TEDAR: Temporal dynamic signal detection of adverse reactions

Computational approaches to detect the signals of adverse drug reactions are powerful tools to monitor the unattended effects that users experience and report, also preventing death and serious injury. They apply statistical indices to affirm the validity of adverse reactions reported by users. The...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Artificial intelligence in medicine Ročník 122; s. 102212
Hlavní autoři: Aparo, Antonino, Sala, Pietro, Bonnici, Vincenzo, Giugno, Rosalba
Médium: Journal Article
Jazyk:angličtina
Vydáno: Netherlands Elsevier B.V 01.12.2021
Témata:
ISSN:0933-3657, 1873-2860, 1873-2860
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Computational approaches to detect the signals of adverse drug reactions are powerful tools to monitor the unattended effects that users experience and report, also preventing death and serious injury. They apply statistical indices to affirm the validity of adverse reactions reported by users. The methodologies that scan fixed duration intervals in the lifetime of drugs are among the most used. Here we present a method, called TEDAR, in which ranges of varying length are taken into account. TEDAR has the advantage to detect a greater number of true signals without significantly increasing the number of false positives, which are a major concern for this type of tools. Furthermore, early detection of signals is a key feature of methods to prevent the safety of the population. The results show that TEDAR detects adverse reactions many months earlier than methodologies based on a fixed interval length. •Detection of signals in pharmacovigilance datasets is improved by temporal dynamics.•TEDAR detects a greater number of true signals without increasing false positives.•TEDAR detects adverse reactions months before the other methodologies.
AbstractList Computational approaches to detect the signals of adverse drug reactions are powerful tools to monitor the unattended effects that users experience and report, also preventing death and serious injury. They apply statistical indices to affirm the validity of adverse reactions reported by users. The methodologies that scan fixed duration intervals in the lifetime of drugs are among the most used. Here we present a method, called TEDAR, in which ranges of varying length are taken into account. TEDAR has the advantage to detect a greater number of true signals without significantly increasing the number of false positives, which are a major concern for this type of tools. Furthermore, early detection of signals is a key feature of methods to prevent the safety of the population. The results show that TEDAR detects adverse reactions many months earlier than methodologies based on a fixed interval length.Computational approaches to detect the signals of adverse drug reactions are powerful tools to monitor the unattended effects that users experience and report, also preventing death and serious injury. They apply statistical indices to affirm the validity of adverse reactions reported by users. The methodologies that scan fixed duration intervals in the lifetime of drugs are among the most used. Here we present a method, called TEDAR, in which ranges of varying length are taken into account. TEDAR has the advantage to detect a greater number of true signals without significantly increasing the number of false positives, which are a major concern for this type of tools. Furthermore, early detection of signals is a key feature of methods to prevent the safety of the population. The results show that TEDAR detects adverse reactions many months earlier than methodologies based on a fixed interval length.
Computational approaches to detect the signals of adverse drug reactions are powerful tools to monitor the unattended effects that users experience and report, also preventing death and serious injury. They apply statistical indices to affirm the validity of adverse reactions reported by users. The methodologies that scan fixed duration intervals in the lifetime of drugs are among the most used. Here we present a method, called TEDAR, in which ranges of varying length are taken into account. TEDAR has the advantage to detect a greater number of true signals without significantly increasing the number of false positives, which are a major concern for this type of tools. Furthermore, early detection of signals is a key feature of methods to prevent the safety of the population. The results show that TEDAR detects adverse reactions many months earlier than methodologies based on a fixed interval length.
Computational approaches to detect the signals of adverse drug reactions are powerful tools to monitor the unattended effects that users experience and report, also preventing death and serious injury. They apply statistical indices to affirm the validity of adverse reactions reported by users. The methodologies that scan fixed duration intervals in the lifetime of drugs are among the most used. Here we present a method, called TEDAR, in which ranges of varying length are taken into account. TEDAR has the advantage to detect a greater number of true signals without significantly increasing the number of false positives, which are a major concern for this type of tools. Furthermore, early detection of signals is a key feature of methods to prevent the safety of the population. The results show that TEDAR detects adverse reactions many months earlier than methodologies based on a fixed interval length. •Detection of signals in pharmacovigilance datasets is improved by temporal dynamics.•TEDAR detects a greater number of true signals without increasing false positives.•TEDAR detects adverse reactions months before the other methodologies.
ArticleNumber 102212
Author Bonnici, Vincenzo
Giugno, Rosalba
Sala, Pietro
Aparo, Antonino
Author_xml – sequence: 1
  givenname: Antonino
  surname: Aparo
  fullname: Aparo, Antonino
– sequence: 2
  givenname: Pietro
  surname: Sala
  fullname: Sala, Pietro
  email: pietro.sala@univr.it
– sequence: 3
  givenname: Vincenzo
  surname: Bonnici
  fullname: Bonnici, Vincenzo
– sequence: 4
  givenname: Rosalba
  surname: Giugno
  fullname: Giugno, Rosalba
  email: rosalba.giugno@univr.it
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34823837$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1Lw0AQhhdRtFb_gUiOXlL3M7sRFcRvKAhSz8t0M5Gt-ai7qdB_b2r04qWnYYb3eWGeQ7LbtA0ScsLohFGWnS8mELoaiwmnnPUnzhnfISNmtEi5yeguGdFciFRkSh-QwxgXlFItWbZPDoQ0XBihR-Rqdn9383qRzLBetgGqpFg3UHuXRP_ebFbs0HW-bZK2TKD4whAxCQg_t3hE9kqoIh7_zjF5e7if3T6l05fH59ubaeokU10qNchcoeZgDOVljgyM5qWWDlVmcnQ6Q6mAKlTAGDdCAKfzjBUsV3xeghiTs6F3GdrPFcbO1j46rCposF1FyzMqeydKiT56-htdzXs7dhl8DWFt_17uAxdDwIU2xoCldb6DzTtdAF9ZRu3Gr13Ywa_d-LWD3x6W_-C__i3Y9YBhL-nLY7DReWwcFj70em3R-m0Fl_8KXOUb76D6wPV2_BuH8qgK
CitedBy_id crossref_primary_10_1111_bcp_16012
Cites_doi 10.1002/9781119413431.ch10
10.3390/ijerph16122221
10.1002/pds.4672
10.1007/s40264-015-0345-1
10.1002/pds.4184
10.3390/life10080138
10.1002/pds.677
10.2165/11534410-000000000-00000
10.1080/00031305.1999.10474456
10.1186/s12911-017-0472-y
10.1002/sim.8447
10.1177/2042098619882819
10.1007/s40264-015-0289-5
10.1093/nar/gku1066
10.1177/0962280216643116
10.1002/pds.1742
10.1002/pds.1001
10.1007/s40264-016-0405-1
10.1007/s002280050466
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier B.V.
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier B.V.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.artmed.2021.102212
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1873-2860
ExternalDocumentID 34823837
10_1016_j_artmed_2021_102212
S0933365721002050
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.DC
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
77K
8P~
9JM
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABBQC
ABFNM
ABIVO
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HEA
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LZ2
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WH7
WUQ
Z5R
~G-
~HD
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
RIG
9DU
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c415t-47a495e72a8802f9e1a872f74ce5689ec76e45a05e5a112833a20b61d1952bfa3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000722509400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0933-3657
1873-2860
IngestDate Sat Sep 27 20:47:31 EDT 2025
Thu Apr 03 06:56:34 EDT 2025
Sat Nov 29 07:07:29 EST 2025
Tue Nov 18 21:02:40 EST 2025
Fri Feb 23 02:41:57 EST 2024
Tue Oct 14 19:30:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords ESD
Dynamic temporal intervals
Graph-based algorithm
DTI
Adverse drug reactions
Early signal detection
Pharmacovigilance datasets
Signal detection
ADR
Language English
License Copyright © 2021. Published by Elsevier B.V.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c415t-47a495e72a8802f9e1a872f74ce5689ec76e45a05e5a112833a20b61d1952bfa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 34823837
PQID 2604016553
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2604016553
pubmed_primary_34823837
crossref_citationtrail_10_1016_j_artmed_2021_102212
crossref_primary_10_1016_j_artmed_2021_102212
elsevier_sciencedirect_doi_10_1016_j_artmed_2021_102212
elsevier_clinicalkey_doi_10_1016_j_artmed_2021_102212
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Artificial intelligence in medicine
PublicationTitleAlternate Artif Intell Med
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bate, Lindquist, Edwards, Olsson, Orre, Lansner, De Freitas (bb0045) 1998; 54
MedDRA MSSO (bb0120) 2010
AIFA Official Website (bb0010)
Ji, Shen, Tran (bb0035) 2014
Bate, Evans (bb0050) 2009; 18
Wisniewski, Bate, Bousquet, Brueckner, Candore, Juhlin, Macia-Martinez, Manlik, Quarcoo, Seabroke (bb0100) 2016; 39
Ahmed, Pariente, Tubert-Bitter (bb0070) 2018; 27
Dekking, Kraaikamp, Lopuhaä, Meester (bb0115) 2005
Fukazawa, Hinomura, Kaneko, Narukawa (bb0065) 2018; 27
ICH M5 Expert Working Group (bb0125) 2005
Zhou, Pool, Iskander, English-Bullard, Ball, Wise, Haber, Pless, Mootrey, Ellenberg (bb0020) 2003; 52
Poudel, Acharya, Ghimire, Dhital, Bharati (bb0005) 2017; 26
Evans, Waller, Davis (bb0030) 2001; 10
Park, Jung, Heo, Jung (bb0090) 2020; 10
Lerch, Nowicki, Manlik, Wirsching (bb0080) 2015; 38
Sardella, Lungu (bb0075) 2019; 10
Dal Pan, Lindquist, Gelperin (bb0025) 2019
Ding, Markatou, Ball (bb0095) 2020; 39
Cai, Du, Huang, Ellenberg, Hennessy, Tao, Chen (bb0015) 2017; 17
Rothman, Lanes, Sacks (bb0040) 2004; 13
Cai, Xu, Pan, Pan, Ji, Li, Jin, Liu, Ji (bb0105) 2014; 43
Candore, Juhlin, Manlik, Thakrar, Quarcoo, Seabroke, Wisniewski, Slattery (bb0085) 2015; 38
U. S. Food, Drug Administration US FDA (bb0140) 1989
De Pretis, Osimani (bb0060) 2019; 16
Alvarez, Hidalgo, Maignen, Slattery (bb0130) 2010; 33
Kuhn, Letunic, Jensen, Bork (bb0135) 2015; 44
DuMouchel (bb0055) 1999; 53
EudraVigilance Expert Working Group (bb0110) 2006
Candore (10.1016/j.artmed.2021.102212_bb0085) 2015; 38
EudraVigilance Expert Working Group (10.1016/j.artmed.2021.102212_bb0110)
MedDRA MSSO (10.1016/j.artmed.2021.102212_bb0120)
U. S. Food (10.1016/j.artmed.2021.102212_bb0140) 1989
Rothman (10.1016/j.artmed.2021.102212_bb0040) 2004; 13
ICH M5 Expert Working Group (10.1016/j.artmed.2021.102212_bb0125)
Zhou (10.1016/j.artmed.2021.102212_bb0020) 2003; 52
Cai (10.1016/j.artmed.2021.102212_bb0015) 2017; 17
Poudel (10.1016/j.artmed.2021.102212_bb0005) 2017; 26
Wisniewski (10.1016/j.artmed.2021.102212_bb0100) 2016; 39
Dekking (10.1016/j.artmed.2021.102212_bb0115) 2005
Sardella (10.1016/j.artmed.2021.102212_bb0075) 2019; 10
Lerch (10.1016/j.artmed.2021.102212_bb0080) 2015; 38
Bate (10.1016/j.artmed.2021.102212_bb0050) 2009; 18
Cai (10.1016/j.artmed.2021.102212_bb0105) 2014; 43
Ding (10.1016/j.artmed.2021.102212_bb0095) 2020; 39
AIFA Official Website (10.1016/j.artmed.2021.102212_bb0010)
Ji (10.1016/j.artmed.2021.102212_bb0035) 2014
Fukazawa (10.1016/j.artmed.2021.102212_bb0065) 2018; 27
Ahmed (10.1016/j.artmed.2021.102212_bb0070) 2018; 27
Alvarez (10.1016/j.artmed.2021.102212_bb0130) 2010; 33
Park (10.1016/j.artmed.2021.102212_bb0090) 2020; 10
Bate (10.1016/j.artmed.2021.102212_bb0045) 1998; 54
De Pretis (10.1016/j.artmed.2021.102212_bb0060) 2019; 16
Dal Pan (10.1016/j.artmed.2021.102212_bb0025) 2019
DuMouchel (10.1016/j.artmed.2021.102212_bb0055) 1999; 53
Kuhn (10.1016/j.artmed.2021.102212_bb0135) 2015; 44
Evans (10.1016/j.artmed.2021.102212_bb0030) 2001; 10
References_xml – volume: 10
  year: 2019
  ident: bb0075
  article-title: Evaluation of quantitative signal detection in EudraVigilance for orphan drugs: possible risk of false negatives
  publication-title: Ther Adv Drug Saf
– volume: 38
  start-page: 1219
  year: 2015
  end-page: 1231
  ident: bb0080
  article-title: Statistical signal detection as a routine pharmacovigilance practice: effects of periodicity and resignalling criteria on quality and workload
  publication-title: Drug Saf
– volume: 10
  start-page: 138
  year: 2020
  ident: bb0090
  article-title: Comparison of data mining methods for the signal detection of adverse drug events with a hierarchical structure in postmarketing surveillance
  publication-title: Life
– volume: 17
  start-page: 76
  year: 2017
  ident: bb0015
  article-title: A signal detection method for temporal variation of adverse effect with vaccine adverse event reporting system data
  publication-title: BMC Med Inform Decis Mak
– volume: 13
  start-page: 519
  year: 2004
  end-page: 523
  ident: bb0040
  article-title: The reporting odds ratio and its advantages over the proportional reporting ratio
  publication-title: Pharmacoepidemiol Drug Saf
– volume: 39
  start-page: 469
  year: 2016
  end-page: 490
  ident: bb0100
  article-title: Good signal detection practices: evidence from IMI PROTECT
  publication-title: Drug Saf
– year: 1989
  ident: bb0140
  article-title: Guidance for the In Vitro Portion of Bioequivalence Requirements for Metaproterenol Sulfate and Albuterol Inhalation Aerosol
– volume: 38
  start-page: 577
  year: 2015
  end-page: 587
  ident: bb0085
  article-title: Comparison of statistical signal detection methods within and across spontaneous reporting databases
  publication-title: Drug Saf
– volume: 54
  start-page: 315
  year: 1998
  end-page: 321
  ident: bb0045
  article-title: A bayesian neural network method for adverse drug reaction signal generation
  publication-title: Eur J Clin Pharmacol
– volume: 18
  start-page: 427
  year: 2009
  end-page: 436
  ident: bb0050
  article-title: Quantitative signal detection using spontaneous ADR reporting
  publication-title: Pharmacoepidemiol Drug Saf
– volume: 39
  start-page: 845
  year: 2020
  end-page: 874
  ident: bb0095
  article-title: An evaluation of statistical approaches to postmarketing surveillance
  publication-title: Stat Med
– year: 2010
  ident: bb0120
  article-title: About MedDRA
– volume: 43
  start-page: D907
  year: 2014
  end-page: D913
  ident: bb0105
  article-title: ADReCS: an ontology database for aiding standardization and hierarchical classification of adverse drug reaction terms
  publication-title: Nucleic Acids Res
– year: 2005
  ident: bb0115
  article-title: A modern introduction to probability and statistics: understanding why and how
– ident: bb0010
– start-page: 165
  year: 2019
  end-page: 201
  ident: bb0025
  article-title: Postmarketing spontaneous pharmacovigilance reporting systems
  publication-title: Pharmacoepidemiology
– volume: 33
  start-page: 475
  year: 2010
  end-page: 487
  ident: bb0130
  article-title: Validation of statistical signal detection procedures in EudraVigilance post-authorization data
  publication-title: Drug Saf
– volume: 44
  year: 2015
  ident: bb0135
  article-title: The SIDER database of drugs and side effects
– volume: 53
  start-page: 177
  year: 1999
  end-page: 190
  ident: bb0055
  article-title: Bayesian data mining in large frequency tables, with an application to the FDA spontaneous reporting system
  publication-title: Am Stat
– volume: 26
  start-page: 635
  year: 2017
  end-page: 641
  ident: bb0005
  article-title: Burden of hospitalizations related to adverse drug events in the USA: a retrospective analysis from large inpatient database
  publication-title: Pharmacoepidemiol Drug Saf
– volume: 10
  start-page: 483
  year: 2001
  end-page: 486
  ident: bb0030
  article-title: Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports
  publication-title: Pharmacoepidemiol Drug Saf
– start-page: 407
  year: 2014
  end-page: 412
  ident: bb0035
  article-title: A multi-relational association mining algorithm for screening suspected adverse drug reactions
  publication-title: 2014 11th International Conference on Information Technology: New Generations, IEEE
– year: 2006
  ident: bb0110
  article-title: Guideline on good pharmacovigilance practices (GVP), Module IX Addendum I
– volume: 16
  start-page: 2221
  year: 2019
  ident: bb0060
  article-title: New insights in computational methods for pharmacovigilance: E-synthesis, a bayesian framework for causal assessment
  publication-title: Int J Environ Res Public Health
– volume: 27
  start-page: 785
  year: 2018
  end-page: 797
  ident: bb0070
  article-title: Class-imbalanced subsampling lasso algorithm for discovering adverse drug reactions
  publication-title: Stat Methods Med Res
– volume: 52
  start-page: 1
  year: 2003
  end-page: 24
  ident: bb0020
  article-title: Surveillance for safety after immunization: vaccine adverse event reporting system (VAERS)—United States, 1991–2001
  publication-title: MMWR Surveill Summ
– volume: 27
  start-page: 1402
  year: 2018
  end-page: 1408
  ident: bb0065
  article-title: Significance of data mining in routine signal detection: analysis based on the safety signals identified by the FDA
  publication-title: Pharmacoepidemiol Drug Saf
– year: 2005
  ident: bb0125
  article-title: Data elements and standard for drug dictionaries M5
– year: 2005
  ident: 10.1016/j.artmed.2021.102212_bb0115
– start-page: 165
  year: 2019
  ident: 10.1016/j.artmed.2021.102212_bb0025
  article-title: Postmarketing spontaneous pharmacovigilance reporting systems
  publication-title: Pharmacoepidemiology
  doi: 10.1002/9781119413431.ch10
– volume: 16
  start-page: 2221
  issue: 12
  year: 2019
  ident: 10.1016/j.artmed.2021.102212_bb0060
  article-title: New insights in computational methods for pharmacovigilance: E-synthesis, a bayesian framework for causal assessment
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph16122221
– ident: 10.1016/j.artmed.2021.102212_bb0125
– volume: 27
  start-page: 1402
  issue: 12
  year: 2018
  ident: 10.1016/j.artmed.2021.102212_bb0065
  article-title: Significance of data mining in routine signal detection: analysis based on the safety signals identified by the FDA
  publication-title: Pharmacoepidemiol Drug Saf
  doi: 10.1002/pds.4672
– volume: 38
  start-page: 1219
  issue: 12
  year: 2015
  ident: 10.1016/j.artmed.2021.102212_bb0080
  article-title: Statistical signal detection as a routine pharmacovigilance practice: effects of periodicity and resignalling criteria on quality and workload
  publication-title: Drug Saf
  doi: 10.1007/s40264-015-0345-1
– volume: 26
  start-page: 635
  issue: 6
  year: 2017
  ident: 10.1016/j.artmed.2021.102212_bb0005
  article-title: Burden of hospitalizations related to adverse drug events in the USA: a retrospective analysis from large inpatient database
  publication-title: Pharmacoepidemiol Drug Saf
  doi: 10.1002/pds.4184
– volume: 10
  start-page: 138
  issue: 8
  year: 2020
  ident: 10.1016/j.artmed.2021.102212_bb0090
  article-title: Comparison of data mining methods for the signal detection of adverse drug events with a hierarchical structure in postmarketing surveillance
  publication-title: Life
  doi: 10.3390/life10080138
– volume: 10
  start-page: 483
  issue: 6
  year: 2001
  ident: 10.1016/j.artmed.2021.102212_bb0030
  article-title: Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports
  publication-title: Pharmacoepidemiol Drug Saf
  doi: 10.1002/pds.677
– volume: 44
  issue: D1
  year: 2015
  ident: 10.1016/j.artmed.2021.102212_bb0135
  article-title: The SIDER database of drugs and side effects
– volume: 33
  start-page: 475
  issue: 6
  year: 2010
  ident: 10.1016/j.artmed.2021.102212_bb0130
  article-title: Validation of statistical signal detection procedures in EudraVigilance post-authorization data
  publication-title: Drug Saf
  doi: 10.2165/11534410-000000000-00000
– volume: 53
  start-page: 177
  issue: 3
  year: 1999
  ident: 10.1016/j.artmed.2021.102212_bb0055
  article-title: Bayesian data mining in large frequency tables, with an application to the FDA spontaneous reporting system
  publication-title: Am Stat
  doi: 10.1080/00031305.1999.10474456
– ident: 10.1016/j.artmed.2021.102212_bb0010
– volume: 17
  start-page: 76
  issue: 2
  year: 2017
  ident: 10.1016/j.artmed.2021.102212_bb0015
  article-title: A signal detection method for temporal variation of adverse effect with vaccine adverse event reporting system data
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/s12911-017-0472-y
– volume: 39
  start-page: 845
  issue: 7
  year: 2020
  ident: 10.1016/j.artmed.2021.102212_bb0095
  article-title: An evaluation of statistical approaches to postmarketing surveillance
  publication-title: Stat Med
  doi: 10.1002/sim.8447
– ident: 10.1016/j.artmed.2021.102212_bb0110
– volume: 52
  start-page: 1
  issue: 1
  year: 2003
  ident: 10.1016/j.artmed.2021.102212_bb0020
  article-title: Surveillance for safety after immunization: vaccine adverse event reporting system (VAERS)—United States, 1991–2001
  publication-title: MMWR Surveill Summ
– volume: 10
  year: 2019
  ident: 10.1016/j.artmed.2021.102212_bb0075
  article-title: Evaluation of quantitative signal detection in EudraVigilance for orphan drugs: possible risk of false negatives
  publication-title: Ther Adv Drug Saf
  doi: 10.1177/2042098619882819
– volume: 38
  start-page: 577
  issue: 6
  year: 2015
  ident: 10.1016/j.artmed.2021.102212_bb0085
  article-title: Comparison of statistical signal detection methods within and across spontaneous reporting databases
  publication-title: Drug Saf
  doi: 10.1007/s40264-015-0289-5
– volume: 43
  start-page: D907
  issue: D1
  year: 2014
  ident: 10.1016/j.artmed.2021.102212_bb0105
  article-title: ADReCS: an ontology database for aiding standardization and hierarchical classification of adverse drug reaction terms
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1066
– ident: 10.1016/j.artmed.2021.102212_bb0120
– volume: 27
  start-page: 785
  issue: 3
  year: 2018
  ident: 10.1016/j.artmed.2021.102212_bb0070
  article-title: Class-imbalanced subsampling lasso algorithm for discovering adverse drug reactions
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280216643116
– year: 1989
  ident: 10.1016/j.artmed.2021.102212_bb0140
– volume: 18
  start-page: 427
  issue: 6
  year: 2009
  ident: 10.1016/j.artmed.2021.102212_bb0050
  article-title: Quantitative signal detection using spontaneous ADR reporting
  publication-title: Pharmacoepidemiol Drug Saf
  doi: 10.1002/pds.1742
– start-page: 407
  year: 2014
  ident: 10.1016/j.artmed.2021.102212_bb0035
  article-title: A multi-relational association mining algorithm for screening suspected adverse drug reactions
– volume: 13
  start-page: 519
  issue: 8
  year: 2004
  ident: 10.1016/j.artmed.2021.102212_bb0040
  article-title: The reporting odds ratio and its advantages over the proportional reporting ratio
  publication-title: Pharmacoepidemiol Drug Saf
  doi: 10.1002/pds.1001
– volume: 39
  start-page: 469
  issue: 6
  year: 2016
  ident: 10.1016/j.artmed.2021.102212_bb0100
  article-title: Good signal detection practices: evidence from IMI PROTECT
  publication-title: Drug Saf
  doi: 10.1007/s40264-016-0405-1
– volume: 54
  start-page: 315
  issue: 4
  year: 1998
  ident: 10.1016/j.artmed.2021.102212_bb0045
  article-title: A bayesian neural network method for adverse drug reaction signal generation
  publication-title: Eur J Clin Pharmacol
  doi: 10.1007/s002280050466
SSID ssj0007416
Score 2.3107204
Snippet Computational approaches to detect the signals of adverse drug reactions are powerful tools to monitor the unattended effects that users experience and report,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102212
SubjectTerms Adverse Drug Reaction Reporting Systems
Adverse drug reactions
Databases, Factual
Drug-Related Side Effects and Adverse Reactions - diagnosis
Dynamic temporal intervals
Early signal detection
Graph-based algorithm
Humans
Pharmacovigilance
Pharmacovigilance datasets
Signal detection
Title TEDAR: Temporal dynamic signal detection of adverse reactions
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0933365721002050
https://dx.doi.org/10.1016/j.artmed.2021.102212
https://www.ncbi.nlm.nih.gov/pubmed/34823837
https://www.proquest.com/docview/2604016553
Volume 122
WOSCitedRecordID wos000722509400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1873-2860
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007416
  issn: 0933-3657
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZYhxAvXMZl5TIFibcqVWPHScxbgXITTNM0UN8iO3FQpsqpmnSa-PUcX-IVqrHtgZeodeOTOOf0nM8n54LQa16xIsKlCBNc0DAuRRSCERRhKTPAy7AlKo2_48fX9PAwm8_ZkXPmtKadQKpUdn7Olv-V1TAGzNapszdgtycKA_AZmA5HYDscr8f42fvpsfWam6pTi1Fpu86PdKyG_io7WfRAkeuGzK3unWIzHNpNtDpdmUgi09djs3RnrbbeyU-X3GXM6KbEtWq864YvDD49qmW38qNvG6VgvomyrYGk-uV_-livf5p-4KPjpuULwTcdEzjaCPJwHkZCQpLY-tNe2dosZKcu9XbTRlFvaXLrVDgdw3OEFY31BcYXp_9ZOPsvg-bDDPsIttPcUsk1ldxS2UG7OKUsG6Dd6efZ_Is33xqimgKN7u77fEsTFLh9N5fhmcv2Kwa3nDxA99yGI5haQXmIbkm1h-73zTwCp9v30J1vjqOPkBWhN0EvQIEToMAKUOAFKGiqwAlQ4AXoMfr-YXby7lPo2myEBaC3LoxTDrtkmWIOuhxXTEY8S3GVxoWkScZkkSYypnxCJeWAzjNCOJ6IJCojRrGoOHmCBqpRch8FJC4EA-BTAqWYTxIhsCA4oxyTksWMDxHpH1ZeuBr0uhXKIv8Xq4Yo9LOWtgbLFefTng95n18MFjEH0bpiXurnOfxpceU1Zr7q2Z2Detbv3LiSzbrNcQJWMkooJUP01MqBX4OuK6UdRM9uuL7n6O7F_-0FGnSrtXyJbhdnXd2uDtBOOs8OnFT_BhrpufU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TEDAR%3A+Temporal+dynamic+signal+detection+of+adverse+reactions&rft.jtitle=Artificial+intelligence+in+medicine&rft.au=Aparo%2C+Antonino&rft.au=Sala%2C+Pietro&rft.au=Bonnici%2C+Vincenzo&rft.au=Giugno%2C+Rosalba&rft.date=2021-12-01&rft.issn=0933-3657&rft.volume=122&rft.spage=102212&rft_id=info:doi/10.1016%2Fj.artmed.2021.102212&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_artmed_2021_102212
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0933-3657&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0933-3657&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0933-3657&client=summon