Objective Quality Assessment of Tone-Mapped Images
Tone-mapping operators (TMOs) that convert high dynamic range (HDR) to low dynamic range (LDR) images provide practically useful tools for the visualization of HDR images on standard LDR displays. Different TMOs create different tone-mapped images, and a natural question is which one has the best qu...
Uložené v:
| Vydané v: | IEEE transactions on image processing Ročník 22; číslo 2; s. 657 - 667 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York, NY
IEEE
01.02.2013
Institute of Electrical and Electronics Engineers |
| Predmet: | |
| ISSN: | 1057-7149, 1941-0042, 1941-0042 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Tone-mapping operators (TMOs) that convert high dynamic range (HDR) to low dynamic range (LDR) images provide practically useful tools for the visualization of HDR images on standard LDR displays. Different TMOs create different tone-mapped images, and a natural question is which one has the best quality. Without an appropriate quality measure, different TMOs cannot be compared, and further improvement is directionless. Subjective rating may be a reliable evaluation method, but it is expensive and time consuming, and more importantly, is difficult to be embedded into optimization frameworks. Here we propose an objective quality assessment algorithm for tone-mapped images by combining: 1) a multiscale signal fidelity measure on the basis of a modified structural similarity index and 2) a naturalness measure on the basis of intensity statistics of natural images. Validations using independent subject-rated image databases show good correlations between subjective ranking score and the proposed tone-mapped image quality index (TMQI). Furthermore, we demonstrate the extended applications of TMQI using two examples - parameter tuning for TMOs and adaptive fusion of multiple tone-mapped images. |
|---|---|
| AbstractList | Tone-mapping operators (TMOs) that convert high dynamic range (HDR) to low dynamic range (LDR) images provide practically useful tools for the visualization of HDR images on standard LDR displays. Different TMOs create different tone-mapped images, and a natural question is which one has the best quality. Without an appropriate quality measure, different TMOs cannot be compared, and further improvement is directionless. Subjective rating may be a reliable evaluation method, but it is expensive and time consuming, and more importantly, is difficult to be embedded into optimization frameworks. Here we propose an objective quality assessment algorithm for tone-mapped images by combining: 1) a multiscale signal fidelity measure on the basis of a modified structural similarity index and 2) a naturalness measure on the basis of intensity statistics of natural images. Validations using independent subject-rated image databases show good correlations between subjective ranking score and the proposed tone-mapped image quality index (TMQI). Furthermore, we demonstrate the extended applications of TMQI using two examples-parameter tuning for TMOs and adaptive fusion of multiple tone-mapped images.Tone-mapping operators (TMOs) that convert high dynamic range (HDR) to low dynamic range (LDR) images provide practically useful tools for the visualization of HDR images on standard LDR displays. Different TMOs create different tone-mapped images, and a natural question is which one has the best quality. Without an appropriate quality measure, different TMOs cannot be compared, and further improvement is directionless. Subjective rating may be a reliable evaluation method, but it is expensive and time consuming, and more importantly, is difficult to be embedded into optimization frameworks. Here we propose an objective quality assessment algorithm for tone-mapped images by combining: 1) a multiscale signal fidelity measure on the basis of a modified structural similarity index and 2) a naturalness measure on the basis of intensity statistics of natural images. Validations using independent subject-rated image databases show good correlations between subjective ranking score and the proposed tone-mapped image quality index (TMQI). Furthermore, we demonstrate the extended applications of TMQI using two examples-parameter tuning for TMOs and adaptive fusion of multiple tone-mapped images. Tone-mapping operators (TMOs) that convert high dynamic range (HDR) to low dynamic range (LDR) images provide practically useful tools for the visualization of HDR images on standard LDR displays. Different TMOs create different tone-mapped images, and a natural question is which one has the best quality. Without an appropriate quality measure, different TMOs cannot be compared, and further improvement is directionless. Subjective rating may be a reliable evaluation method, but it is expensive and time consuming, and more importantly, is difficult to be embedded into optimization frameworks. Here we propose an objective quality assessment algorithm for tone-mapped images by combining: 1) a multiscale signal fidelity measure on the basis of a modified structural similarity index and 2) a naturalness measure on the basis of intensity statistics of natural images. Validations using independent subject-rated image databases show good correlations between subjective ranking score and the proposed tone-mapped image quality index (TMQI). Furthermore, we demonstrate the extended applications of TMQI using two examples-parameter tuning for TMOs and adaptive fusion of multiple tone-mapped images. |
| Author | Zhou Wang Yeganeh, H. |
| Author_xml | – sequence: 1 givenname: H. surname: Yeganeh fullname: Yeganeh, H. email: hyeganeh@uwaterloo.ca organization: Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Waterloo, ON, Canada – sequence: 2 surname: Zhou Wang fullname: Zhou Wang email: zhouwang@ieee.org organization: Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Waterloo, ON, Canada |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26853954$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23047872$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUlLBDEQhYMo7ndBkL4IXnqsytbdRxGXAUWF8RzSmYpEehk7PYL_3siMCh6EgqrD915Rr_bYZtd3xNgRwgQRqvPZ9HHCAfmEc44FVxtsFyuJOYDkm2kGVeQFymqH7cX4CoBSod5mO1yALMqC7zL-UL-SG8M7ZU9L24TxI7uIkWJsqRuz3meztDG_t4sFzbNpa18oHrAtb5tIh-u-z56vr2aXt_ndw8308uIudxLVmIuipLkXQorK6TTVZa3LuUD0ILiqOdSkdSpV6wpqRdprbZVHsJqEdV7ss7OV72Lo35YUR9OG6KhpbEf9MhrkhVCAQkJCT9bosm5pbhZDaO3wYb7vTMDpGrDR2cYPtnMh_nK6VKJSMnF6xbmhj3Egb1wY7Rj6bhxsaAyC-QrepODNV_BmHXwSwh_ht_c_kuOVJBDRD65F-iBo8QlaposV |
| CODEN | IIPRE4 |
| CitedBy_id | crossref_primary_10_1109_TCSII_2019_2903101 crossref_primary_10_1016_j_inffus_2023_02_027 crossref_primary_10_21122_2309_4923_2022_2_10_19 crossref_primary_10_1109_TCSVT_2021_3049940 crossref_primary_10_1016_j_sigpro_2017_12_020 crossref_primary_10_1109_TMM_2019_2933333 crossref_primary_10_1155_2021_2030142 crossref_primary_10_1016_j_ijleo_2020_165775 crossref_primary_10_3233_KES_190405 crossref_primary_10_1109_TIE_2017_2739708 crossref_primary_10_1016_j_jvcir_2020_103017 crossref_primary_10_1016_j_bspc_2021_102488 crossref_primary_10_1007_s42979_021_00935_8 crossref_primary_10_1016_j_compbiomed_2020_104179 crossref_primary_10_1109_TIP_2017_2778570 crossref_primary_10_1016_j_imavis_2024_105031 crossref_primary_10_1109_TIP_2017_2685941 crossref_primary_10_1145_3388887 crossref_primary_10_3390_rs16193641 crossref_primary_10_1109_TCE_2021_3130176 crossref_primary_10_1016_j_image_2020_115937 crossref_primary_10_1016_j_measurement_2024_116630 crossref_primary_10_1364_AO_457726 crossref_primary_10_3390_s21082625 crossref_primary_10_1049_ipr2_12060 crossref_primary_10_3390_s21186038 crossref_primary_10_3389_fnins_2016_00391 crossref_primary_10_1134_S0361768816060086 crossref_primary_10_1007_s11831_021_09587_6 crossref_primary_10_1016_j_compbiomed_2020_104048 crossref_primary_10_1109_JSYST_2023_3262593 crossref_primary_10_1109_TCSVT_2021_3100282 crossref_primary_10_1145_3225219 crossref_primary_10_1109_ACCESS_2021_3064295 crossref_primary_10_1007_s11831_020_09428_y crossref_primary_10_1109_TCSVT_2022_3190057 crossref_primary_10_1109_TIP_2019_2936649 crossref_primary_10_1007_s11760_024_03262_6 crossref_primary_10_1155_2017_2837970 crossref_primary_10_1109_ACCESS_2020_2973273 crossref_primary_10_1109_TIE_2018_2851984 crossref_primary_10_1007_s00530_024_01588_2 crossref_primary_10_1109_TMI_2017_2701861 crossref_primary_10_1142_S2196888822500038 crossref_primary_10_1016_j_image_2018_07_008 crossref_primary_10_1109_TMM_2016_2518868 crossref_primary_10_1186_s13640_019_0445_4 crossref_primary_10_1007_s11263_021_01466_8 crossref_primary_10_1109_TIP_2020_2970541 crossref_primary_10_1088_1742_6596_2181_1_012011 crossref_primary_10_1007_s10044_025_01539_1 crossref_primary_10_1109_TNNLS_2019_2921597 crossref_primary_10_1109_TIP_2016_2621674 crossref_primary_10_1109_TMM_2019_2950570 crossref_primary_10_1007_s00530_023_01209_4 crossref_primary_10_1016_j_sigpro_2023_109135 crossref_primary_10_1109_TCSVT_2022_3214219 crossref_primary_10_1109_ACCESS_2018_2846772 crossref_primary_10_1016_j_patrec_2023_06_017 crossref_primary_10_3390_jimaging7080137 crossref_primary_10_1109_TCSVT_2016_2602764 crossref_primary_10_3390_s23125767 crossref_primary_10_1109_ACCESS_2019_2953786 crossref_primary_10_1109_JSTSP_2016_2637168 crossref_primary_10_3390_math12101541 crossref_primary_10_1109_TIP_2015_2442920 crossref_primary_10_1016_j_image_2021_116301 crossref_primary_10_21122_2309_4923_2018_1_51_57 crossref_primary_10_1016_j_jvcir_2016_12_008 crossref_primary_10_1109_TCSVT_2021_3060143 crossref_primary_10_1109_TMM_2017_2740023 crossref_primary_10_1007_s11760_015_0818_9 crossref_primary_10_3390_s25133887 crossref_primary_10_3390_electronics10091015 crossref_primary_10_1109_TITS_2024_3454597 crossref_primary_10_3390_s20205795 crossref_primary_10_1109_ACCESS_2023_3320809 crossref_primary_10_1109_TIP_2023_3247181 crossref_primary_10_1016_j_cviu_2017_11_001 crossref_primary_10_3390_a11080111 crossref_primary_10_1007_s11042_024_19841_1 crossref_primary_10_1016_j_procs_2016_06_039 crossref_primary_10_1145_3129505 crossref_primary_10_1007_s11277_023_10492_3 crossref_primary_10_1007_s11760_020_01773_6 crossref_primary_10_1002_sdtp_16116 crossref_primary_10_1109_ACCESS_2021_3080331 crossref_primary_10_1146_annurev_vision_100419_120301 crossref_primary_10_1109_TIP_2016_2579308 crossref_primary_10_1109_TIP_2017_2711279 crossref_primary_10_1016_j_optlastec_2024_111873 crossref_primary_10_1109_TIP_2017_2745202 crossref_primary_10_1016_j_bspc_2020_101996 crossref_primary_10_1016_j_sigpro_2022_108821 crossref_primary_10_1016_j_image_2025_117405 crossref_primary_10_1117_1_JEI_34_1_013053 crossref_primary_10_1007_s11760_024_03724_x crossref_primary_10_1007_s11760_016_0942_1 crossref_primary_10_1016_j_image_2024_117130 crossref_primary_10_1109_ACCESS_2019_2943319 crossref_primary_10_1007_s00371_022_02475_5 crossref_primary_10_1145_2996296 crossref_primary_10_1007_s11263_024_02105_8 crossref_primary_10_1016_j_cviu_2017_11_013 crossref_primary_10_1007_s11432_019_2757_1 crossref_primary_10_1109_ACCESS_2022_3221956 crossref_primary_10_1007_s11760_025_04454_4 crossref_primary_10_1007_s13369_020_04414_9 crossref_primary_10_1109_ACCESS_2023_3263496 crossref_primary_10_1109_ACCESS_2022_3209665 crossref_primary_10_1007_s11263_022_01745_y crossref_primary_10_1109_ACCESS_2023_3322041 crossref_primary_10_1109_ACCESS_2018_2866997 crossref_primary_10_1016_j_jvcir_2018_12_024 crossref_primary_10_1109_TIP_2019_2906501 crossref_primary_10_1016_j_cviu_2020_102971 crossref_primary_10_1016_j_dsp_2024_104591 crossref_primary_10_1049_iet_cvi_2015_0047 crossref_primary_10_3390_electronics11244072 crossref_primary_10_1016_j_jksuci_2023_101635 crossref_primary_10_1016_j_jvcir_2020_102752 crossref_primary_10_1007_s10278_025_01592_6 crossref_primary_10_1002_jemt_23759 crossref_primary_10_1016_j_dsp_2016_09_005 crossref_primary_10_3390_app112311497 crossref_primary_10_1016_j_bspc_2019_04_013 crossref_primary_10_1109_ACCESS_2020_3035086 crossref_primary_10_1016_j_ins_2020_03_067 crossref_primary_10_1109_TITS_2024_3359755 crossref_primary_10_3390_s22010040 crossref_primary_10_1002_ima_22277 crossref_primary_10_1016_j_cag_2013_10_001 crossref_primary_10_1364_AO_57_000839 crossref_primary_10_1016_j_neucom_2022_12_007 crossref_primary_10_1109_TIE_2020_2973887 crossref_primary_10_1111_cgf_13148 crossref_primary_10_1007_s00034_022_02017_3 crossref_primary_10_1007_s00034_025_03274_8 crossref_primary_10_1016_j_cag_2025_104213 crossref_primary_10_1016_j_image_2023_117075 crossref_primary_10_1016_j_dsp_2024_104828 crossref_primary_10_1145_3129675 crossref_primary_10_1109_TIP_2019_2944079 crossref_primary_10_1109_ACCESS_2019_2891957 crossref_primary_10_1016_j_ins_2017_12_008 crossref_primary_10_3390_rs13132432 crossref_primary_10_1007_s11045_021_00803_x crossref_primary_10_1016_j_ins_2020_03_051 crossref_primary_10_1109_LSP_2018_2877893 crossref_primary_10_1109_TCSVT_2024_3374758 crossref_primary_10_1109_TCSVT_2017_2783938 crossref_primary_10_3390_s21113896 crossref_primary_10_1109_TIP_2014_2324288 crossref_primary_10_4316_AECE_2020_03001 crossref_primary_10_1016_j_aei_2024_102428 crossref_primary_10_1016_j_cag_2023_07_034 crossref_primary_10_1109_TMM_2019_2952256 crossref_primary_10_1049_iet_ipr_2019_1175 crossref_primary_10_1109_TIP_2015_2460015 crossref_primary_10_1109_TIM_2022_3222517 crossref_primary_10_3390_electronics12163485 crossref_primary_10_1016_j_dsp_2016_04_009 crossref_primary_10_1109_TPAMI_2022_3224253 crossref_primary_10_1007_s00799_014_0124_0 crossref_primary_10_1016_j_dsp_2023_103991 crossref_primary_10_1109_ACCESS_2020_2992749 crossref_primary_10_1007_s41233_017_0014_5 crossref_primary_10_21307_ijssis_2021_010 crossref_primary_10_1109_TIM_2022_3170983 crossref_primary_10_1109_TIP_2018_2889531 crossref_primary_10_1016_j_neucom_2016_02_047 crossref_primary_10_1016_j_image_2021_116595 crossref_primary_10_1145_3457905 crossref_primary_10_1007_s10043_020_00604_w crossref_primary_10_1111_cgf_14459 crossref_primary_10_3390_s21010286 crossref_primary_10_1007_s11831_025_10226_7 crossref_primary_10_1109_TCSVT_2016_2620563 crossref_primary_10_1016_j_ultrasmedbio_2018_03_004 crossref_primary_10_1109_TCSVT_2018_2810212 crossref_primary_10_1109_TVCG_2018_2805355 crossref_primary_10_1109_ACCESS_2018_2868733 crossref_primary_10_1016_j_neucom_2016_10_050 crossref_primary_10_3390_jlpea3040337 crossref_primary_10_1016_j_displa_2024_102881 crossref_primary_10_1002_ima_22367 crossref_primary_10_1016_j_inffus_2017_10_010 crossref_primary_10_1177_20552076241306272 crossref_primary_10_1109_TMM_2021_3089019 crossref_primary_10_1007_s00371_019_01719_1 crossref_primary_10_1016_j_imavis_2024_105300 crossref_primary_10_1109_TCSVT_2021_3096528 crossref_primary_10_1109_ACCESS_2017_2694038 crossref_primary_10_1109_ACCESS_2022_3202940 crossref_primary_10_1109_TIP_2025_3570597 crossref_primary_10_3390_app9214658 crossref_primary_10_1007_s11227_024_06084_y crossref_primary_10_3390_app10072513 crossref_primary_10_1109_TIE_2017_2652339 crossref_primary_10_1364_AO_55_010084 crossref_primary_10_1007_s11042_021_11182_7 crossref_primary_10_1016_j_knosys_2025_113827 crossref_primary_10_1109_ACCESS_2019_2937211 crossref_primary_10_1109_TIP_2019_2908778 crossref_primary_10_1109_ACCESS_2016_2604042 crossref_primary_10_1109_TMM_2020_2986583 crossref_primary_10_3390_electronics12061318 crossref_primary_10_1109_TMM_2022_3203211 crossref_primary_10_1016_j_compbiomed_2021_105005 crossref_primary_10_1049_iet_ipr_2020_0393 crossref_primary_10_1109_TIP_2019_2938310 crossref_primary_10_1080_1206212X_2015_1076604 crossref_primary_10_1109_TMM_2023_3278989 crossref_primary_10_1016_j_patcog_2025_112176 crossref_primary_10_1109_TII_2019_2927527 crossref_primary_10_1109_TIP_2017_2733164 crossref_primary_10_3390_s23020815 crossref_primary_10_1016_j_image_2022_116848 crossref_primary_10_3390_math11030785 crossref_primary_10_1016_j_neucom_2018_09_064 crossref_primary_10_3390_s22051957 crossref_primary_10_1002_ima_22460 crossref_primary_10_1016_j_image_2013_08_016 crossref_primary_10_1049_2024_5653845 crossref_primary_10_1109_TPAMI_2024_3448620 crossref_primary_10_3390_s23052516 crossref_primary_10_1111_exsy_13842 crossref_primary_10_1109_TIM_2023_3304668 crossref_primary_10_1007_s11760_025_04068_w crossref_primary_10_1109_TCSVT_2019_2931510 crossref_primary_10_1016_j_ins_2019_10_009 crossref_primary_10_1002_aisy_202300310 crossref_primary_10_1049_htl_2019_0095 crossref_primary_10_1109_JSEN_2024_3477927 crossref_primary_10_1109_TIP_2024_3463418 crossref_primary_10_1109_TIP_2015_2456638 crossref_primary_10_3390_s21196373 crossref_primary_10_1049_iet_ipr_2019_1371 crossref_primary_10_3390_app9194011 crossref_primary_10_1016_j_dsp_2019_06_014 crossref_primary_10_1109_TNNLS_2021_3088907 crossref_primary_10_1016_j_cmpb_2020_105603 crossref_primary_10_1007_s11042_017_4425_3 crossref_primary_10_1051_matecconf_201823202004 crossref_primary_10_1016_j_dsp_2018_12_002 crossref_primary_10_1016_j_image_2014_11_002 crossref_primary_10_1016_j_bspc_2022_103534 crossref_primary_10_1007_s00530_024_01382_0 crossref_primary_10_1016_j_patrec_2019_10_018 crossref_primary_10_1109_ACCESS_2017_2666218 crossref_primary_10_1016_j_sigpro_2022_108782 crossref_primary_10_1109_TIM_2020_2975405 crossref_primary_10_1109_TMM_2022_3193059 crossref_primary_10_3390_s21124136 crossref_primary_10_1109_TPAMI_2021_3097891 crossref_primary_10_3390_s20185170 crossref_primary_10_1109_TVCG_2025_3566377 crossref_primary_10_1109_TMM_2025_3535338 crossref_primary_10_1049_el_2017_3227 crossref_primary_10_1364_AO_391150 crossref_primary_10_1049_ipr2_13236 crossref_primary_10_1007_s10586_025_05494_8 crossref_primary_10_1016_j_patcog_2019_01_010 crossref_primary_10_1109_TMM_2020_2991528 crossref_primary_10_1109_TCE_2020_2985742 crossref_primary_10_1109_TNNLS_2022_3175627 crossref_primary_10_1109_JDT_2016_2595587 crossref_primary_10_1109_TIP_2022_3146640 crossref_primary_10_1016_j_dsp_2025_105344 crossref_primary_10_1109_ACCESS_2022_3233546 crossref_primary_10_1016_j_dsp_2023_104015 crossref_primary_10_1016_j_jvcir_2018_03_007 crossref_primary_10_1109_TIP_2015_2436340 crossref_primary_10_3390_rs17050919 crossref_primary_10_1007_s11042_020_09532_y crossref_primary_10_1016_j_dsp_2017_04_007 crossref_primary_10_3390_app9173443 crossref_primary_10_1049_ipr2_12276 crossref_primary_10_1109_TIP_2018_2823424 crossref_primary_10_1109_ACCESS_2017_2782320 crossref_primary_10_3390_e22080850 crossref_primary_10_1016_j_bspc_2024_106990 crossref_primary_10_1016_j_inffus_2024_102534 crossref_primary_10_1109_TGRS_2025_3601208 crossref_primary_10_1109_TIE_2017_2760247 crossref_primary_10_1007_s11263_020_01418_8 crossref_primary_10_1109_TCSVT_2023_3341626 crossref_primary_10_1111_cgf_13307 crossref_primary_10_1007_s11760_023_02661_5 crossref_primary_10_1109_TIP_2016_2571559 crossref_primary_10_1016_j_image_2025_117395 crossref_primary_10_1049_iet_ipr_2020_1165 crossref_primary_10_1109_ACCESS_2021_3056888 crossref_primary_10_1109_TMI_2019_2916101 crossref_primary_10_3390_electronics12010031 crossref_primary_10_3390_jimaging11090307 crossref_primary_10_1016_j_sigpro_2022_108637 crossref_primary_10_1109_LSP_2014_2381458 crossref_primary_10_1007_s00371_021_02392_z crossref_primary_10_1016_j_image_2016_09_004 crossref_primary_10_1007_s00371_024_03441_z crossref_primary_10_1109_ACCESS_2025_3563369 crossref_primary_10_1109_TIP_2017_2771449 crossref_primary_10_1117_1_JEI_33_4_043001 crossref_primary_10_1109_ACCESS_2021_3112046 crossref_primary_10_1109_TIP_2017_2713945 crossref_primary_10_1007_s11042_020_09034_x crossref_primary_10_1109_TCSVT_2023_3290351 crossref_primary_10_3390_s20164378 crossref_primary_10_1002_jsid_612 crossref_primary_10_1016_j_compeleceng_2023_108892 crossref_primary_10_1109_TMM_2021_3089324 crossref_primary_10_1007_s11760_017_1104_9 crossref_primary_10_1109_TGRS_2024_3466388 crossref_primary_10_3389_fnins_2022_1100812 crossref_primary_10_1016_j_cag_2015_05_028 crossref_primary_10_1016_j_ins_2015_06_049 crossref_primary_10_1109_TMM_2023_3347638 |
| Cites_doi | 10.1145/566570.566573 10.1364/JOSA.60.000098 10.1109/MSP.2011.942471 10.1109/MSP.2008.930649 10.1109/TIT.1974.1055250 10.1117/12.586757 10.1109/ICIP.2010.5651143 10.1109/TIP.2010.2092435 10.1145/1080402.1080418 10.2352/CIC.2004.12.1.art00055 10.1146/annurev.neuro.24.1.1193 10.1109/PG.2007.17 10.1109/TCOM.1983.1095851 10.1109/TIP.2003.819861 10.1117/12.587782 10.1145/1073204.1073242 10.1145/344779.344810 10.1111/1467-8659.00689 10.1117/3.353254 10.1085/jgp.19.3.503 10.1109/TIP.2011.2157514 10.2200/S00010ED1V01Y200508IVM003 10.1145/566570.566575 10.1109/2945.646233 10.1038/nn1556 10.1145/566570.566574 10.1109/ICIP.2010.5651778 10.1109/ACSSC.2003.1292216 10.1145/965400.965487 |
| ContentType | Journal Article |
| Copyright | 2014 INIST-CNRS |
| Copyright_xml | – notice: 2014 INIST-CNRS |
| DBID | 97E RIA RIE AAYXX CITATION IQODW NPM 7X8 |
| DOI | 10.1109/TIP.2012.2221725 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Pascal-Francis PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1941-0042 |
| EndPage | 667 |
| ExternalDocumentID | 23047872 26853954 10_1109_TIP_2012_2221725 6319406 |
| Genre | orig-research Journal Article |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION AAYOK IQODW RIG NPM PKN Z5M 7X8 |
| ID | FETCH-LOGICAL-c415t-378edf33439c6edfb8b68d311f0325b20be66e665b690b5e6f66a5f10a6e3acf3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 492 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000314717800020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1057-7149 1941-0042 |
| IngestDate | Sun Sep 28 10:17:54 EDT 2025 Wed Feb 19 01:55:52 EST 2025 Wed Apr 02 07:25:20 EDT 2025 Tue Nov 18 22:33:40 EST 2025 Sat Nov 29 08:00:09 EST 2025 Tue Aug 26 16:46:29 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Dynamic response perceptual image processing Similarity Image processing Objective analysis Image databank structural similarity Timbre Algorithm High dynamic range image Subjective evaluation Optimization Image quality HDR image Tone mapping Multiscale method naturalness Quality control image quality assessment Image fusion Image evaluation tone mapping operator |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c415t-378edf33439c6edfb8b68d311f0325b20be66e665b690b5e6f66a5f10a6e3acf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 23047872 |
| PQID | 1273501340 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1109_TIP_2012_2221725 pubmed_primary_23047872 proquest_miscellaneous_1273501340 pascalfrancis_primary_26853954 crossref_primary_10_1109_TIP_2012_2221725 ieee_primary_6319406 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-02-01 |
| PublicationDateYYYYMMDD | 2013-02-01 |
| PublicationDate_xml | – month: 02 year: 2013 text: 2013-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: United States |
| PublicationTitle | IEEE transactions on image processing |
| PublicationTitleAbbrev | TIP |
| PublicationTitleAlternate | IEEE Trans Image Process |
| PublicationYear | 2013 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
| References | ref35 ref34 ref12 ref15 ref36 ref11 ref32 ref2 ref39 ref17 ref38 (ref30) 2005 ref16 ref19 reinhard (ref1) 2010 ref18 (ref40) 2007 blum (ref44) 2006 (ref42) 2008 (ref43) 2010 ref24 ref26 kuang (ref7) 2004 ref25 ref20 larson (ref33) 2010; 19 adk (ref10) 2006 grand (ref23) 1968 ref21 ref28 ref27 guilford (ref22) 1954 cadik (ref37) 2005 mantiuk (ref13) 2005; 5666 aydm (ref14) 2008 ref8 (ref41) 2009 adk (ref29) 2005 yoshida (ref9) 2005; 5666 ref4 ref3 ref6 (ref31) 2004 ref5 |
| References_xml | – start-page: 1 year: 2008 ident: ref14 article-title: Dynamic range independent image quality assessment publication-title: Proc Int Conf Comput Graph Interact Tech – ident: ref5 doi: 10.1145/566570.566573 – ident: ref26 doi: 10.1364/JOSA.60.000098 – year: 2007 ident: ref40 publication-title: Open Source Community – start-page: 920 year: 2005 ident: ref29 article-title: The naturalness of reproduced high dynamic range images publication-title: Proc 9th Int Conf Inf Visual – year: 2004 ident: ref31 publication-title: UCIDUncompressed Colour Image Database – ident: ref18 doi: 10.1109/MSP.2011.942471 – ident: ref20 doi: 10.1109/MSP.2008.930649 – ident: ref25 doi: 10.1109/TIT.1974.1055250 – volume: 5666 start-page: 204 year: 2005 ident: ref13 article-title: Predicting visible differences in high dynamic range images-model and its calibration publication-title: Proc SPIE doi: 10.1117/12.586757 – ident: ref11 doi: 10.1109/ICIP.2010.5651143 – ident: ref17 doi: 10.1109/TIP.2010.2092435 – ident: ref38 doi: 10.1145/1080402.1080418 – start-page: 315 year: 2004 ident: ref7 article-title: Testing HDR image rendering algorithms publication-title: Proc IS T/SID's Color Imag Conf doi: 10.2352/CIC.2004.12.1.art00055 – year: 2009 ident: ref41 publication-title: E Reinhard's High Dynamic Range Data – ident: ref28 doi: 10.1146/annurev.neuro.24.1.1193 – year: 2005 ident: ref30 publication-title: Computer vision test images – year: 2005 ident: ref37 publication-title: Evaluation of Tone Mapping Operators – ident: ref36 doi: 10.1109/PG.2007.17 – ident: ref27 doi: 10.1109/TCOM.1983.1095851 – start-page: 35 year: 2006 ident: ref10 article-title: Image attributes and quality for evaluation of tone mapping operators publication-title: Proc Pacific Conf Comput Graph Appl – ident: ref15 doi: 10.1109/TIP.2003.819861 – year: 1954 ident: ref22 publication-title: Psychometric Methods – volume: 5666 start-page: 192 year: 2005 ident: ref9 article-title: Perceptual evaluation of tone mapping operators with real-world scenes publication-title: Proc SPIE Human Vis Electron Imag doi: 10.1117/12.587782 – ident: ref8 doi: 10.1145/1073204.1073242 – ident: ref39 doi: 10.1145/344779.344810 – ident: ref4 doi: 10.1111/1467-8659.00689 – ident: ref21 doi: 10.1117/3.353254 – ident: ref24 doi: 10.1085/jgp.19.3.503 – ident: ref34 doi: 10.1109/TIP.2011.2157514 – volume: 19 start-page: 11006-1 year: 2010 ident: ref33 article-title: Most apparent distortion: Fullreference image quality assessment and the role of strategy publication-title: J Electron Imag – year: 2010 ident: ref43 publication-title: P Debevec's High Dynamic Range Data – ident: ref12 doi: 10.2200/S00010ED1V01Y200508IVM003 – ident: ref2 doi: 10.1145/566570.566575 – year: 2008 ident: ref42 publication-title: G Ward's High Dynamic Range Data – ident: ref3 doi: 10.1109/2945.646233 – year: 2010 ident: ref1 publication-title: High Dynamic Range Imaging Acquisition Display and Image-Based Lighting – ident: ref32 doi: 10.1038/nn1556 – ident: ref35 doi: 10.1145/566570.566574 – ident: ref19 doi: 10.1109/ICIP.2010.5651778 – year: 1968 ident: ref23 publication-title: Light Colour and Vision – year: 2006 ident: ref44 publication-title: Multi-Sensor Image Fusion and Its Applications – ident: ref16 doi: 10.1109/ACSSC.2003.1292216 – ident: ref6 doi: 10.1145/965400.965487 |
| SSID | ssj0014516 |
| Score | 2.5876908 |
| Snippet | Tone-mapping operators (TMOs) that convert high dynamic range (HDR) to low dynamic range (LDR) images provide practically useful tools for the visualization of... |
| SourceID | proquest pubmed pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 657 |
| SubjectTerms | Applied sciences Brightness Correlation Detection, estimation, filtering, equalization, prediction Dynamic range Exact sciences and technology High dynamic range image image fusion Image processing image quality assessment Information, signal and communications theory naturalness perceptual image processing Quality assessment Sensitivity Signal and communications theory Signal processing Signal, noise structural similarity Telecommunications and information theory tone mapping operator Visualization |
| Title | Objective Quality Assessment of Tone-Mapped Images |
| URI | https://ieeexplore.ieee.org/document/6319406 https://www.ncbi.nlm.nih.gov/pubmed/23047872 https://www.proquest.com/docview/1273501340 |
| Volume | 22 |
| WOSCitedRecordID | wos000314717800020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1941-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014516 issn: 1057-7149 databaseCode: RIE dateStart: 19920101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_m8EEfnG5-1I9RwRfBbv1M2schDvfg3MOEvZWkTUDRdqyb4H_vJe2qAxWEPgSatOV-l9wvvcsdwBWSeE6YjxOJKDcjEliLewGzPFSPSKQeUvqy2AQdj8PZLJo04KY-CyOE0MFnoqea2pef5slK_SrrE9QXX-XX3qKUlme1ao-BKjirPZsBtSjS_rVL0o7609FExXC5PbSFaK9VsRrtbQqpu2GNdHkVFRzJCpSPLAtb_M48tQUatv737fuwVzFNc1CqxgE0RNaGVsU6zWpOF23Y_ZaSsAPuI38p10CzTK_xYQ7q5J1mLs1pngnrgc3n-JDRG65GxSE8De-mt_dWVVfBStBcL3FNCUUqPQ-5SEKwxRGuMPUcR9oIEXdtLgjBK-C4deaBIJIQFkjHZkR4LJHeETQzfNkJmD5NWUJdWwYS99iMM8lTW6YqCT9JcLwB_bV846RKOq5qX7zGevNhRzGCEytw4gocA67rEfMy4cYffTtK0HW_SsYGdDcgrO-7BMlJFPgGXK4xjXE2KRcJy0S-KmIH2VyArNi3DTguwf4aXenM6c9vPYMdV5fKUKEu59BcLlbiAraT9-Vzseiiys7CrlbZTwU74vM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-GCuqD082P-jEr-CLYrV9J18chjg23uYcJeytJm4Ci21g3wf_eS9pVByoIfQg0acvdJfdL73I_gGsE8ZwyHycSVWFGBLAW9wizPDSPUCQeQvqMbCIYDJrjcTgswW1xFkYIoZPPRF01dSw_mcZL9ausQdFefFVfe5P4vutkp7WKmIGinNWxTRJYAQL_VVDSDhuj7lBlcbl19IbosRVdjY43NQN3zR9pghWVHslSlJDMqC1-x57aB7XL__v6fdjLsabZyozjAEpiUoFyjjvNfFanFdj9VpSwCu4jf8lWQTMrsPFhtoryneZUmqPpRFh9NpvhQ7pvuB6lh_DUvh_ddaycWcGK0WEvcFVpikR6HqKRmGKLo8Kaiec40kYlcdfmglK8CMfNMyeCSkoZkY7NqPBYLL0j2Jjgy07A9IOExYFrSyJxl804kzyxZaLK8NMYxxvQWMk3ivOy44r94jXS2w87jFA5kVJOlCvHgJtixCwrufFH36oSdNEvl7EBtTUVFvddivAkJL4BVyudRjifVJCETcR0mUYO4jmCuNi3DTjOlP01OreZ05_fegnbnVG_F_W6g4cz2HE1cYZKfDmHjcV8KS5gK35fPKfzmjbcT6E75VI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Objective+quality+assessment+of+tone-mapped+images&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Yeganeh%2C+Hojatollah&rft.au=Wang%2C+Zhou&rft.date=2013-02-01&rft.issn=1941-0042&rft.eissn=1941-0042&rft.volume=22&rft.issue=2&rft.spage=657&rft_id=info:doi/10.1109%2FTIP.2012.2221725&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |