major Project of Guangzhou
  grantid: 202007030006
– fundername: Science and Technology Program of Guangzhou
  grantid: 202002030250
– fundername: Guangdong–Hong Kong–Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence Fund
  grantid: 2019016
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c415t-49aa5c7d57317c4a4d9ce909d4e996f5fe63e146e39f27ef962680594ee170103
IEDL.DBID RIE
ISICitedReferencesCount 249
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732872900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Sun Nov 09 13:51:06 EST 2025
Sun Nov 09 08:53:36 EST 2025
Mon Jul 21 06:03:28 EDT 2025
Tue Nov 18 22:16:48 EST 2025
Sat Nov 29 08:02:48 EST 2025
Wed Aug 27 02:03:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-49aa5c7d57317c4a4d9ce909d4e996f5fe63e146e39f27ef962680594ee170103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7025-6365
0000-0001-5451-7230
0000-0001-5821-6283
0000-0003-4145-823X
PMID 33729975
PQID 2704099231
PQPubID 85422
PageCount 29
ParticipantIDs crossref_citationtrail_10_1109_TCYB_2021_3061094
ieee_primary_9380770
pubmed_primary_33729975
proquest_journals_2704099231
proquest_miscellaneous_2502807723
crossref_primary_10_1109_TCYB_2021_3061094
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref207
ref208
ref59
ref205
ref58
ref206
ref53
ref203
ref52
ref204
ref55
ref201
ref54
ref202
Luo (ref181)
ref209
Belkin (ref113) 2006; 7
Lan (ref291)
ref210
ref211
ref51
ref50
ref46
ref218
ref45
ref219
ref48
ref216
ref47
ref217
ref42
ref214
ref41
ref215
ref44
ref212
ref213
Simonyan (ref7) 2014
Lu (ref282) 2017
ref49
ref8
ref9
ref4
ref3
ref6
ref100
ref221
ref101
ref222
ref40
ref220
ref35
ref306
ref34
ref307
ref37
ref304
ref36
ref305
ref31
Dy (ref121) 2004; 5
ref302
ref30
ref303
ref33
ref300
ref32
ref301
ref39
ref38
ref308
ref309
ref310
ref24
Cui (ref191)
ref317
ref23
ref26
ref315
ref25
ref316
ref20
ref313
ref314
ref22
ref311
ref21
ref312
ref29
ref200
ref128
ref249
ref129
ref97
ref126
ref247
ref96
ref127
ref248
ref99
ref124
ref245
ref98
ref125
Snell (ref131) 2017
ref246
ref93
ref133
ref254
ref92
ref134
ref255
ref95
ref252
ref94
ref132
ref253
ref250
ref130
ref251
ref91
ref90
ref89
ref139
ref86
ref137
ref258
ref85
ref138
ref259
ref88
ref135
ref256
ref87
ref136
ref257
ref82
ref144
ref265
ref145
ref266
ref84
ref142
ref263
ref83
ref143
ref264
ref140
ref261
ref141
ref262
ref80
ref260
ref79
ref108
ref229
ref78
ref106
ref227
ref107
ref228
ref75
ref104
ref225
ref74
ref105
ref226
ref77
ref102
ref223
Fernández-Redondo (ref287)
ref76
ref103
ref224
ref71
ref111
ref232
ref70
ref112
ref233
ref73
ref230
ref72
ref110
ref231
ref68
ref119
ref67
ref117
ref238
ref69
ref118
ref239
ref64
ref115
ref236
ref63
ref116
ref237
ref66
ref234
ref65
ref114
ref235
ref60
ref122
ref243
ref123
ref244
ref62
ref120
ref241
ref61
ref242
ref240
ref168
ref289
ref169
Muthuramalingam (ref276) 2008; 4
ref290
ref170
ref177
ref298
ref178
ref175
ref296
ref176
ref297
ref173
ref294
ref174
ref295
ref171
ref292
ref172
ref293
Zhu (ref109) 2005
ref179
ref180
Salakhutdinov (ref5)
ref188
ref189
ref186
ref187
ref184
ref185
ref182
ref183
ref148
ref269
ref149
ref146
ref267
ref147
ref268
Tong (ref28) 2002; 2
Zhang (ref43) 2015
ref155
ref156
ref277
ref153
ref274
ref154
ref275
ref151
ref272
ref152
ref273
ref270
ref150
ref271
ref159
ref157
ref278
ref158
ref279
ref280
ref166
ref167
ref288
ref164
ref285
ref165
ref286
ref162
ref283
ref163
ref160
ref281
ref161
ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
Suykens (ref27) 1999; 9
Feng (ref81) 2018; 75
Hinton (ref299); 656
ref2
ref1
ref192
ref190
ref199
ref197
ref198
ref195
ref196
Lin (ref56) 2010
ref193
ref194
Rahimi (ref284) 2008
References_xml – ident: ref127
  doi: 10.1109/SBCCI.2003.1232813
– ident: ref148
  doi: 10.1109/ICARM49381.2020.9195332
– ident: ref174
  doi: 10.1109/ACCESS.2020.3032515
– ident: ref110
  doi: 10.1109/CVPR.2019.00521
– ident: ref26
  doi: 10.1109/72.536316
– ident: ref239
  doi: 10.1016/j.molcel.2011.08.018
– volume: 75
  start-page: 25
  volume-title: Diabetes
  year: 2018
  ident: ref81
  article-title: Performance analysis of fuzzy BLS using different cluster methods for classification
– ident: ref154
  doi: 10.1177/1550147720907830
– ident: ref275
  doi: 10.1007/11893295_122
– ident: ref59
  doi: 10.1109/5.58326
– ident: ref190
  doi: 10.1109/CAC48633.2019.8997269
– ident: ref301
  doi: 10.3389/fnins.2016.00508
– ident: ref292
  doi: 10.1109/21.97471
– ident: ref67
  doi: 10.1109/CVPR.2009.5206848
– ident: ref182
  doi: 10.1109/EMBC.2018.8512990
– ident: ref206
  doi: 10.1109/ACCESS.2019.2908015
– ident: ref106
  doi: 10.1109/TCYB.2020.2978500
– ident: ref91
  doi: 10.1162/089976603321780317
– ident: ref96
  doi: 10.1016/j.neunet.2019.05.009
– ident: ref114
  doi: 10.3390/rs10050685
– ident: ref281
  doi: 10.1038/s41586-019-1424-8
– ident: ref170
  doi: 10.1007/978-981-13-7403-6_31
– ident: ref227
  doi: 10.1155/2020/7463291
– ident: ref54
  doi: 10.1109/SMC.2018.00596
– ident: ref47
  doi: 10.1103/RevModPhys.34.123
– ident: ref269
  doi: 10.1109/21.260667
– ident: ref296
  doi: 10.1146/annurev-neuro-062111-150525
– ident: ref212
  doi: 10.1109/TCSVT.2020.2974811
– ident: ref11
  doi: 10.1109/TNN.2007.903150
– ident: ref253
  doi: 10.1109/SURV.2009.090205
– volume: 2
  start-page: 45
  year: 2002
  ident: ref28
  article-title: Support vector machine active learning with applications to text classification
  publication-title: J. Mach. Learn. Res.
– ident: ref80
  doi: 10.1109/SMC.2018.00383
– ident: ref298
  doi: 10.1016/B978-0-12-741252-8.50010-8
– ident: ref49
  doi: 10.1007/978-94-009-1740-8
– ident: ref101
  doi: 10.1016/j.neucom.2019.08.084
– ident: ref223
  doi: 10.1109/ACCESS.2019.2895909
– ident: ref142
  doi: 10.1109/ACCESS.2019.2905528
– ident: ref244
  doi: 10.1109/TSMC.2020.3006124
– ident: ref29
  doi: 10.1109/SMC42975.2020.9282871
– ident: ref98
  doi: 10.1145/2939672.2939785
– ident: ref204
  doi: 10.1109/ISCAS.2019.8702583
– ident: ref216
  doi: 10.1080/02533839.2019.1694442
– ident: ref300
  doi: 10.1038/nn.2276
– ident: ref207
  doi: 10.1109/ICCT46805.2019.8947271
– ident: ref184
  doi: 10.1007/978-3-319-95933-7_60
– ident: ref147
  doi: 10.1109/CYBER46603.2019.9066676
– ident: ref120
  doi: 10.1109/34.990138
– ident: ref92
  doi: 10.1109/TPAMI.2007.250598
– ident: ref74
  doi: 10.1109/TIE.2019.2931255
– ident: ref186
  doi: 10.1109/ACCESS.2020.3040340
– ident: ref220
  doi: 10.1109/ICICIP47338.2019.9012200
– ident: ref146
  doi: 10.1007/978-981-13-3549-5_2
– ident: ref72
  doi: 10.1109/SIPROCESS.2019.8868769
– ident: ref143
  doi: 10.1109/SMC.2018.00328
– ident: ref225
  doi: 10.1016/j.neunet.2020.05.031
– ident: ref317
  doi: 10.1007/978-3-030-22971-9_20
– ident: ref63
  doi: 10.1109/TCYB.2020.2969705
– ident: ref149
  doi: 10.1142/S0219691319500012
– ident: ref123
  doi: 10.1109/ACCESS.2020.3006584
– ident: ref14
  doi: 10.1038/323533a0
– ident: ref183
  doi: 10.1007/978-3-030-26766-7_36
– ident: ref262
  doi: 10.1613/jair.301
– ident: ref265
  doi: 10.1109/JAS.2017.7510820
– ident: ref228
  doi: 10.1016/j.engappai.2020.104139
– ident: ref164
  doi: 10.1109/ICPICS50287.2020.9202108
– ident: ref79
  doi: 10.1109/TNNLS.2020.3009417
– ident: ref162
  doi: 10.1145/3383972.3384054
– ident: ref35
  doi: 10.1109/3477.979966
– start-page: 4077
  volume-title: Advances in Neural Information Processing Systems
  year: 2017
  ident: ref131
  article-title: Prototypical networks for few-shot learning
– ident: ref188
  doi: 10.1109/CCDC.2019.8832716
– ident: ref57
  doi: 10.1109/TNNLS.2017.2648880
– ident: ref192
  doi: 10.1109/EI247390.2019.9062263
– ident: ref39
  doi: 10.1016/j.neucom.2019.04.017
– ident: ref234
  doi: 10.1109/BIBM.2018.8621147
– volume: 656
  start-page: 1
  volume-title: Proc. NIPS Deep Learn. Workshop
  ident: ref299
  article-title: How to do backpropagation in a brain
– ident: ref105
  doi: 10.1007/s12559-019-09698-0
– ident: ref12
  doi: 10.1016/0893-6080(89)90044-0
– ident: ref102
  doi: 10.1186/s12864-016-2931-8
– ident: ref25
  doi: 10.1109/3477.740166
– ident: ref165
  doi: 10.1109/SPAC46244.2018.8965520
– ident: ref175
  doi: 10.1109/TSMC.2019.2956022
– ident: ref135
  doi: 10.1016/j.robot.2020.103441
– ident: ref136
  doi: 10.1109/TAFFC.2019.2937768
– ident: ref203
  doi: 10.1109/ISCAS45731.2020.9180445
– start-page: 1536
  volume-title: Proc. IEEE 12th Asian Control Conf. (ASCC)
  ident: ref191
  article-title: Spatio-temporal broad learning networks for traffic speed prediction
– ident: ref46
  doi: 10.1109/TSMC.2020.2995205
– ident: ref260
  doi: 10.1109/JSTSP.2016.2520912
– ident: ref111
  doi: 10.1109/TGRS.2009.2037898
– ident: ref15
  doi: 10.1016/j.ins.2015.11.039
– ident: ref23
  doi: 10.1007/s11263-007-0075-7
– ident: ref10
  doi: 10.1016/s0893-6080(05)80131-5
– ident: ref100
  doi: 10.1016/j.asoc.2019.01.015
– ident: ref115
  doi: 10.1109/TGRS.2014.2381602
– ident: ref198
  doi: 10.1061/AJRUA6.0001066
– ident: ref274
  doi: 10.7763/IJCTE.2013.V5.795
– ident: ref237
  doi: 10.1016/S0031-3203(01)00203-5
– ident: ref65
  doi: 10.1016/j.snb.2007.09.060
– ident: ref163
  doi: 10.1109/LGRS.2019.2913999
– ident: ref254
  doi: 10.1109/MCOM.2017.1600400
– ident: ref153
  doi: 10.1109/CYBER46603.2019.9066761
– ident: ref194
  doi: 10.1109/SPAC46244.2018.8965603
– ident: ref313
  doi: 10.1145/3093337.3037698
– ident: ref13
  doi: 10.1109/2.144401
– ident: ref129
  doi: 10.1109/TCYB.2014.2307349
– ident: ref126
  doi: 10.1109/TSP.2013.2254478
– ident: ref50
  doi: 10.1162/neco.1995.7.2.219
– ident: ref88
  doi: 10.1109/IROS.2003.1249705
– ident: ref134
  doi: 10.1109/TCYB.2021.3050508
– ident: ref310
  doi: 10.1007/springerreference_5816
– ident: ref17
  doi: 10.1109/TNNLS.2017.2716952
– ident: ref288
  doi: 10.1109/72.143378
– ident: ref122
  doi: 10.1109/ICCSS.2017.8091501
– volume: 7
  start-page: 2399
  year: 2006
  ident: ref113
  article-title: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
  publication-title: J. Mach. Learn. Res.
– ident: ref119
  doi: 10.1109/ACCESS.2020.3003916
– ident: ref235
  doi: 10.1109/TAMD.2015.2431497
– ident: ref219
  doi: 10.1109/ACCESS.2019.2943188
– ident: ref221
  doi: 10.1109/ACCESS.2019.2929094
– ident: ref294
  doi: 10.1109/TSMCB.2009.2013721
– ident: ref137
  doi: 10.1109/BIBM47256.2019.8983025
– ident: ref209
  doi: 10.1109/TKDE.2020.3047857
– ident: ref240
  doi: 10.1038/nature10887
– ident: ref297
  doi: 10.1037/h0042519
– ident: ref86
  doi: 10.1016/j.inffus.2017.02.007
– ident: ref312
  doi: 10.1126/science.aaf2654
– ident: ref283
  doi: 10.5555/2969033.2969153
– ident: ref305
  doi: 10.1038/s41563-019-0291-x
– ident: ref250
  doi: 10.1109/TEC.2005.847955
– ident: ref151
  doi: 10.1109/CAC48633.2019.8996625
– ident: ref251
  doi: 10.1109/TITS.2019.2897583
– ident: ref315
  doi: 10.1109/COMST.2017.2682318
– start-page: 448
  volume-title: Proc. 12th Int. Conf. Artif. Intell. Stat.
  ident: ref5
  article-title: Deep Boltzmann machines
– ident: ref289
  doi: 10.1109/TNNLS.2017.2712793
– ident: ref273
  doi: 10.1007/s40815-020-00913-x
– ident: ref316
  doi: 10.1109/SEC.2018.00040
– ident: ref4
  doi: 10.1126/science.1127647
– ident: ref160
  doi: 10.1109/ROBIO49542.2019.8961680
– ident: ref9
  doi: 10.4324/9781410605337-29
– ident: ref19
  doi: 10.1109/YAC.2017.7967609
– ident: ref69
  doi: 10.1134/s1054661816010065
– ident: ref245
  doi: 10.1109/LSP.2006.882107
– ident: ref242
  doi: 10.1007/s11042-020-09303-9
– ident: ref176
  doi: 10.1109/SMC42975.2020.9283159
– ident: ref168
  doi: 10.1109/SPAC.2017.8304274
– start-page: 1177
  volume-title: Advances in Neural Information Processing Syst.
  year: 2008
  ident: ref284
  article-title: Random features for large-scale kernel machines
– ident: ref34
  doi: 10.1109/TSMC.1985.6313399
– ident: ref179
  doi: 10.1109/TSMC.2020.2969686
– ident: ref229
  doi: 10.1109/CVPRW.2010.5543262
– ident: ref167
  doi: 10.1109/CAC48633.2019.8997252
– ident: ref314
  doi: 10.1109/JPROC.2019.2918951
– ident: ref236
  doi: 10.1109/JBHI.2017.2688239
– ident: ref6
  doi: 10.5555/2999134.2999257
– ident: ref62
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref185
  doi: 10.1109/ICECCE49384.2020.9179272
– ident: ref124
  doi: 10.1109/LGRS.2019.2907598
– ident: ref270
  doi: 10.1109/JSEE.2012.00015
– ident: ref271
  doi: 10.1109/TNN.2006.889496
– ident: ref83
  doi: 10.1109/TCYB.2019.2934823
– ident: ref104
  doi: 10.3390/en12244750
– ident: ref169
  doi: 10.1109/TNNLS.2020.3004634
– ident: ref213
  doi: 10.1109/ICCChina.2019.8855958
– ident: ref290
  doi: 10.1016/j.neucom.2017.08.043
– ident: ref24
  doi: 10.1109/ICDM.2001.989589
– ident: ref252
  doi: 10.3390/s17061356
– ident: ref157
  doi: 10.1109/CCDC.2019.8833310
– ident: ref217
  doi: 10.1109/TIE.2019.2950853
– ident: ref249
  doi: 10.1016/j.jpowsour.2020.228581
– ident: ref130
  doi: 10.1109/TIP.2017.2756450
– ident: ref295
  doi: 10.1146/annurev.ne.13.030190.000325
– volume-title: Very deep convolutional networks for large-scale image recognition
  year: 2014
  ident: ref7
– ident: ref178
  doi: 10.1109/TSMC.2020.2964684
– ident: ref37
  doi: 10.1016/j.knosys.2019.105295
– ident: ref215
  doi: 10.1109/SMC.2019.8914249
– ident: ref224
  doi: 10.1088/1361-6501/ab8fee
– ident: ref64
  doi: 10.1109/TCYB.2018.2863020
– ident: ref309
  doi: 10.1016/j.maturitas.2009.07.014
– ident: ref200
  doi: 10.1109/ICCSS48103.2019.9115436
– ident: ref21
  doi: 10.1016/0925-2312(94)90053-1
– ident: ref51
  doi: 10.1007/978-3-540-45167-9_12
– ident: ref76
  doi: 10.1109/TIT.2015.2472522
– ident: ref261
  doi: 10.1049/iet-com.2012.0222
– ident: ref82
  doi: 10.1109/TFUZZ.2020.3009757
– ident: ref226
  doi: 10.1109/ACCESS.2019.2950240
– start-page: 1
  volume-title: Proc. IEEE Int. Joint Conf. Neural Netw. (IJCNN)
  ident: ref291
  article-title: Adaptive weighted broad learning system for software defect prediction
– ident: ref177
  doi: 10.1109/EMBC.2019.8856666
– ident: ref40
  doi: 10.1109/SMC.2019.8914328
– ident: ref218
  doi: 10.1109/ACCESS.2018.2886202
– start-page: 649
  volume-title: Advances in Neural Information Processing Systems
  year: 2015
  ident: ref43
  article-title: Character-level convolutional networks for text classification
– ident: ref280
  doi: 10.1007/s40747-020-00139-2
– ident: ref128
  doi: 10.1109/TGRS.2016.2524557
– ident: ref187
  doi: 10.1145/3364836.3364890
– ident: ref231
  doi: 10.1109/ACCESS.2020.2978109
– ident: ref230
  doi: 10.1109/SMC.2018.00162
– ident: ref77
  doi: 10.1109/TNNLS.2019.2935033
– ident: ref138
  doi: 10.23919/CCC50068.2020.9188835
– ident: ref267
  doi: 10.1109/72.392253
– ident: ref202
  doi: 10.1145/3395245.3395252
– ident: ref247
  doi: 10.1007/s11069-009-9392-1
– ident: ref73
  doi: 10.1109/CompComm.2018.8780984
– ident: ref85
  doi: 10.1109/ICARM.2019.8833648
– ident: ref257
  doi: 10.1109/MCOM.2007.4378332
– ident: ref150
  doi: 10.1145/3319921.3319955
– start-page: 119
  volume-title: Proc. Eur. Symp. Artif. Neural Netw. (ESANN)
  ident: ref287
  article-title: Weight initialization methods for multilayer feedforward
– ident: ref189
  doi: 10.1109/TNNLS.2020.3004253
– ident: ref196
  doi: 10.1111/mice.12494
– ident: ref8
  doi: 10.1109/5.726791
– ident: ref222
  doi: 10.1109/CAC.2018.8623741
– ident: ref61
  doi: 10.1109/ICIEA49774.2020.9102007
– start-page: 73
  volume-title: Proc. 12th Asian Control Conf. (ASCC)
  ident: ref181
  article-title: Transfer and incremental learning method for blood glucose prediction of new subjects with type 1 diabetes
– ident: ref41
  doi: 10.1109/CVPR.2016.90
– ident: ref2
  doi: 10.1561/2000000039
– ident: ref246
  doi: 10.1016/j.asoc.2020.106698
– ident: ref94
  doi: 10.1109/JSTARS.2020.3001198
– ident: ref303
  doi: 10.1126/science.1211095
– ident: ref55
  doi: 10.1109/TIP.2012.2235849
– ident: ref89
  doi: 10.1038/nrn2148
– ident: ref195
  doi: 10.1109/CCDC.2019.8832560
– ident: ref248
  doi: 10.1109/SPAC49953.2019.237871
– ident: ref266
  doi: 10.1109/72.80202
– ident: ref161
  doi: 10.1109/SMC.2018.00716
– ident: ref255
  doi: 10.1016/j.comnet.2010.05.010
– ident: ref60
  doi: 10.1109/72.471375
– year: 2005
  ident: ref109
  article-title: Semi-supervised learning literature survey
– ident: ref32
  doi: 10.1109/TCYB.2018.2857815
– ident: ref156
  doi: 10.1109/ICARCV.2018.8581232
– ident: ref208
  doi: 10.1109/TSMC.2019.2958382
– ident: ref307
  doi: 10.1016/j.adhoc.2012.02.016
– ident: ref48
  doi: 10.1109/ICPR.1992.201708
– ident: ref166
  doi: 10.1109/ACCESS.2019.2938349
– ident: ref117
  doi: 10.3390/electronics8111273
– ident: ref173
  doi: 10.1109/TCYB.2018.2875983
– ident: ref33
  doi: 10.1016/j.neucom.2019.01.073
– ident: ref99
  doi: 10.1007/bf00058655
– ident: ref211
  doi: 10.1109/JIOT.2020.2980198
– ident: ref140
  doi: 10.1162/153244303322753616
– ident: ref133
  doi: 10.1109/ACCESS.2018.2885164
– ident: ref264
  doi: 10.1109/IWCMC48107.2020.9148092
– ident: ref293
  doi: 10.1155/2007/12725
– volume: 5
  start-page: 845
  year: 2004
  ident: ref121
  article-title: Feature selection for unsupervised learning
  publication-title: J. Mach. Learn. Res.
– ident: ref108
  doi: 10.2200/S00196ED1V01Y200906AIM006
– ident: ref38
  doi: 10.1016/j.neucom.2019.10.059
– ident: ref302
  doi: 10.1007/s00221-001-0932-5
– ident: ref66
  doi: 10.1016/j.ymssp.2020.106738
– ident: ref278
  doi: 10.1016/j.neunet.2014.10.001
– ident: ref95
  doi: 10.1109/TKDE.2018.2866149
– ident: ref18
  doi: 10.1109/TNNLS.2018.2866622
– ident: ref44
  doi: 10.1016/j.neunet.2005.04.006
– ident: ref205
  doi: 10.1109/SMC.2018.00719
– ident: ref42
  doi: 10.1109/CVPR.2017.243
– ident: ref107
  doi: 10.1109/TSMC.2020.3043147
– ident: ref112
  doi: 10.1109/TCSI.2019.2959886
– volume-title: The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices
  year: 2010
  ident: ref56
– ident: ref68
  doi: 10.1007/s11263-015-0816-y
– ident: ref272
  doi: 10.1109/TCYB.2020.2998984
– ident: ref30
  doi: 10.1109/TMI.2015.2458702
– ident: ref141
  doi: 10.1109/IJCNN.2019.8852226
– ident: ref45
  doi: 10.1109/TSMC.2018.2884996
– ident: ref145
  doi: 10.1016/j.neucom.2020.05.025
– ident: ref58
  doi: 10.1109/TCYB.2020.3015749
– ident: ref268
  doi: 10.1109/TNNLS.2015.2508926
– ident: ref258
  doi: 10.1145/1361684.1361686
– ident: ref125
  doi: 10.1109/TGRS.2017.2689805
– ident: ref243
  doi: 10.1007/BFb0080116
– ident: ref263
  doi: 10.1038/nature14236
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  ident: ref27
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
  doi: 10.1023/A:1018628609742
– ident: ref84
  doi: 10.1109/TMM.2020.2987703
– ident: ref31
  doi: 10.1016/j.measurement.2016.04.007
– ident: ref238
  doi: 10.1534/genetics.112.146704
– ident: ref87
  doi: 10.1109/TNSRE.2020.3003342
– ident: ref285
  doi: 10.1016/j.neucom.2007.07.025
– start-page: 6231
  volume-title: Advances in Neural Information Processing Systems
  year: 2017
  ident: ref282
  article-title: The expressive power of neural networks: A view from the width
  doi: 10.1007/978-3-319-70139-4
– ident: ref201
  doi: 10.1002/stc.2571
– ident: ref304
  doi: 10.1016/j.neuron.2016.10.050
– ident: ref118
  doi: 10.1109/TBME.2010.2082539
– ident: ref70
  doi: 10.1109/TCYB.2016.2588526
– ident: ref210
  doi: 10.1109/MNET.001.1900078
– ident: ref90
  doi: 10.1088/1741-2560/12/3/036009
– ident: ref214
  doi: 10.1007/s40815-019-00739-2
– ident: ref20
  doi: 10.1080/00207179208934315
– ident: ref16
  doi: 10.1109/59.589648
– ident: ref152
  doi: 10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00091
– ident: ref241
  doi: 10.1038/s41592-019-0330-1
– ident: ref97
  doi: 10.1007/978-1-4419-9326-7_1
– ident: ref232
  doi: 10.1016/j.knosys.2020.106319
– ident: ref193
  doi: 10.1007/978-3-030-04224-0_6
– volume: 4
  start-page: 86
  issue: 2
  year: 2008
  ident: ref276
  article-title: Neural network implementation using FPGA: Issues and application
  publication-title: Int. J. Inf. Technol.
– ident: ref52
  doi: 10.1016/0020-0190(87)90114-1
– ident: ref22
  doi: 10.1016/j.ins.2015.09.025
– ident: ref75
  doi: 10.1016/j.neucom.2014.08.098
– ident: ref159
  doi: 10.1109/SPAC46244.2018.8965623
– ident: ref256
  doi: 10.1109/ICACTE.2010.5579543
– ident: ref116
  doi: 10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00053
– ident: ref155
  doi: 10.1145/3318299.3318318
– ident: ref311
  doi: 10.1109/CCNC.2017.7983103
– ident: ref1
  doi: 10.1038/nature14539
– ident: ref259
  doi: 10.1109/LCOMM.2019.2952072
– ident: ref197
  doi: 10.1177/1475921720916923
– ident: ref172
  doi: 10.3390/app9061111
– ident: ref277
  doi: 10.1109/TCSII.2012.2204112
– ident: ref286
  doi: 10.1016/S0925-2312(99)00127-7
– ident: ref36
  doi: 10.1109/SPAC46244.2018.8965489
– ident: ref308
  doi: 10.1109/TSMCC.2012.2189204
– ident: ref71
  doi: 10.1007/978-3-319-46487-9_6
– ident: ref132
  doi: 10.1109/TSMC.2019.2957818
– ident: ref279
  doi: 10.1016/j.neucom.2005.12.126
– ident: ref3
  doi: 10.1162/neco.2006.18.7.1527
– ident: ref78
  doi: 10.1109/TKDE.2008.239
– ident: ref93
  doi: 10.1007/s11432-017-9421-3
– ident: ref233
  doi: 10.1212/01.wnl.0000243257.85592.9a
– ident: ref306
  doi: 10.1002/adma.201505898
– ident: ref144
  doi: 10.1007/s11042-019-07979-2
– ident: ref199
  doi: 10.1109/TCYB.2020.2988792
– ident: ref139
  doi: 10.1109/SSCI44817.2019.9002711
– ident: ref171
  doi: 10.1109/TITS.2020.3011937
– ident: ref103
  doi: 10.1093/nar/28.1.235
– ident: ref158
  doi: 10.1109/SMC.2019.8914437
– ident: ref180
  doi: 10.1007/978-3-030-01313-4_1
– ident: ref53
  doi: 10.1016/j.neucom.2018.09.028
SSID ssj0000816898
Score 2.666562
SecondaryResourceType review_article
Snippet In recent years, the appearance of the broad learning system (BLS) is poised to revolutionize conventional artificial intelligence methods. It represents a...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8922
SubjectTerms Algorithms
Artificial intelligence
Biomedical engineering
Broad learning system (BLS)
classification
Computer architecture
Computer science
Computer vision
Data mining
feature learning
Knowledge engineering
Learning systems
Machine learning
Natural language processing
Neural networks
regression
research review
semisupervised learning (SSL)
Task analysis
Training
Unsupervised learning
Title Research Review for Broad Learning System: Algorithms, Theory, and Applications
URI https://ieeexplore.ieee.org/document/9380770
https://www.ncbi.nlm.nih.gov/pubmed/33729975
https://www.proquest.com/docview/2704099231
https://www.proquest.com/docview/2502807723
Volume 52
WOSCitedRecordID wos000732872900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTuQwEC0B4sCFfQkwyEgcAHUgizuO59aDBnECDiA1pyhtVwCJSY964fupcpyIA4w0NytxFqXK8Xsu1yuAExOnsRwlMkx0JUOZlxjmVYYhki8huRRB5KbYhLq9zYdDfb8AvS4XBhHd5jO84KaL5duxmfNS2aVmdXRFBH1RKdXkanXrKa6AhCt9m1AjJFShfBAzjvTlw9XTLyKDSXxBEJkOcDmelCNWmjcYfpqRXImV79Gmm3Wu1_7vfddh1aNLMWjcYQMWsN6EtbZyg_ADeRM2fGsqTr3u9NkW3LW78EQTMBCEZwXR9NIKr8L6LBqB859i8PY8nrzOXv5Me6JJ7--JsrZi8Ckevg2P178frm5CX28hNDSNz0Kpy7JvlO0rAhVGltJqgzrSViKxoqpfYZYi_Vkx1VWisNJEhnLWe0FkVfco3YGlelzjHgib60yO4ryU8Ygl4HKiXXFWJSazsc2iKoCo_eaF8WLkXBPjrXCkJNIFW6xgixXeYgGcd5f8bZQ4_tV5i83RdfSWCOCwNWzhx-q0SBT9yDQD3QCOu9M0yjh0UtY4nlOfPoegiYmkAew2DtHdu_Wj_a-feQArCadMuH1ph7A0m8zxByyb99nrdHJErjzMj5wrfwAG6-lK
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VBQku9AUl0IKROADatLHjPNzbUlEVURYOi1ROUdaelEoli_bB72fGcaIeKBI3K3Eeyozj7_N4vgF4bWUq9UzpWJlGx7qsMS6bHGMkX0JyKYLIXbGJYjIpLy_N1w0YDbkwiOg3n-ERN30s383tmpfKjg2roxdE0O9lWivZZWsNKyq-hIQvfquoEROuKEIYUybmeHr6_T3RQSWPCCTTAS7Ik3LMyvAWw1tzki-ycjfe9PPO2db_vfE2PAr4Uow7h9iBDWx3Yauv3SDCUN6FndBaijdBefrtHnzp9-GJLmQgCNEKIuq1E0GH9Up0EucnYnxzNV9cr378XI5El-A_EnXrxPhWRPwxfDv7MD09j0PFhdjSRL6KtanrzBYuKwhWWF1rZyyaxDiNxIuarME8Rfq3YmoaVWBjiA6VrPiCyLruSfoENtt5i09BuNLkeibLWssZi8CVRLxk3iibO-nypIkg6b95ZYMcOVfFuKk8LUlMxRar2GJVsFgE74ZLfnVaHP_qvMfmGDoGS0Rw0Bu2CqN1WamCfmWGoW4Er4bTNM44eFK3OF9Tn4yD0MRF0gj2O4cY7t370bO_P_MlPDiffr6oLj5OPj2Hh4oTKPwutQPYXC3WeAj37e_V9XLxwjv0H9Jn66k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+Review+for+Broad+Learning+System%3A+Algorithms%2C+Theory%2C+and+Applications&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Gong%2C+Xinrong&rft.au=Zhang%2C+Tong&rft.au=Chen%2C+C.+L.+Philip&rft.au=Liu%2C+Zhulin&rft.date=2022-09-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=52&rft.issue=9&rft.spage=8922&rft.epage=8950&rft_id=info:doi/10.1109%2FTCYB.2021.3061094&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2021_3061094
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon