Improving Performance of Devanagari Script Input-Based P300 Speller Using Deep Learning

The performance of an existing Devanagari script (DS) input-based P300 speller with conventional machine learning techniques suffers from low information transfer rate (ITR). This occurs due to its required large size of display, i.e., 8 × 8 row-column (RC) paradigm which exhibits issues like crowdi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on biomedical engineering Jg. 66; H. 11; S. 2992 - 3005
Hauptverfasser: Kshirsagar, G. B., Londhe, N. D.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9294, 1558-2531, 1558-2531
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The performance of an existing Devanagari script (DS) input-based P300 speller with conventional machine learning techniques suffers from low information transfer rate (ITR). This occurs due to its required large size of display, i.e., 8 × 8 row-column (RC) paradigm which exhibits issues like crowding effect, adjacency, fatigue, task difficulty, and required large number of trials for character recognition. For P300 detection, deep learning algorithms have shown the state of art performance compared to the conventional machine learning algorithms in the recent past. Therefore, authors have been motivated to develop a deep learning architecture for DS-based P300 speller which can detect the target characters more accurately and in less number of trials. For this, two proven deep learning algorithms, stacked autoencoder (SAE) and deep convolution neural network (DCNN) have been adopted. For further bettering their performances, batch normalization and innovative double batch training is included here to achieve accelerated training and alleviate the problem of overfitting. Additionally, a leaky ReLU activation function has also been used in DCNN to overcome dying ReLU problem. The experiments have been performed on self-generated dataset of 20 Devanagari words with 79 characters acquired from 10 subjects using 16 channel actiCAP Xpress EEG recorder. The experimental results illustrated that the proposed DCNN is able to detect 88.22% correct targets in just three trials. Moreover, it also provides ITR of 20.58 bits per minutes, which is significantly higher than existing techniques.
AbstractList The performance of an existing Devanagari script (DS) input-based P300 speller with conventional machine learning techniques suffers from low information transfer rate (ITR). This occurs due to its required large size of display, i.e., 8 × 8 row-column (RC) paradigm which exhibits issues like crowding effect, adjacency, fatigue, task difficulty, and required large number of trials for character recognition. For P300 detection, deep learning algorithms have shown the state of art performance compared to the conventional machine learning algorithms in the recent past. Therefore, authors have been motivated to develop a deep learning architecture for DS-based P300 speller which can detect the target characters more accurately and in less number of trials. For this, two proven deep learning algorithms, stacked autoencoder (SAE) and deep convolution neural network (DCNN) have been adopted. For further bettering their performances, batch normalization and innovative double batch training is included here to achieve accelerated training and alleviate the problem of overfitting. Additionally, a leaky ReLU activation function has also been used in DCNN to overcome dying ReLU problem. The experiments have been performed on self-generated dataset of 20 Devanagari words with 79 characters acquired from 10 subjects using 16 channel actiCAP Xpress EEG recorder. The experimental results illustrated that the proposed DCNN is able to detect 88.22% correct targets in just three trials. Moreover, it also provides ITR of 20.58 bits per minutes, which is significantly higher than existing techniques.The performance of an existing Devanagari script (DS) input-based P300 speller with conventional machine learning techniques suffers from low information transfer rate (ITR). This occurs due to its required large size of display, i.e., 8 × 8 row-column (RC) paradigm which exhibits issues like crowding effect, adjacency, fatigue, task difficulty, and required large number of trials for character recognition. For P300 detection, deep learning algorithms have shown the state of art performance compared to the conventional machine learning algorithms in the recent past. Therefore, authors have been motivated to develop a deep learning architecture for DS-based P300 speller which can detect the target characters more accurately and in less number of trials. For this, two proven deep learning algorithms, stacked autoencoder (SAE) and deep convolution neural network (DCNN) have been adopted. For further bettering their performances, batch normalization and innovative double batch training is included here to achieve accelerated training and alleviate the problem of overfitting. Additionally, a leaky ReLU activation function has also been used in DCNN to overcome dying ReLU problem. The experiments have been performed on self-generated dataset of 20 Devanagari words with 79 characters acquired from 10 subjects using 16 channel actiCAP Xpress EEG recorder. The experimental results illustrated that the proposed DCNN is able to detect 88.22% correct targets in just three trials. Moreover, it also provides ITR of 20.58 bits per minutes, which is significantly higher than existing techniques.
The performance of an existing Devanagari script (DS) input-based P300 speller with conventional machine learning techniques suffers from low information transfer rate (ITR). This occurs due to its required large size of display, i.e., 8 × 8 row-column (RC) paradigm which exhibits issues like crowding effect, adjacency, fatigue, task difficulty, and required large number of trials for character recognition. For P300 detection, deep learning algorithms have shown the state of art performance compared to the conventional machine learning algorithms in the recent past. Therefore, authors have been motivated to develop a deep learning architecture for DS-based P300 speller which can detect the target characters more accurately and in less number of trials. For this, two proven deep learning algorithms, stacked autoencoder (SAE) and deep convolution neural network (DCNN) have been adopted. For further bettering their performances, batch normalization and innovative double batch training is included here to achieve accelerated training and alleviate the problem of overfitting. Additionally, a leaky ReLU activation function has also been used in DCNN to overcome dying ReLU problem. The experiments have been performed on self-generated dataset of 20 Devanagari words with 79 characters acquired from 10 subjects using 16 channel actiCAP Xpress EEG recorder. The experimental results illustrated that the proposed DCNN is able to detect 88.22% correct targets in just three trials. Moreover, it also provides ITR of 20.58 bits per minutes, which is significantly higher than existing techniques.
Author Londhe, N. D.
Kshirsagar, G. B.
Author_xml – sequence: 1
  givenname: G. B.
  orcidid: 0000-0003-4388-8436
  surname: Kshirsagar
  fullname: Kshirsagar, G. B.
  organization: National Institute of Technology Raipur
– sequence: 2
  givenname: N. D.
  orcidid: 0000-0002-6320-5746
  surname: Londhe
  fullname: Londhe, N. D.
  email: nlondhe.ele@nitrr.ac.in
  organization: National Institute of Technology Raipur, Raipur, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30307853$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LJDEQhsOirKO7P2ARJOBlLz1WvrqTo1_rDowoqOwxZLqrJTKdbpNuYf_9ZpjRg4eFFKEqz5tU6j0ke6EPSMgPBnPGwJw9XtxezzkwPee6UsDlFzJjSumCK8H2yAzyUWG4kQfkMKWXnEoty6_kQICASisxI38W3RD7Nx-e6T3Gto-dCzXSvqVX-OaCe3bR04c6-mGkizBMY3HhEjb0XgDQhwHXa4z0KW30V4gDXaKLIWffyH7r1gm_7_Yj8vTr-vHyd7G8u1lcni-LWjI1FhKMNsCcqSSUHBoFrVmVoslRN7mErTKApnRNqQFqiUozx7BSK1CiraQ4Ij-39-ZfvE6YRtv5VOe2XMB-SpYzZowQXLGMnn5CX_ophtyd5XkceUFZZepkR02rDhs7RN-5-Ne-jywDbAvUsU8pYvuBMLAbW-zGFruxxe5syZrqk6b2oxt9H8bo_Pq_yuOt0iPix0ta6rKUWvwD4MWWbw
CODEN IEBEAX
CitedBy_id crossref_primary_10_1109_ACCESS_2020_2968717
crossref_primary_10_3390_s20040969
crossref_primary_10_1109_ACCESS_2023_3347336
crossref_primary_10_1109_LSP_2025_3597875
crossref_primary_10_1109_TCDS_2019_2942437
crossref_primary_10_1016_j_cmpb_2022_107324
crossref_primary_10_1109_TCDS_2021_3079712
crossref_primary_10_1109_TIM_2020_3011762
crossref_primary_10_1109_TSMC_2021_3051136
crossref_primary_10_1016_j_jneumeth_2021_109300
crossref_primary_10_4018_IJACI_300796
crossref_primary_10_1016_j_bspc_2023_104924
crossref_primary_10_1016_j_epsr_2020_106914
crossref_primary_10_1007_s00521_022_07518_5
crossref_primary_10_1007_s11220_023_00421_w
crossref_primary_10_1109_TSMC_2022_3156861
crossref_primary_10_3389_fncom_2022_909553
crossref_primary_10_3390_app10051605
crossref_primary_10_1016_j_eswa_2020_113911
crossref_primary_10_1016_j_cmpb_2021_106487
crossref_primary_10_1177_1071181320641224
crossref_primary_10_1134_S0362119723600479
crossref_primary_10_3389_fnhum_2021_772837
crossref_primary_10_1038_s41598_024_77923_4
crossref_primary_10_1007_s11571_021_09768_w
crossref_primary_10_1088_1741_2552_ab848b
crossref_primary_10_1109_ACCESS_2023_3313260
crossref_primary_10_1109_ACCESS_2021_3051685
Cites_doi 10.1016/j.neucom.2015.02.057
10.1155/2016/2029791
10.1016/j.neulet.2009.06.045
10.1109/TBME.2004.827072
10.1016/j.neucom.2017.08.039
10.1109/TNSRE.2005.862695
10.1109/FUZZ-IEEE.2017.8015660
10.1016/j.jneumeth.2007.07.017
10.1109/ICEECCOT.2017.8284557
10.1109/ICABME.2015.7323272
10.1016/j.clinph.2010.01.030
10.1088/1741-2560/6/2/026003
10.1080/10447318.2011.622970
10.1016/j.neucom.2016.12.027
10.1109/TBME.2008.915728
10.1016/j.bspc.2014.12.007
10.1109/TPAMI.2016.2644615
10.1016/j.jneumeth.2014.04.009
10.1109/NER.2011.5910579
10.1111/j.1469-8986.1993.tb03209.x
10.1515/jaiscr-2015-0030
10.1016/j.bbe.2017.04.006
10.1109/ACCESS.2016.2614494
10.1016/j.clinph.2014.09.021
10.3389/fnins.2017.00302
10.1109/TPAMI.2010.125
10.1109/ICCV.2015.123
10.1109/TPAMI.2016.2577031
10.1080/10447318.2016.1203047
10.1109/IEMBS.2008.4649364
10.1038/nature14539
10.1016/j.ins.2017.04.012
10.1109/ICASSP.2013.6638312
10.1016/0013-4694(88)90149-6
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2018.2875024
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL) - NZ
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 3005
ExternalDocumentID 30307853
10_1109_TBME_2018_2875024
8486648
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Department of Science and Technology
  grantid: SR/CSRI/38/2015 (G)
  funderid: 10.13039/501100010218
– fundername: Cognitive Science Research Initiative (CSRI)
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c415t-4098901a9740620d50f9b63db63cd406ef590e96ad6800c4e581a1e75b053f743
IEDL.DBID RIE
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000502102200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9294
1558-2531
IngestDate Sun Nov 09 10:39:15 EST 2025
Mon Jun 30 08:40:01 EDT 2025
Mon Jul 21 06:04:55 EDT 2025
Sat Nov 29 05:34:22 EST 2025
Tue Nov 18 21:27:19 EST 2025
Wed Aug 27 02:43:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-4098901a9740620d50f9b63db63cd406ef590e96ad6800c4e581a1e75b053f743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4388-8436
0000-0002-6320-5746
PMID 30307853
PQID 2307307067
PQPubID 85474
PageCount 14
ParticipantIDs proquest_journals_2307307067
crossref_primary_10_1109_TBME_2018_2875024
crossref_citationtrail_10_1109_TBME_2018_2875024
proquest_miscellaneous_2119933251
pubmed_primary_30307853
ieee_primary_8486648
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref37
ref15
townsend (ref31) 2010; 121
ref36
ref14
rajpurkar (ref39) 2017
ref30
ref33
ref11
ref32
ref10
bengio (ref35) 2007
ref2
ref1
ref17
ref38
ref16
ref19
ref18
srivastava (ref42) 2014; 15
turnip (ref21) 2013; 2
ref23
ref20
ref22
dal (ref25) 0
li (ref24) 0
ref28
ref27
maddula (ref41) 0
ref29
nair (ref26) 0
ref8
ref7
ref9
ref3
ref6
ref5
ref40
abadi (ref44) 0; 16
vareka (ref4) 2017; 11
chollet (ref43) 2015
lecun (ref34) 2015; 521
References_xml – start-page: 153
  year: 2007
  ident: ref35
  article-title: Greedy layer wise training of deep networks
  publication-title: Advances in Neural Information Processing Systems 19
– ident: ref15
  doi: 10.1016/j.neucom.2015.02.057
– ident: ref20
  doi: 10.1155/2016/2029791
– ident: ref19
  doi: 10.1016/j.neulet.2009.06.045
– ident: ref29
  doi: 10.1109/TBME.2004.827072
– ident: ref1
  doi: 10.1016/j.neucom.2017.08.039
– ident: ref22
  doi: 10.1109/TNSRE.2005.862695
– year: 2015
  ident: ref43
– ident: ref5
  doi: 10.1109/FUZZ-IEEE.2017.8015660
– ident: ref13
  doi: 10.1016/j.jneumeth.2007.07.017
– ident: ref2
  doi: 10.1109/ICEECCOT.2017.8284557
– ident: ref9
  doi: 10.1109/ICABME.2015.7323272
– volume: 121
  start-page: 1109
  year: 2010
  ident: ref31
  article-title: A novel P300-based brain-computer interface stimulus presentation paradigm: Moving beyond rows and columns
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2010.01.030
– ident: ref32
  doi: 10.1088/1741-2560/6/2/026003
– ident: ref7
  doi: 10.1080/10447318.2011.622970
– ident: ref36
  doi: 10.1016/j.neucom.2016.12.027
– ident: ref23
  doi: 10.1109/TBME.2008.915728
– ident: ref18
  doi: 10.1016/j.bspc.2014.12.007
– volume: 2
  start-page: 63
  year: 2013
  ident: ref21
  article-title: P300 detection using a multilayer neural network classifier based on adaptive feature extraction
  publication-title: Int J Brain Cogn Sci
– ident: ref37
  doi: 10.1109/TPAMI.2016.2644615
– start-page: 18
  year: 0
  ident: ref41
  article-title: Deep recurrent convolutional neural networks for classifying P300 BCI signals
  publication-title: Proc 7th Graz Brain-Comput Interface Conf
– ident: ref16
  doi: 10.1016/j.jneumeth.2014.04.009
– start-page: 807
  year: 0
  ident: ref26
  article-title: Rectified linear units improve restricted Boltzmann machines
  publication-title: Proc 27th Int Conf Mach Learn
– ident: ref14
  doi: 10.1109/NER.2011.5910579
– ident: ref33
  doi: 10.1111/j.1469-8986.1993.tb03209.x
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref42
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– ident: ref8
  doi: 10.1515/jaiscr-2015-0030
– ident: ref11
  doi: 10.1016/j.bbe.2017.04.006
– ident: ref12
  doi: 10.1109/ACCESS.2016.2614494
– ident: ref17
  doi: 10.1016/j.clinph.2014.09.021
– volume: 11
  start-page: 1
  year: 2017
  ident: ref4
  article-title: Stacked autoencoders for the P300 component detection
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2017.00302
– ident: ref3
  doi: 10.1109/TPAMI.2010.125
– ident: ref27
  doi: 10.1109/ICCV.2015.123
– ident: ref38
  doi: 10.1109/TPAMI.2016.2577031
– year: 2017
  ident: ref39
  article-title: Cardiologist-level arrhythmia detection with convolutional neural networks
– start-page: 4035
  year: 0
  ident: ref24
  article-title: Single trial independent component analysis for P300 BCI system
  publication-title: Proc 31st Annu Int Conf IEEE EMBS
– ident: ref10
  doi: 10.1080/10447318.2016.1203047
– ident: ref30
  doi: 10.1109/IEMBS.2008.4649364
– volume: 16
  start-page: 265
  year: 0
  ident: ref44
  article-title: TensorFlow: A system for large-scale machine learning
  publication-title: Proc USENIX Symp on Operating System Design and Implementation
– start-page: 3145
  year: 0
  ident: ref25
  article-title: A genetic algorithm for automatic feature extraction in P300 detection
  publication-title: Proc Int Joint Conf Neural Netw
– volume: 521
  start-page: 436
  year: 2015
  ident: ref34
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref40
  doi: 10.1016/j.ins.2017.04.012
– ident: ref28
  doi: 10.1109/ICASSP.2013.6638312
– ident: ref6
  doi: 10.1016/0013-4694(88)90149-6
SSID ssj0014846
Score 2.4736502
Snippet The performance of an existing Devanagari script (DS) input-based P300 speller with conventional machine learning techniques suffers from low information...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2992
SubjectTerms Adult
Algorithms
Artificial intelligence
Artificial neural networks
Brain modeling
Brain-computer interface (BCI)
Brain-Computer Interfaces
Character recognition
Communication Aids for Disabled
Convolution
Data acquisition
deep convolution neural network (DCNN)
Deep Learning
Devanagari script (DS)
EEG
Electroencephalography
Electroencephalography - methods
Event-related potentials
Event-Related Potentials, P300 - physiology
Female
Humans
Information transfer
Learning algorithms
Machine learning
Machine learning algorithms
Male
Middle Aged
Neural networks
P300 speller
Signal Processing, Computer-Assisted
stacked autoencoder (SAE)
Support vector machines
Target detection
Training
Young Adult
Title Improving Performance of Devanagari Script Input-Based P300 Speller Using Deep Learning
URI https://ieeexplore.ieee.org/document/8486648
https://www.ncbi.nlm.nih.gov/pubmed/30307853
https://www.proquest.com/docview/2307307067
https://www.proquest.com/docview/2119933251
Volume 66
WOSCitedRecordID wos000502102200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL) - NZ
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 0018-9294
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB5URPTB-6gXEXwSV9NtmiaPHisKKgte-1a66VQE6S7rrr_fSZqtCir4UCht2obOTOabzAWwL5oZmthGtqIWtqh22NAZWa0iJJvZlpwzLr_i8Tq5vVWdjm5PwGGdC4OILvgMj-yp8-XnPTOyW2XHSigphZqEySRJqlyt2mMgVJWUw0MS4KYW3oMZcn18f3rTskFc6ojMA5qX-KaDXFOV3_Gl0zMXC_-b4SLMezzJTioGWIIJLJdh7kuVwWWYufH-8xV4qvcQWPszY4D1CnaOtrvyM1nO7M4tJOyq7I-GjVPScjlrR5yzO-uowQFzUQb0APaZr876vAoPF637s8uGb63QMKSxh2Q1akVIICNrgssmz2Ne6K6McjpMTpewiDVRT2a5JERpBMYqzEJM4i4JbUGoYw2myl6JG8CKrsxV1A25seXSpFEyE3EUC0HAEnWWB8DHPzs1vu64bX_xmjr7g-vU0ie19Ek9fQI4qB_pV0U3_hq8YulQD_QkCGB7TNHUi-Vb2nQrWkIaOoC9-jYJlPWSZCX2RjQmtDGNEeG-ANYrTqjfHdklkQDO5s_f3IJZmpmuUhW3YWo4GOEOTJv34cvbYJe4tqN2Hdd-AAdB40c
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9swFD6CbhrsYeMyWDYGnsTTtIKdOK79ODYQiLaqRGG8RalzgpBQWvXC7-fYMRlI2yQeIkWJk1j5bJ_v-NwA9mWco02dZysa6ZJqi7bJSWuVgnRml3LO-viKq26n39fX12awBN-bWBhE9M5neOBOvS2_GNuF2yo71FIrJfUyvEqljEUdrdXYDKSuw3K4oCkcGxlsmIKbw-FR79i5cekDUhCoZ_KZFPJlVf7NML2kOXn_sj6uwbvAKNmPegiswxJWG_D2SZ7BDXjTCxb0Tfjd7CKwwZ-YATYu2S909ZVvSHdmF34pYWfVZDFvH5GcK9gg4ZxdOFMNTpn3M6AHcMJCftabD3B5cjz8edoOxRXalmT2nPRGo4kL5KRPcBXzIuWlGamkoMMWdAnL1BB-Ki8UcUorMdUiF9hJRzRtS-IdW9CqxhV-BFaOVKGTkeDWJUxTVqtcpglBRNQSTV5EwB9_dmZD5nFXAOMu8xoIN5nDJ3P4ZAGfCL41j0zqtBv_a7zpcGgaBggi2HlENAsTc5bFfk3rkIyO4Gtzm6aUs5PkFY4X1EY4r8aEmF8E2_VIaN6duEWRKM6nv39zD1ZOh71u1j3rn3-GVeqlqQMXd6A1ny7wC7y29_Pb2XTXj90HpdTlpg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Performance+of+Devanagari+Script+Input-Based+P300+Speller+Using+Deep+Learning&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Kshirsagar%2C+G.+B.&rft.au=Londhe%2C+N.+D.&rft.date=2019-11-01&rft.pub=IEEE&rft.issn=0018-9294&rft.volume=66&rft.issue=11&rft.spage=2992&rft.epage=3005&rft_id=info:doi/10.1109%2FTBME.2018.2875024&rft.externalDocID=8486648
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon