Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers
Novel hetero-structured silicon carbide-boron nitride nanosheets (SiC-BNNS) by sol-gel and in-situ growth method were performed as thermally conductive & insulating fillers, and the SiC-BNNS/epoxy thermally conductive nanocomposites were then prepared by blending-casting approach. Synthesized he...
Uloženo v:
| Vydáno v: | Composites science and technology Ročník 187; s. 107944 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Barking
Elsevier Ltd
08.02.2020
Elsevier BV |
| Témata: | |
| ISSN: | 0266-3538, 1879-1050 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Novel hetero-structured silicon carbide-boron nitride nanosheets (SiC-BNNS) by sol-gel and in-situ growth method were performed as thermally conductive & insulating fillers, and the SiC-BNNS/epoxy thermally conductive nanocomposites were then prepared by blending-casting approach. Synthesized hetero-structured SiC-BNNS fillers have synergistic improvement effects on the thermal conductivities of the SiC-BNNS/epoxy nanocomposites. When the amount of hetero-structured SiC-BNNS fillers is 20 wt% (SiC-BNNS, 1/1, w/w), the thermal conductivity coefficient (λ) value of the SiC-BNNS/epoxy nanocomposites (0.89 W/mK) is 4.1 times that of pure epoxy resin (0.22 W/mK), and 2.1, 1.4, and 1.7 times of SiC/epoxy (0.43 W/mK), BNNS/epoxy (0.62 W/mK), and (SiC/BNNS)/epoxy thermally conductive nanocomposites (0.52 W/mK) with the same amount of fillers (20 wt% single BNNS, SiC, or SiC/BNNS hybrid fillers), respectively. Meantime, the obtained (SiC-BNNS)/epoxy thermally conductive nanocomposites also demonstrate favorable electrical insulating properties, and the breakdown strength, volume resistivity as well as surface resistivity is 22.1 kV/mm, 2.32 × 1015 Ω cm, and 1.26 × 1015 Ω cm, respectively. |
|---|---|
| AbstractList | Novel hetero-structured silicon carbide-boron nitride nanosheets (SiC-BNNS) by sol-gel and in-situ growth method were performed as thermally conductive & insulating fillers, and the SiC-BNNS/epoxy thermally conductive nanocomposites were then prepared by blending-casting approach. Synthesized hetero-structured SiC-BNNS fillers have synergistic improvement effects on the thermal conductivities of the SiC-BNNS/epoxy nanocomposites. When the amount of hetero-structured SiC-BNNS fillers is 20 wt% (SiC-BNNS, 1/1, w/w), the thermal conductivity coefficient (λ) value of the SiC-BNNS/epoxy nanocomposites (0.89 W/mK) is 4.1 times that of pure epoxy resin (0.22 W/mK), and 2.1, 1.4, and 1.7 times of SiC/epoxy (0.43 W/mK), BNNS/epoxy (0.62 W/mK), and (SiC/BNNS)/epoxy thermally conductive nanocomposites (0.52 W/mK) with the same amount of fillers (20 wt% single BNNS, SiC, or SiC/BNNS hybrid fillers), respectively. Meantime, the obtained (SiC-BNNS)/epoxy thermally conductive nanocomposites also demonstrate favorable electrical insulating properties, and the breakdown strength, volume resistivity as well as surface resistivity is 22.1 kV/mm, 2.32 × 1015 Ω cm, and 1.26 × 1015 Ω cm, respectively. Novel hetero-structured silicon carbide-boron nitride nanosheets (SiC-BNNS) by sol-gel and in-situ growth method were performed as thermally conductive & insulating fillers, and the SiC-BNNS/epoxy thermally conductive nanocomposites were then prepared by blending-casting approach. Synthesized hetero-structured SiC-BNNS fillers have synergistic improvement effects on the thermal conductivities of the SiC-BNNS/epoxy nanocomposites. When the amount of hetero-structured SiC-BNNS fillers is 20 wt% (SiC-BNNS, 1/1, w/w), the thermal conductivity coefficient (λ) value of the SiC-BNNS/epoxy nanocomposites (0.89 W/mK) is 4.1 times that of pure epoxy resin (0.22 W/mK), and 2.1, 1.4, and 1.7 times of SiC/epoxy (0.43 W/mK), BNNS/epoxy (0.62 W/mK), and (SiC/BNNS)/epoxy thermally conductive nanocomposites (0.52 W/mK) with the same amount of fillers (20 wt% single BNNS, SiC, or SiC/BNNS hybrid fillers), respectively. Meantime, the obtained (SiC-BNNS)/epoxy thermally conductive nanocomposites also demonstrate favorable electrical insulating properties, and the breakdown strength, volume resistivity as well as surface resistivity is 22.1 kV/mm, 2.32 × 1015 Ω cm, and 1.26 × 1015 Ω cm, respectively. |
| ArticleNumber | 107944 |
| Author | Shi, Xuetao Guo, Yongqiang Gu, Junwei Han, Yixin Yang, Xutong Zhang, Junliang Kong, Jie |
| Author_xml | – sequence: 1 givenname: Yixin surname: Han fullname: Han, Yixin organization: Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’ an, Shaanxi, 710072, PR China – sequence: 2 givenname: Xuetao surname: Shi fullname: Shi, Xuetao organization: Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’ an, Shaanxi, 710072, PR China – sequence: 3 givenname: Xutong surname: Yang fullname: Yang, Xutong organization: Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’ an, Shaanxi, 710072, PR China – sequence: 4 givenname: Yongqiang surname: Guo fullname: Guo, Yongqiang organization: Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’ an, Shaanxi, 710072, PR China – sequence: 5 givenname: Junliang surname: Zhang fullname: Zhang, Junliang organization: Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’ an, Shaanxi, 710072, PR China – sequence: 6 givenname: Jie surname: Kong fullname: Kong, Jie organization: Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’ an, Shaanxi, 710072, PR China – sequence: 7 givenname: Junwei surname: Gu fullname: Gu, Junwei email: gjw@nwpu.edu.cn, nwpugjw@163.com organization: Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’ an, Shaanxi, 710072, PR China |
| BookMark | eNqNkcFuGyEURVGVSnHS_ANR1uPAzDAMqyi10rRSlC6SrBGDHzXWGKYPxqpX_fViuYuqq6wQj_vOlQ4X5CzEAIRcc7bkjHe326WNuylZn8FuljXjqsylatsPZMF7qSrOBDsjC1Z3XdWIpj8nFyltGWNSqHpBfj-EjQkW1jRvAHdmpDaG9Wyz3_vsIdHoKEzx14EGE-KxK6bSlejeG-qDjThFNNmHH-VWlaeZOjOgtyYX5gYyYKxSxkKcsUxe_Kr6_Pz8Qp0fR8D0iXx0Zkxw9fe8JG9fHl5XX6un74_fVvdPlW25yFXjbCN61knXDL0Qtm6dHPrGrltbhiBMb1ivnOKS8aEzRg2D5DA4phSwrm-bS3Jz4k4Yf86Qst7GGUOp1HUjOill28mSUqeUxZgSgtMT-p3Bg-ZMH33rrf7Htz761iffZffuv90SKmZiyGj8-C7C6kSAImLvAXVJwfFzPILNeh39Oyh_ABDLqas |
| CitedBy_id | crossref_primary_10_1007_s42114_022_00423_4 crossref_primary_10_1016_j_compscitech_2022_109681 crossref_primary_10_1007_s10118_020_2391_0 crossref_primary_10_1016_j_cej_2025_166646 crossref_primary_10_1016_j_coco_2022_101452 crossref_primary_10_1002_mame_202200311 crossref_primary_10_1016_j_coco_2020_100486 crossref_primary_10_1007_s12274_024_6920_y crossref_primary_10_1016_j_coco_2023_101617 crossref_primary_10_1016_j_rechem_2025_102655 crossref_primary_10_1002_pc_29431 crossref_primary_10_1002_pc_27494 crossref_primary_10_1016_j_compositesb_2022_109629 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121306 crossref_primary_10_1016_j_coco_2020_100370 crossref_primary_10_1016_j_compscitech_2023_110268 crossref_primary_10_3390_polym13020248 crossref_primary_10_1016_j_coco_2021_101044 crossref_primary_10_1016_j_susmat_2020_e00153 crossref_primary_10_1002_pen_70050 crossref_primary_10_1016_j_enconman_2021_114957 crossref_primary_10_1016_j_compscitech_2024_110440 crossref_primary_10_1016_j_polymer_2020_123120 crossref_primary_10_1016_j_compscitech_2021_109048 crossref_primary_10_1002_pc_28697 crossref_primary_10_1016_j_compscitech_2021_108995 crossref_primary_10_1016_j_ceramint_2022_07_199 crossref_primary_10_1016_j_coco_2021_100661 crossref_primary_10_1007_s42114_022_00463_w crossref_primary_10_1016_j_jcis_2022_08_117 crossref_primary_10_1007_s12633_020_00508_z crossref_primary_10_1007_s10570_020_03150_5 crossref_primary_10_1007_s12274_023_6101_4 crossref_primary_10_1002_app_50676 crossref_primary_10_1002_pc_26186 crossref_primary_10_1007_s42114_021_00335_9 crossref_primary_10_1002_adem_202101788 crossref_primary_10_1016_j_compositesb_2021_108716 crossref_primary_10_1016_j_surfin_2024_105681 crossref_primary_10_1177_09673911221110143 crossref_primary_10_1016_j_compscitech_2020_108322 crossref_primary_10_1063_5_0243023 crossref_primary_10_3390_polym16243514 crossref_primary_10_1109_TDEI_2023_3266310 crossref_primary_10_1007_s12274_022_4456_6 crossref_primary_10_1016_j_compositesb_2024_111942 crossref_primary_10_1016_j_jeurceramsoc_2022_11_040 crossref_primary_10_1016_j_ceramint_2020_04_063 crossref_primary_10_1016_j_jpcs_2022_110843 crossref_primary_10_1002_app_50324 crossref_primary_10_1016_j_apsusc_2021_149255 crossref_primary_10_1002_mame_202100734 crossref_primary_10_1016_j_diamond_2022_109521 crossref_primary_10_1002_app_53951 crossref_primary_10_1002_mame_202200429 crossref_primary_10_1039_D2CP02783F crossref_primary_10_1016_j_ceramint_2021_01_182 crossref_primary_10_1016_j_compositesa_2023_107533 crossref_primary_10_1016_j_compositesa_2021_106282 crossref_primary_10_1016_j_jallcom_2025_180611 crossref_primary_10_1016_j_polymer_2020_122763 crossref_primary_10_1016_j_cej_2023_143963 crossref_primary_10_1007_s12274_022_4159_z crossref_primary_10_1016_j_coco_2020_100565 crossref_primary_10_1039_D0RA00449A crossref_primary_10_1002_app_50575 crossref_primary_10_1016_j_compscitech_2020_108429 crossref_primary_10_1002_pc_27213 crossref_primary_10_1016_j_ceramint_2020_09_038 crossref_primary_10_1088_1361_6528_ac705f crossref_primary_10_1080_08927022_2022_2071874 crossref_primary_10_1016_j_porgcoat_2023_108089 crossref_primary_10_1002_pc_25703 crossref_primary_10_1016_j_compositesa_2021_106293 crossref_primary_10_1021_acs_langmuir_4c05372 crossref_primary_10_1007_s40820_021_00640_4 crossref_primary_10_3390_polym17121604 crossref_primary_10_1016_j_enconman_2022_116603 crossref_primary_10_1016_j_compscitech_2021_108835 crossref_primary_10_1016_j_mtphys_2025_101719 crossref_primary_10_1016_j_mtcomm_2025_113110 crossref_primary_10_1016_j_compositesa_2023_107998 crossref_primary_10_1016_j_coco_2020_100427 crossref_primary_10_1016_j_coco_2023_101636 crossref_primary_10_1016_j_jallcom_2025_181045 crossref_primary_10_1016_j_porgcoat_2025_109667 crossref_primary_10_1007_s12633_022_01825_1 crossref_primary_10_1016_j_porgcoat_2022_106757 crossref_primary_10_3390_polym14173492 crossref_primary_10_1016_j_cej_2024_156745 crossref_primary_10_1039_C9RA10292B crossref_primary_10_1007_s10853_020_05530_5 crossref_primary_10_1016_j_compositesa_2020_105928 crossref_primary_10_1016_j_compositesb_2020_108232 crossref_primary_10_1016_j_surfin_2022_102465 crossref_primary_10_1016_j_ceramint_2023_08_229 crossref_primary_10_1016_j_compositesb_2020_108599 crossref_primary_10_3390_jcs4040180 crossref_primary_10_3390_molecules27228066 crossref_primary_10_3390_nano13010138 crossref_primary_10_1007_s10853_023_09040_y crossref_primary_10_1016_j_compositesa_2025_108775 crossref_primary_10_1002_pc_27342 crossref_primary_10_1016_j_mattod_2021_04_012 crossref_primary_10_1016_j_compositesa_2020_105910 crossref_primary_10_1007_s10965_020_02193_3 crossref_primary_10_1002_app_51218 crossref_primary_10_1016_j_compscitech_2020_108190 crossref_primary_10_1177_09540083231164342 crossref_primary_10_1016_j_coco_2023_101696 crossref_primary_10_1016_j_polymertesting_2020_106671 crossref_primary_10_1016_j_compositesb_2021_108666 crossref_primary_10_1002_mame_202100428 crossref_primary_10_1016_j_cej_2022_138299 crossref_primary_10_1016_j_coco_2020_100528 crossref_primary_10_1016_j_colsurfa_2024_134195 crossref_primary_10_1016_j_carbpol_2021_118058 crossref_primary_10_1016_j_coco_2020_100518 crossref_primary_10_1016_j_apmt_2022_101672 crossref_primary_10_1002_app_54974 crossref_primary_10_1002_pc_26563 crossref_primary_10_1088_2053_1591_abbc90 crossref_primary_10_1016_j_ceramint_2020_08_026 crossref_primary_10_1016_j_polymer_2024_127202 crossref_primary_10_1016_j_jiec_2021_07_005 crossref_primary_10_3390_ma13163634 crossref_primary_10_1016_j_est_2023_110364 crossref_primary_10_3390_ma14133521 crossref_primary_10_1002_adem_202000231 crossref_primary_10_1002_admi_202000599 crossref_primary_10_1016_j_cej_2025_161486 crossref_primary_10_1016_j_diamond_2022_109585 crossref_primary_10_1002_pc_28857 crossref_primary_10_1016_j_cej_2025_161364 crossref_primary_10_1016_j_polymertesting_2022_107868 crossref_primary_10_1016_j_jhazmat_2021_126338 crossref_primary_10_1016_j_ceramint_2022_01_188 crossref_primary_10_1002_mame_202200137 crossref_primary_10_1016_j_coco_2024_102007 crossref_primary_10_1016_j_mssp_2021_106430 crossref_primary_10_1016_j_cej_2021_130181 crossref_primary_10_1016_j_coco_2020_100617 crossref_primary_10_1515_epoly_2022_0036 crossref_primary_10_3390_polym14051014 crossref_primary_10_1016_j_coco_2022_101195 crossref_primary_10_1038_s41598_021_81925_x crossref_primary_10_1002_pc_26224 crossref_primary_10_1007_s42114_022_00470_x crossref_primary_10_1016_j_diamond_2023_110513 crossref_primary_10_1016_j_compscitech_2021_108681 crossref_primary_10_1039_D0RA01230K crossref_primary_10_1002_slct_202102175 crossref_primary_10_1002_pc_28638 crossref_primary_10_1016_j_ceramint_2022_12_124 crossref_primary_10_1016_j_compositesa_2020_106093 crossref_primary_10_1007_s10854_020_04172_2 crossref_primary_10_1002_mame_202200144 crossref_primary_10_1016_j_coco_2020_100509 crossref_primary_10_1016_j_compstruct_2023_116896 crossref_primary_10_1002_pc_29161 crossref_primary_10_1002_pc_28077 crossref_primary_10_1088_2053_1591_ab99e8 crossref_primary_10_1016_j_cja_2020_03_007 crossref_primary_10_1016_j_compositesb_2020_107855 crossref_primary_10_1002_pc_26695 crossref_primary_10_1016_j_radphyschem_2022_110033 crossref_primary_10_1016_j_compscitech_2021_108693 crossref_primary_10_3390_polym13224006 crossref_primary_10_1002_pc_26527 crossref_primary_10_1016_j_compscitech_2020_108272 crossref_primary_10_1016_j_coco_2020_100601 crossref_primary_10_32604_sdhm_2023_044573 crossref_primary_10_3390_electronicmat5040019 crossref_primary_10_1016_j_ceramint_2024_07_425 crossref_primary_10_1016_j_ceramint_2024_06_191 crossref_primary_10_1016_j_mtcomm_2023_106996 crossref_primary_10_1002_adfm_202110782 crossref_primary_10_1080_08927022_2024_2383723 crossref_primary_10_1002_admi_202001910 crossref_primary_10_1007_s10854_022_09582_y crossref_primary_10_1016_j_compositesb_2021_109203 crossref_primary_10_1002_pc_27604 crossref_primary_10_1007_s42114_021_00208_1 crossref_primary_10_1016_j_ceramint_2020_01_131 crossref_primary_10_1016_j_compositesb_2021_109207 crossref_primary_10_1177_0954008320959413 crossref_primary_10_1002_app_55631 crossref_primary_10_1002_app_51396 crossref_primary_10_1016_j_compositesa_2025_109202 crossref_primary_10_1016_j_jmst_2020_08_027 crossref_primary_10_1016_j_compositesb_2020_108172 crossref_primary_10_1007_s42114_024_01076_1 crossref_primary_10_1016_j_compscitech_2021_108799 crossref_primary_10_3390_polym13132028 crossref_primary_10_1016_j_compscitech_2020_108134 crossref_primary_10_1007_s12633_020_00886_4 crossref_primary_10_1016_j_polymer_2024_127678 crossref_primary_10_1007_s10853_020_04557_y crossref_primary_10_1016_j_mtcomm_2022_103507 crossref_primary_10_1016_j_ceramint_2021_08_374 crossref_primary_10_3390_polym13234074 crossref_primary_10_1002_pc_25691 crossref_primary_10_1016_j_cej_2025_160443 crossref_primary_10_1371_journal_pone_0247608 crossref_primary_10_1016_j_cej_2020_125593 crossref_primary_10_1002_pc_26544 crossref_primary_10_1016_j_compscitech_2021_109178 crossref_primary_10_3390_polym17111507 crossref_primary_10_1016_j_compositesb_2020_107784 crossref_primary_10_1007_s42114_022_00584_2 crossref_primary_10_1039_D5IM00115C crossref_primary_10_1002_app_55090 crossref_primary_10_1016_j_jmst_2021_01_018 crossref_primary_10_3390_nano14020205 crossref_primary_10_1016_j_jmst_2021_01_017 crossref_primary_10_1177_09540083211046456 crossref_primary_10_1016_j_apsusc_2020_147091 crossref_primary_10_1002_pc_29009 crossref_primary_10_1016_j_reactfunctpolym_2023_105768 |
| Cites_doi | 10.1016/j.jallcom.2016.06.106 10.1016/j.compositesb.2018.07.019 10.1016/j.carbon.2019.04.043 10.1016/j.tca.2012.03.002 10.1039/C9CC02889G 10.1016/j.compscitech.2019.04.027 10.1039/C8TA05638B 10.1021/acsami.9b10538 10.1016/j.compositesb.2019.107489 10.1016/j.coco.2019.08.007 10.1002/admi.201700946 10.1016/j.compositesa.2018.05.023 10.1016/j.compositesb.2017.12.004 10.1007/s42114-018-0031-8 10.1021/acsami.9b10810 10.1016/j.compscitech.2018.03.009 10.1016/j.compositesa.2015.05.017 10.1016/j.compositesa.2019.105670 10.1002/adfm.201900412 10.1016/j.compositesb.2019.01.099 10.1016/j.compscitech.2018.08.039 10.1002/pat.2063 10.1016/j.ijheatmasstransfer.2016.08.021 10.1016/j.coco.2017.11.004 10.1002/adfm.201901383 10.1088/1674-1056/27/11/117806 10.1016/j.apmt.2018.04.004 10.1016/j.compscitech.2019.03.017 10.1016/j.compositesb.2019.107070 10.1016/j.compscitech.2017.07.019 10.1039/C8NR06429F 10.1016/j.compositesa.2009.10.019 10.1021/jp3026545 10.1039/C9TC01804B 10.1021/acsami.9b10161 10.1016/j.compscitech.2018.11.017 10.1016/j.compositesa.2016.05.022 10.1016/j.compscitech.2017.01.003 10.1016/j.compositesa.2018.09.009 10.1016/j.compositesa.2015.01.024 10.1016/j.compositesb.2013.03.002 10.3390/nano8040242 10.1016/j.compositesa.2017.01.019 10.1002/adfm.201604754 10.1007/s42114-017-0013-2 10.1016/j.ceramint.2014.10.018 10.1021/acsanm.8b01939 10.1016/j.carbon.2016.07.042 10.1016/j.compositesa.2005.07.006 10.1016/j.compscitech.2019.02.005 10.1021/acs.chemmater.9b02551 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Feb 8, 2020 |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Feb 8, 2020 |
| DBID | AAYXX CITATION 7SR 8FD JG9 |
| DOI | 10.1016/j.compscitech.2019.107944 |
| DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering |
| EISSN | 1879-1050 |
| ExternalDocumentID | 10_1016_j_compscitech_2019_107944 S0266353819330040 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSM SST SSZ T5K XPP ZMT ~G- .-4 29F 6TJ 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SET SEW SMS T9H VH1 WUQ ~HD 7SR 8FD JG9 |
| ID | FETCH-LOGICAL-c415t-3fc358067f3b855c24f7b83cd4c067e5a8a089f91701b6aa9bb71ebf099e06843 |
| ISICitedReferencesCount | 256 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000510957700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0266-3538 |
| IngestDate | Sun Nov 09 07:34:51 EST 2025 Tue Nov 18 21:51:32 EST 2025 Sat Nov 29 07:21:29 EST 2025 Fri Feb 23 02:48:18 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Casting Electrical properties Scanning electron microscopy (SEM) Polymer-matrix composites (PMCs) |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c415t-3fc358067f3b855c24f7b83cd4c067e5a8a089f91701b6aa9bb71ebf099e06843 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2356777467 |
| PQPubID | 2045270 |
| ParticipantIDs | proquest_journals_2356777467 crossref_primary_10_1016_j_compscitech_2019_107944 crossref_citationtrail_10_1016_j_compscitech_2019_107944 elsevier_sciencedirect_doi_10_1016_j_compscitech_2019_107944 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-08 |
| PublicationDateYYYYMMDD | 2020-02-08 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-08 day: 08 |
| PublicationDecade | 2020 |
| PublicationPlace | Barking |
| PublicationPlace_xml | – name: Barking |
| PublicationTitle | Composites science and technology |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Han, Du, Gao, Bai (bib9) 2019; 29 Yang, Fan, Li, Guo, Ruan, Li, Zhang, Zhang, Kong, Gu (bib15) 2020; 128 Hong, Yoon, Hwang, Oh, Hong, Lee, Nam (bib28) 2012; 537 Zhang, Wu, Liu, Yu, Zhang, Chen, Fu, Feng, Wan, Wu, Bai, Bao, Liu, Jun, Yang (bib12) 2019; 175 Jia, Gao, Lan, Cheng, Wu, Wu (bib21) 2018; 27 Ahn, Kim, Kim, Kim (bib29) 2015; 41 Wang, Cheng, Yang, Huang, Cao, Chen, Xie, Lou, Wu (bib22) 2018; 140 Tang, He, Na, Guan, Zhang, Zhang, Gu (bib18) 2019; 16 Shen, Wang, Wu, Liu, Kim, Guo, Lyu, Yang, Lu, Ruan, Wu, Kong, Gu (bib25) 2016; 108 Chen, Song, Shi, Ding, Guo, Zheng, Jiang, Yu, Dai, Yan (bib2) 2018; 112 Zhang, Zhang, Zhang, Li, Wang, Li, Xia, Wu, Guo (bib35) 2017; 150 Wang, Liu, Chen, Chen, Yang, Huang, Wang, Wu, Wu (bib41) 2018; 8 Feng, He, Wen, Zhou, Xie, Ye, Mai (bib23) 2018; 160 Lee, Park, Kim, Lee, Yoon (bib33) 2006; 37 Huang, Iizuka, Jiang, Ohki, Tanaka (bib19) 2012; 116 Yu, Choi, Kim, Kim (bib32) 2016; 88 Jiang, Cui, Rungnim, Song, Shi, Ding, Guo, Ruan, Yang, Ma, Kong, Wu, Zhang, Gu, Guo (bib8) 2019; 31 Kim, Ju, Kim (bib36) 2017; 141 Chen, Huang, Zhu, Jian, Jiang (bib42) 2017; 27 Zhou, Chen, Sui, Dong, Wang (bib26) 2015; 71 Wu, Yang, Fu, Kun (bib37) 2016; 687 Choi, Kim (bib30) 2013; 51 Dai, Lyu, Lu, Hou, Yan, Alam, Li, Zeng, Yu, Wei, Xu, Wu, Jiang, Du, Sun, Xu, Wong, Lin (bib13) 2019; 132 Cui, Jiang, Song, Shi, Ding (bib5) 2019; 11 Yang, Guo, Han, Li, Ma, Chen, Kong, Zhu, Gu, Yang, Liang, Ma, Guo, Kong, Gu, Chen, Zhu (bib3) 2019; 175 Zhang, Li, Deng, Jing, Fu, Zhang, Deng, Fu (bib7) 2018; 115 Chen, Wei, Bao, Jiang, Huang, Zou, Huang, Zhu, Chen, Jiang (bib10) 2019; 11 Guo, Zheng, Jiang, Yu, Yan, Hou, Chen, Lyu, Dai, Zhao, Wang, Fu, Lin, Jiang, Yu (bib14) 2019; 178 Guo, Yang, Ruan, Kong, Dong, Zhang, Gu, Guo (bib38) 2019; 11 Zhang, Hong, Liu, Yue, Xiong, Lorenzini (bib40) 2017; 104 Pan, Kou, Zhang, Li, Wu (bib27) 2018; 153 Zhang, Feng, Qin, Gao, Li, Zhao, Zhang, Lyu, Feng (bib1) 2019; 29 Abidinae, Herceg, Greenhalgh, Shafferc, Bismarckbd (bib16) 2019; 170 Gu, Zhang, Dang, Xie (bib20) 2012; 23 Tian, Sun, Wang, Zeng, Zhou, Bai, Zhao, Wong (bib4) 2018; 6 Dai, Liu, Wang, Song, Lyu, Bai, Nishimura, Jiang, Wang, Zhu, Yan, Wei, Zhang, Gong, Guo, Zhang, Zhang, Zhang (bib31) 2015; 76 Lyu, Qin, Zhang, Yu, Gao, Lyu, Wei, Heng, Feng, Mehra, Mu, Ji, Yang, Kong, Gu, Zhu (bib6) 2019; 149 Feng, Bai, Bao, Liu, Yang, Chen, Yang, Feng, Bai, Shao, Bao, Liu, Yang, Chen, Ni, Yang (bib11) 2018; 1 Yang, Gu (bib24) 2010; 41 Gu, Guo, Yang, Liang, Geng, Tang, Li, Zhang (bib34) 2017; 95 Guerra, Wan, Degirmenci, Sloan, Presvytis, McNally (bib39) 2018; 10 Liu, Lu, Wu, Yao, Du, Chen, Zhang, Liang, Lu (bib17) 2019; 174 Wang (10.1016/j.compscitech.2019.107944_bib22) 2018; 140 Lyu (10.1016/j.compscitech.2019.107944_bib6a) 2019; 149 Ahn (10.1016/j.compscitech.2019.107944_bib29) 2015; 41 Mehra (10.1016/j.compscitech.2019.107944_bib6b) 2018; 12 Zhang (10.1016/j.compscitech.2019.107944_bib1) 2019; 29 Tang (10.1016/j.compscitech.2019.107944_bib18) 2019; 16 Guo (10.1016/j.compscitech.2019.107944_bib8b) 2019; 7 Han (10.1016/j.compscitech.2019.107944_bib9) 2019; 29 Zhang (10.1016/j.compscitech.2019.107944_bib7a) 2018; 115 Dai (10.1016/j.compscitech.2019.107944_bib31a) 2015; 76 Guerra (10.1016/j.compscitech.2019.107944_bib39) 2018; 10 Gu (10.1016/j.compscitech.2019.107944_bib34) 2017; 95 Feng (10.1016/j.compscitech.2019.107944_bib11a) 2018; 1 Choi (10.1016/j.compscitech.2019.107944_bib30) 2013; 51 Yang (10.1016/j.compscitech.2019.107944_bib24) 2010; 41 Gu (10.1016/j.compscitech.2019.107944_bib20) 2012; 23 Shen (10.1016/j.compscitech.2019.107944_bib25a) 2016; 108 Huang (10.1016/j.compscitech.2019.107944_bib19) 2012; 116 Yang (10.1016/j.compscitech.2019.107944_bib3a) 2019; 175 Pan (10.1016/j.compscitech.2019.107944_bib27) 2018; 153 Wang (10.1016/j.compscitech.2019.107944_bib41) 2018; 8 Lee (10.1016/j.compscitech.2019.107944_bib33) 2006; 37 Cui (10.1016/j.compscitech.2019.107944_bib5) 2019; 11 Zhang (10.1016/j.compscitech.2019.107944_bib40) 2017; 104 Guo (10.1016/j.compscitech.2019.107944_bib2b) 2019; 178 Zhang (10.1016/j.compscitech.2019.107944_bib7b) 2018; 8 Hou (10.1016/j.compscitech.2019.107944_bib14b) 2019; 2 Wang (10.1016/j.compscitech.2019.107944_bib31b) 2019; 55 Guo (10.1016/j.compscitech.2019.107944_bib14a) 2019; 178 Zhang (10.1016/j.compscitech.2019.107944_bib35) 2017; 150 Feng (10.1016/j.compscitech.2019.107944_bib11b) 2018; 5 Kim (10.1016/j.compscitech.2019.107944_bib36) 2017; 141 Jia (10.1016/j.compscitech.2019.107944_bib21) 2018; 27 Liu (10.1016/j.compscitech.2019.107944_bib17) 2019; 174 Chen (10.1016/j.compscitech.2019.107944_bib42) 2017; 27 Dai (10.1016/j.compscitech.2019.107944_bib13) 2019; 132 Yu (10.1016/j.compscitech.2019.107944_bib32) 2016; 88 Jiang (10.1016/j.compscitech.2019.107944_bib8a) 2019; 31 Abidinae (10.1016/j.compscitech.2019.107944_bib16) 2019; 170 Wu (10.1016/j.compscitech.2019.107944_bib37) 2016; 687 Feng (10.1016/j.compscitech.2019.107944_bib12b) 2018; 167 Guo (10.1016/j.compscitech.2019.107944_bib25b) 2019; 16 Yang (10.1016/j.compscitech.2019.107944_bib3b) 2018; 1 Zhang (10.1016/j.compscitech.2019.107944_bib12a) 2019; 175 Zhou (10.1016/j.compscitech.2019.107944_bib26) 2015; 71 Tian (10.1016/j.compscitech.2019.107944_bib4) 2018; 6 Yang (10.1016/j.compscitech.2019.107944_bib15) 2020; 128 Chen (10.1016/j.compscitech.2019.107944_bib2a) 2018; 112 Hong (10.1016/j.compscitech.2019.107944_bib28) 2012; 537 Chen (10.1016/j.compscitech.2019.107944_bib10a) 2019; 11 Feng (10.1016/j.compscitech.2019.107944_bib23) 2018; 160 Zou (10.1016/j.compscitech.2019.107944_bib10b) 2019; 177 Guo (10.1016/j.compscitech.2019.107944_bib38) 2019; 11 |
| References_xml | – volume: 160 start-page: 42 year: 2018 end-page: 49 ident: bib23 article-title: Multi-functional interface tailoring for enhancing thermal conductivity, flame retardancy and dynamic mechanical property of epoxy/Al publication-title: Compos. Sci. Technol. – volume: 112 start-page: 18 year: 2018 end-page: 24 ident: bib2 article-title: Anisotropic thermal conductive composite with wood-derived carbon scaffolds publication-title: Compos. Part A-Appl S. – volume: 10 start-page: 19469 year: 2018 end-page: 19477 ident: bib39 article-title: 2D boron nitride nanosheetsss (BNNS) prepared by high-pressure homogenisation: structure and morphology publication-title: Nanoscale – volume: 16 start-page: 5 year: 2019 end-page: 10 ident: bib18 article-title: Functionalized glass fibers cloth/spherical BN fillers/epoxy laminated composites with excellent thermal conductivities and electrical insulation properties publication-title: Compos. Commun. – volume: 11 start-page: 25465 year: 2019 end-page: 25473 ident: bib38 article-title: Reduced graphene oxide hetero-structured sliver nanoparticles significantly enhanced thermal conductivities in hot-pressed electrospun polyimide nanocomposites publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 17540 year: 2018 end-page: 17547 ident: bib4 article-title: A thermal interface material based on foam-templated three-dimensional hierarchical porous boron nitride publication-title: J. Mater. Chem. A. – volume: 23 start-page: 1025 year: 2012 end-page: 1028 ident: bib20 article-title: Thermal conductivity epoxy resin composites filled with boron nitride publication-title: Polym. Adv. Technol. – volume: 140 start-page: 83 year: 2018 end-page: 90 ident: bib22 article-title: Dielectric properties and thermal conductivity of epoxy composites using core/shell structured Si/SiO publication-title: Compos. B Eng. – volume: 170 start-page: 85 year: 2019 end-page: 92 ident: bib16 article-title: Enhanced fracture toughness of hierarchical carbon nanotube reinforced carbon fiber epoxy composites with engineered matrix microstructure publication-title: Compos. Sci. Technol. – volume: 29 start-page: 1901383 year: 2019 ident: bib1 article-title: Stress controllability in thermal and electrical conductivity of 3D elastic graphene-crosslinked carbon nanotube sponge/polyimide nanocomposites publication-title: Adv. Funct. Mater. – volume: 41 start-page: 215 year: 2010 end-page: 221 ident: bib24 article-title: Enhanced thermal conductivity of epoxy nanocomposites filled with hybrid filler system of triethylenetetramine-functionalized multi-walled carbon nanotube/silane-modified nano-sized silicon carbide publication-title: Compos. Part A-Appl S. – volume: 37 start-page: 727 year: 2006 end-page: 734 ident: bib33 article-title: Enhanced thermal conductivity of polymer composites filled with hybrid filler publication-title: Compos. Part A-Appl S. – volume: 149 start-page: 281 year: 2019 end-page: 289 ident: bib6 article-title: High cross-plane thermal conductive hierarchical composite using graphene-coated vertically aligned carbon nanotubes/graphite publication-title: Carbon – volume: 178 start-page: 107489 year: 2019 end-page: 368 ident: bib14 article-title: Enhanced thermal conductivity and retained electrical insulation of heat spreader by incorporating alumina-deposited graphene filler in nano-fibrillated cellulose publication-title: Compos. B Eng. – volume: 27 start-page: 1604754 year: 2017 ident: bib42 article-title: Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability publication-title: Adv. Funct. Mater. – volume: 174 start-page: 1 year: 2019 end-page: 10 ident: bib17 article-title: Anisotropic thermal conductivity and electromagnetic interference shielding of epoxy nanocomposites based on magnetic driving reduced graphene oxide@Fe publication-title: Compos. Sci. Technol. – volume: 51 start-page: 140 year: 2013 end-page: 147 ident: bib30 article-title: Thermal conductivity of epoxy composites with a binary-particle system of aluminum oxide and aluminum nitride fillers publication-title: Compos. B Eng. – volume: 11 start-page: 31402 year: 2019 end-page: 31410 ident: bib10 article-title: Millefeuille-inspired thermally conductive polymer nanocomposites with overlapping BN nanosheets for thermal management applications publication-title: ACS Appl. Mater. Interfaces – volume: 153 start-page: 1 year: 2018 end-page: 8 ident: bib27 article-title: Enhanced through-plane thermal conductivity of PTFE composites with hybrid fillers of hexagonal boron nitride platelets and aluminum nitride particles publication-title: Compos. B Eng. – volume: 115 start-page: 1 year: 2018 end-page: 7 ident: bib7 article-title: Enhanced thermal conductivity and electrical insulation properties of polymer composites via constructing Pglass/CNTs confined hybrid fillers publication-title: Compos. Part A-Appl S – volume: 537 start-page: 70 year: 2012 end-page: 75 ident: bib28 article-title: High thermal conductivity epoxy composites with bimodal distribution of aluminum nitride and boron nitride fillers publication-title: Thermochim. Acta – volume: 108 start-page: 412 year: 2016 end-page: 422 ident: bib25 article-title: Effect of functionalization on thermal conductivities of graphene/epoxy composites publication-title: Carbon – volume: 95 start-page: 267 year: 2017 end-page: 273 ident: bib34 article-title: Synergistic improvement of thermal conductivities of polyphenylene sulfide composites filled with boron nitride hybrid fillers publication-title: Compos. Part A-Appl S. – volume: 128 start-page: 105670 year: 2020 ident: bib15 article-title: Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework publication-title: Compos. Part A-Appl S – volume: 29 start-page: 1900412 year: 2019 ident: bib9 article-title: An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network publication-title: Adv. Funct. Mater. – volume: 132 start-page: 1547 year: 2019 end-page: 1554 ident: bib13 article-title: A paper-like inorganic thermal interface material composed of hierarchically structured graphene/silicon carbide nanorods publication-title: ACS Nano – volume: 687 start-page: 833 year: 2016 end-page: 838 ident: bib37 article-title: In-situ growth of SiC nanowire arrays on carbon fibers and their microwave absorption properties publication-title: J. Alloy. Comp. – volume: 175 start-page: 107070 year: 2019 end-page: 230 ident: bib3 article-title: Significant improvement of thermal conductivities for BNNS/PVA composite films via electrospinning followed by hot-pressing technology publication-title: Compos. B Eng. – volume: 31 start-page: 7686 year: 2019 end-page: 7695 ident: bib8 article-title: Control of a dual-cross-linked boron nitride framework and the optimized design of the thermal conductive network for its thermoresponsive polymeric composites publication-title: Chem. Mater. – volume: 76 start-page: 73 year: 2015 end-page: 81 ident: bib31 article-title: Enhanced thermal conductivity and retained electrical insulation for polyimide composites with SiC nanowires grown on graphene hybrid fillers publication-title: Compos. Part A-Appl S. – volume: 175 start-page: 135 year: 2019 end-page: 142 ident: bib12 article-title: Preparation of highly thermal conductive but electrically insulating composites by constructing a segregated double network in polymer composites publication-title: Compos. Sci. Technol. – volume: 141 start-page: 1 year: 2017 end-page: 7 ident: bib36 article-title: Pyrolysis behavior of polysilazane and polysilazane-coated-boron nitride for high thermal conductive composites publication-title: Compos. Sci. Technol. – volume: 104 start-page: 871 year: 2017 end-page: 877 ident: bib40 article-title: Molecular dynamics simulation of the interfacial thermal resistance between phosphorene and silicon substrate publication-title: Int. J. Heat Mass Transf. – volume: 71 start-page: 184 year: 2015 end-page: 191 ident: bib26 article-title: Enhanced thermal conductivity and dielectric properties of Al/beta-SiCw/PVDF composites publication-title: Compos. Part A-Appl S – volume: 8 start-page: 242 year: 2018 end-page: 245 ident: bib41 article-title: Alignment of boron nitride nanofibers in epoxy composite films for thermal conductivity and dielectric breakdown strength improvement publication-title: Nanomaterials – volume: 41 start-page: 2187 year: 2015 end-page: 2195 ident: bib29 article-title: Fabrication of silicon carbonitride-covered boron nitride/Nylon 6, 6 composite for enhanced thermal conductivity by melt process publication-title: Ceram. Int. – volume: 88 start-page: 79 year: 2016 end-page: 85 ident: bib32 article-title: Synergistic effect of hybrid graphene nanoplatelet and multi-walled carbon nanotube fillers on the thermal conductivity of polymer composites and theoretical modeling of the synergistic effect publication-title: Compos. Part A-Appl S. – volume: 150 start-page: 217 year: 2017 end-page: 226 ident: bib35 article-title: Toward high efficiency thermal conductive and electrically insulating paths through uniformly dispersed and highly oriented graphites close-packed with SiC publication-title: Compos. Sci. Technol. – volume: 1 start-page: 160 year: 2018 end-page: 167 ident: bib11 article-title: Electrically insulating POE/BN elastomeric composites with high through-plane thermal conductivity fabricated by two-roll milling and hot compression publication-title: Adv. Compos. Hybrid Mater. – volume: 116 start-page: 13629 year: 2012 end-page: 13639 ident: bib19 article-title: Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites publication-title: J. Phys. Chem. C – volume: 27 start-page: 117806 year: 2018 ident: bib21 article-title: Effects of filler loading and surface modification on electrical and thermal properties of epoxy/montmorillonite composite publication-title: Chinese Physics B-Eng. – volume: 11 start-page: 352 year: 2019 end-page: 359 ident: bib5 article-title: Flexible films for smart thermal management: influence of structure construction of a two-dimensional graphene network on active heat dissipation response behavior publication-title: ACS Appl. Mater. Interfaces – volume: 687 start-page: 833 year: 2016 ident: 10.1016/j.compscitech.2019.107944_bib37 article-title: In-situ growth of SiC nanowire arrays on carbon fibers and their microwave absorption properties publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2016.06.106 – volume: 153 start-page: 1 year: 2018 ident: 10.1016/j.compscitech.2019.107944_bib27 article-title: Enhanced through-plane thermal conductivity of PTFE composites with hybrid fillers of hexagonal boron nitride platelets and aluminum nitride particles publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2018.07.019 – volume: 149 start-page: 281 year: 2019 ident: 10.1016/j.compscitech.2019.107944_bib6a article-title: High cross-plane thermal conductive hierarchical composite using graphene-coated vertically aligned carbon nanotubes/graphite publication-title: Carbon doi: 10.1016/j.carbon.2019.04.043 – volume: 537 start-page: 70 year: 2012 ident: 10.1016/j.compscitech.2019.107944_bib28 article-title: High thermal conductivity epoxy composites with bimodal distribution of aluminum nitride and boron nitride fillers publication-title: Thermochim. Acta doi: 10.1016/j.tca.2012.03.002 – volume: 55 start-page: 5805 year: 2019 ident: 10.1016/j.compscitech.2019.107944_bib31b article-title: Efficient and scalable high-quality graphene nanodot fabrication through confined lattice plane electrochemical exfoliation publication-title: Chem. Commun. doi: 10.1039/C9CC02889G – volume: 177 start-page: 88 year: 2019 ident: 10.1016/j.compscitech.2019.107944_bib10b article-title: Boron nitride nanosheets endow the traditional dielectric polymer composites with advanced thermal management capability publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2019.04.027 – volume: 6 start-page: 17540 year: 2018 ident: 10.1016/j.compscitech.2019.107944_bib4 article-title: A thermal interface material based on foam-templated three-dimensional hierarchical porous boron nitride publication-title: J. Mater. Chem. A. doi: 10.1039/C8TA05638B – volume: 11 start-page: 352 year: 2019 ident: 10.1016/j.compscitech.2019.107944_bib5 article-title: Flexible films for smart thermal management: influence of structure construction of a two-dimensional graphene network on active heat dissipation response behavior publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b10538 – volume: 178 start-page: 107489 year: 2019 ident: 10.1016/j.compscitech.2019.107944_bib14a article-title: Enhanced thermal conductivity and retained electrical insulation of heat spreader by incorporating alumina-deposited graphene filler in nano-fibrillated cellulose publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2019.107489 – volume: 16 start-page: 5 year: 2019 ident: 10.1016/j.compscitech.2019.107944_bib18 article-title: Functionalized glass fibers cloth/spherical BN fillers/epoxy laminated composites with excellent thermal conductivities and electrical insulation properties publication-title: Compos. Commun. doi: 10.1016/j.coco.2019.08.007 – volume: 5 start-page: 1700946 year: 2018 ident: 10.1016/j.compscitech.2019.107944_bib11b article-title: A facile route to fabricate highly anisotropic thermally conductive elastomeric POE/NG composites for thermal management publication-title: Adv. Mater. Interfaces. doi: 10.1002/admi.201700946 – volume: 112 start-page: 18 year: 2018 ident: 10.1016/j.compscitech.2019.107944_bib2a article-title: Anisotropic thermal conductive composite with wood-derived carbon scaffolds publication-title: Compos. Part A-Appl S. doi: 10.1016/j.compositesa.2018.05.023 – volume: 140 start-page: 83 year: 2018 ident: 10.1016/j.compscitech.2019.107944_bib22 article-title: Dielectric properties and thermal conductivity of epoxy composites using core/shell structured Si/SiO2/Polydopamine publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2017.12.004 – volume: 1 start-page: 207 year: 2018 ident: 10.1016/j.compscitech.2019.107944_bib3b article-title: A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods publication-title: Adv. Compos. Hybrid. Mater. doi: 10.1007/s42114-018-0031-8 – volume: 11 start-page: 31402 year: 2019 ident: 10.1016/j.compscitech.2019.107944_bib10a article-title: Millefeuille-inspired thermally conductive polymer nanocomposites with overlapping BN nanosheets for thermal management applications publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b10810 – volume: 160 start-page: 42 year: 2018 ident: 10.1016/j.compscitech.2019.107944_bib23 article-title: Multi-functional interface tailoring for enhancing thermal conductivity, flame retardancy and dynamic mechanical property of epoxy/Al2O3composites publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2018.03.009 – volume: 76 start-page: 73 year: 2015 ident: 10.1016/j.compscitech.2019.107944_bib31a article-title: Enhanced thermal conductivity and retained electrical insulation for polyimide composites with SiC nanowires grown on graphene hybrid fillers publication-title: Compos. Part A-Appl S. doi: 10.1016/j.compositesa.2015.05.017 – volume: 128 start-page: 105670 year: 2020 ident: 10.1016/j.compscitech.2019.107944_bib15 article-title: Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework publication-title: Compos. Part A-Appl S doi: 10.1016/j.compositesa.2019.105670 – volume: 29 start-page: 1900412 year: 2019 ident: 10.1016/j.compscitech.2019.107944_bib9 article-title: An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201900412 – volume: 132 start-page: 1547 year: 2019 ident: 10.1016/j.compscitech.2019.107944_bib13 article-title: A paper-like inorganic thermal interface material composed of hierarchically structured graphene/silicon carbide nanorods publication-title: ACS Nano – volume: 16 start-page: 732 year: 2019 ident: 10.1016/j.compscitech.2019.107944_bib25b article-title: Enhanced thermal conductivities and decreased thermal resistances of functionalized boron nitride/polyimide composites publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2019.01.099 – volume: 167 start-page: 456 year: 2018 ident: 10.1016/j.compscitech.2019.107944_bib12b article-title: Electrically insulating, layer structured SiR/GNPs/BN thermal management materials with enhanced thermal conductivity and breakdown voltage publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2018.08.039 – volume: 23 start-page: 1025 year: 2012 ident: 10.1016/j.compscitech.2019.107944_bib20 article-title: Thermal conductivity epoxy resin composites filled with boron nitride publication-title: Polym. Adv. Technol. doi: 10.1002/pat.2063 – volume: 104 start-page: 871 year: 2017 ident: 10.1016/j.compscitech.2019.107944_bib40 article-title: Molecular dynamics simulation of the interfacial thermal resistance between phosphorene and silicon substrate publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.08.021 – volume: 8 start-page: 74 year: 2018 ident: 10.1016/j.compscitech.2019.107944_bib7b article-title: Recent progress on thermal conductive and electrical insulating polymer composites publication-title: Compos. Commun. doi: 10.1016/j.coco.2017.11.004 – volume: 29 start-page: 1901383 year: 2019 ident: 10.1016/j.compscitech.2019.107944_bib1 article-title: Stress controllability in thermal and electrical conductivity of 3D elastic graphene-crosslinked carbon nanotube sponge/polyimide nanocomposites publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901383 – volume: 27 start-page: 117806 year: 2018 ident: 10.1016/j.compscitech.2019.107944_bib21 article-title: Effects of filler loading and surface modification on electrical and thermal properties of epoxy/montmorillonite composite publication-title: Chinese Physics B-Eng. doi: 10.1088/1674-1056/27/11/117806 – volume: 12 start-page: 92 year: 2018 ident: 10.1016/j.compscitech.2019.107944_bib6b article-title: Thermal transport in polymeric materials and across composite interfaces publication-title: Appl. Mater. Today. doi: 10.1016/j.apmt.2018.04.004 – volume: 175 start-page: 135 year: 2019 ident: 10.1016/j.compscitech.2019.107944_bib12a article-title: Preparation of highly thermal conductive but electrically insulating composites by constructing a segregated double network in polymer composites publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2019.03.017 – volume: 175 start-page: 107070 year: 2019 ident: 10.1016/j.compscitech.2019.107944_bib3a article-title: Significant improvement of thermal conductivities for BNNS/PVA composite films via electrospinning followed by hot-pressing technology publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2019.107070 – volume: 150 start-page: 217 year: 2017 ident: 10.1016/j.compscitech.2019.107944_bib35 article-title: Toward high efficiency thermal conductive and electrically insulating paths through uniformly dispersed and highly oriented graphites close-packed with SiC publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2017.07.019 – volume: 10 start-page: 19469 year: 2018 ident: 10.1016/j.compscitech.2019.107944_bib39 article-title: 2D boron nitride nanosheetsss (BNNS) prepared by high-pressure homogenisation: structure and morphology publication-title: Nanoscale doi: 10.1039/C8NR06429F – volume: 41 start-page: 215 year: 2010 ident: 10.1016/j.compscitech.2019.107944_bib24 article-title: Enhanced thermal conductivity of epoxy nanocomposites filled with hybrid filler system of triethylenetetramine-functionalized multi-walled carbon nanotube/silane-modified nano-sized silicon carbide publication-title: Compos. Part A-Appl S. doi: 10.1016/j.compositesa.2009.10.019 – volume: 116 start-page: 13629 year: 2012 ident: 10.1016/j.compscitech.2019.107944_bib19 article-title: Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites publication-title: J. Phys. Chem. C doi: 10.1021/jp3026545 – volume: 178 start-page: 107489 year: 2019 ident: 10.1016/j.compscitech.2019.107944_bib2b article-title: Enhanced thermal conductivity and retained electrical insulation of heat spreader by incorporating alumina- deposited graphene filler in nano-fibrillated cellulose publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2019.107489 – volume: 7 start-page: 7035 year: 2019 ident: 10.1016/j.compscitech.2019.107944_bib8b article-title: Constructing fully carbon-based fillers with hierarchical structure to fabricate highly thermally conductive polyimide nanocomposites publication-title: J. Mater. Chem. C. doi: 10.1039/C9TC01804B – volume: 11 start-page: 25465 year: 2019 ident: 10.1016/j.compscitech.2019.107944_bib38 article-title: Reduced graphene oxide hetero-structured sliver nanoparticles significantly enhanced thermal conductivities in hot-pressed electrospun polyimide nanocomposites publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b10161 – volume: 170 start-page: 85 year: 2019 ident: 10.1016/j.compscitech.2019.107944_bib16 article-title: Enhanced fracture toughness of hierarchical carbon nanotube reinforced carbon fiber epoxy composites with engineered matrix microstructure publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2018.11.017 – volume: 88 start-page: 79 year: 2016 ident: 10.1016/j.compscitech.2019.107944_bib32 article-title: Synergistic effect of hybrid graphene nanoplatelet and multi-walled carbon nanotube fillers on the thermal conductivity of polymer composites and theoretical modeling of the synergistic effect publication-title: Compos. Part A-Appl S. doi: 10.1016/j.compositesa.2016.05.022 – volume: 141 start-page: 1 year: 2017 ident: 10.1016/j.compscitech.2019.107944_bib36 article-title: Pyrolysis behavior of polysilazane and polysilazane-coated-boron nitride for high thermal conductive composites publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2017.01.003 – volume: 115 start-page: 1 year: 2018 ident: 10.1016/j.compscitech.2019.107944_bib7a article-title: Enhanced thermal conductivity and electrical insulation properties of polymer composites via constructing Pglass/CNTs confined hybrid fillers publication-title: Compos. Part A-Appl S doi: 10.1016/j.compositesa.2018.09.009 – volume: 71 start-page: 184 year: 2015 ident: 10.1016/j.compscitech.2019.107944_bib26 article-title: Enhanced thermal conductivity and dielectric properties of Al/beta-SiCw/PVDF composites publication-title: Compos. Part A-Appl S doi: 10.1016/j.compositesa.2015.01.024 – volume: 51 start-page: 140 year: 2013 ident: 10.1016/j.compscitech.2019.107944_bib30 article-title: Thermal conductivity of epoxy composites with a binary-particle system of aluminum oxide and aluminum nitride fillers publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2013.03.002 – volume: 8 start-page: 242 year: 2018 ident: 10.1016/j.compscitech.2019.107944_bib41 article-title: Alignment of boron nitride nanofibers in epoxy composite films for thermal conductivity and dielectric breakdown strength improvement publication-title: Nanomaterials doi: 10.3390/nano8040242 – volume: 95 start-page: 267 year: 2017 ident: 10.1016/j.compscitech.2019.107944_bib34 article-title: Synergistic improvement of thermal conductivities of polyphenylene sulfide composites filled with boron nitride hybrid fillers publication-title: Compos. Part A-Appl S. doi: 10.1016/j.compositesa.2017.01.019 – volume: 27 start-page: 1604754 year: 2017 ident: 10.1016/j.compscitech.2019.107944_bib42 article-title: Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604754 – volume: 1 start-page: 160 year: 2018 ident: 10.1016/j.compscitech.2019.107944_bib11a article-title: Electrically insulating POE/BN elastomeric composites with high through-plane thermal conductivity fabricated by two-roll milling and hot compression publication-title: Adv. Compos. Hybrid Mater. doi: 10.1007/s42114-017-0013-2 – volume: 41 start-page: 2187 year: 2015 ident: 10.1016/j.compscitech.2019.107944_bib29 article-title: Fabrication of silicon carbonitride-covered boron nitride/Nylon 6, 6 composite for enhanced thermal conductivity by melt process publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2014.10.018 – volume: 2 start-page: 360 year: 2019 ident: 10.1016/j.compscitech.2019.107944_bib14b article-title: High-thermal-transport-channel construction within flexible composites via the welding of boron nitride nanosheets publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.8b01939 – volume: 108 start-page: 412 year: 2016 ident: 10.1016/j.compscitech.2019.107944_bib25a article-title: Effect of functionalization on thermal conductivities of graphene/epoxy composites publication-title: Carbon doi: 10.1016/j.carbon.2016.07.042 – volume: 37 start-page: 727 year: 2006 ident: 10.1016/j.compscitech.2019.107944_bib33 article-title: Enhanced thermal conductivity of polymer composites filled with hybrid filler publication-title: Compos. Part A-Appl S. doi: 10.1016/j.compositesa.2005.07.006 – volume: 174 start-page: 1 year: 2019 ident: 10.1016/j.compscitech.2019.107944_bib17 article-title: Anisotropic thermal conductivity and electromagnetic interference shielding of epoxy nanocomposites based on magnetic driving reduced graphene oxide@Fe3O4 publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2019.02.005 – volume: 31 start-page: 7686 year: 2019 ident: 10.1016/j.compscitech.2019.107944_bib8a article-title: Control of a dual-cross-linked boron nitride framework and the optimized design of the thermal conductive network for its thermoresponsive polymeric composites publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b02551 |
| SSID | ssj0007592 |
| Score | 2.6757033 |
| Snippet | Novel hetero-structured silicon carbide-boron nitride nanosheets (SiC-BNNS) by sol-gel and in-situ growth method were performed as thermally conductive &... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 107944 |
| SubjectTerms | Blending effects Boron nitride Casting Electrical properties Electrical resistivity Epoxy resins Fillers Heat conductivity Nanocomposites Polymer-matrix composites (PMCs) Scanning electron microscopy (SEM) Silicon carbide Sol-gel processes Surface resistivity Thermal conductivity |
| Title | Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers |
| URI | https://dx.doi.org/10.1016/j.compscitech.2019.107944 https://www.proquest.com/docview/2356777467 |
| Volume | 187 |
| WOSCitedRecordID | wos000510957700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1879-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007592 issn: 0266-3538 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FFvE4ICigFgpaJMQlMkr82rXEpVSpCooCUtLKPa12_WhdBTttHgon_hW_jxnv2k4oReHAxYp2Zcf2fB7Pjr_5hpC3MVd-7CY-LEuwJMd2XEtJicwdN7V9FvFOKbt42meDAQ_D4Gur9bOqhVmMWZ7z5TKY_FdTwxgYG0tn_8Hc9UFhAH6D0WELZoftRobv5Rf6qz6Gdt9K-Y8cRV2xS0SmJWYh6F5-b-cyL5BRjrQtGF9kso1SDVrZWJe6WDA1b6dSlc2E4JgXyJ4pLK06O0fu-jA7tD4OBkNUeBobOn0tfdAcvSofKgmbN9L5xzoNe5Ytsxqsw7LdcDucJzNZ1M7JpLfDOcSs5zV5aF4mfM9g6Argfr6ayoB1K7KfeZNfq2tsTle8IEQQluNpCZj3ifbSnAXw_tCKtY0bZyuOuPvH14POVFyidSdw3Xi5yO4LYAb8ktu8EysewOCLODrp98WoF47eTa4s7FaGt820brlDtm3mBeBNtw8-9cLPdQwAg7bO7umTv0feNMzCW_79tsjotxihDHxGj8kjs2KhBxppT0gryXfI_aqgfbpDHq5oWj4lPyr8UYM_uo4_WqS0xB9dxx8F_NE1_FGDP9rgj97AH63wRw3-npGTo97o8NgyXT6sCILHmeWkEX6K91nqKO55ke2mTHEnit0IBhNPctnhQRpg4wDlSxkoxbqJSmFpk3R87jrPyVZe5MkuoV5XxR1HRYq5tqsST9lxkKY88gPZhWVQZ4_w6g6LyEjgYyeWsai4jpdixTgCjSO0cfaIXe860Towm-z0oTKjMI-ZDlQFAHKT3fcr0wvjYKbCdjyfMWwS9OLv0y_Jg-YZ2ydbYJjkFbkbLWbZ9Pq1AewvLSfU2Q |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+thermal+conductivities+of+epoxy+nanocomposites+via+incorporating+in-situ+fabricated+hetero-structured+SiC-BNNS+fillers&rft.jtitle=Composites+science+and+technology&rft.au=Han%2C+Yixin&rft.au=Shi%2C+Xuetao&rft.au=Yang%2C+Xutong&rft.au=Guo%2C+Yongqiang&rft.date=2020-02-08&rft.pub=Elsevier+BV&rft.issn=0266-3538&rft.eissn=1879-1050&rft.volume=187&rft.spage=1&rft_id=info:doi/10.1016%2Fj.compscitech.2019.107944&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-3538&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-3538&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-3538&client=summon |