Objective Quality Assessment of Tone-Mapped Images

Tone-mapping operators (TMOs) that convert high dynamic range (HDR) to low dynamic range (LDR) images provide practically useful tools for the visualization of HDR images on standard LDR displays. Different TMOs create different tone-mapped images, and a natural question is which one has the best qu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on image processing Ročník 22; číslo 2; s. 657 - 667
Hlavní autori: Yeganeh, H., Zhou Wang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY IEEE 01.02.2013
Institute of Electrical and Electronics Engineers
Predmet:
ISSN:1057-7149, 1941-0042, 1941-0042
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Tone-mapping operators (TMOs) that convert high dynamic range (HDR) to low dynamic range (LDR) images provide practically useful tools for the visualization of HDR images on standard LDR displays. Different TMOs create different tone-mapped images, and a natural question is which one has the best quality. Without an appropriate quality measure, different TMOs cannot be compared, and further improvement is directionless. Subjective rating may be a reliable evaluation method, but it is expensive and time consuming, and more importantly, is difficult to be embedded into optimization frameworks. Here we propose an objective quality assessment algorithm for tone-mapped images by combining: 1) a multiscale signal fidelity measure on the basis of a modified structural similarity index and 2) a naturalness measure on the basis of intensity statistics of natural images. Validations using independent subject-rated image databases show good correlations between subjective ranking score and the proposed tone-mapped image quality index (TMQI). Furthermore, we demonstrate the extended applications of TMQI using two examples - parameter tuning for TMOs and adaptive fusion of multiple tone-mapped images.
AbstractList Tone-mapping operators (TMOs) that convert high dynamic range (HDR) to low dynamic range (LDR) images provide practically useful tools for the visualization of HDR images on standard LDR displays. Different TMOs create different tone-mapped images, and a natural question is which one has the best quality. Without an appropriate quality measure, different TMOs cannot be compared, and further improvement is directionless. Subjective rating may be a reliable evaluation method, but it is expensive and time consuming, and more importantly, is difficult to be embedded into optimization frameworks. Here we propose an objective quality assessment algorithm for tone-mapped images by combining: 1) a multiscale signal fidelity measure on the basis of a modified structural similarity index and 2) a naturalness measure on the basis of intensity statistics of natural images. Validations using independent subject-rated image databases show good correlations between subjective ranking score and the proposed tone-mapped image quality index (TMQI). Furthermore, we demonstrate the extended applications of TMQI using two examples-parameter tuning for TMOs and adaptive fusion of multiple tone-mapped images.Tone-mapping operators (TMOs) that convert high dynamic range (HDR) to low dynamic range (LDR) images provide practically useful tools for the visualization of HDR images on standard LDR displays. Different TMOs create different tone-mapped images, and a natural question is which one has the best quality. Without an appropriate quality measure, different TMOs cannot be compared, and further improvement is directionless. Subjective rating may be a reliable evaluation method, but it is expensive and time consuming, and more importantly, is difficult to be embedded into optimization frameworks. Here we propose an objective quality assessment algorithm for tone-mapped images by combining: 1) a multiscale signal fidelity measure on the basis of a modified structural similarity index and 2) a naturalness measure on the basis of intensity statistics of natural images. Validations using independent subject-rated image databases show good correlations between subjective ranking score and the proposed tone-mapped image quality index (TMQI). Furthermore, we demonstrate the extended applications of TMQI using two examples-parameter tuning for TMOs and adaptive fusion of multiple tone-mapped images.
Tone-mapping operators (TMOs) that convert high dynamic range (HDR) to low dynamic range (LDR) images provide practically useful tools for the visualization of HDR images on standard LDR displays. Different TMOs create different tone-mapped images, and a natural question is which one has the best quality. Without an appropriate quality measure, different TMOs cannot be compared, and further improvement is directionless. Subjective rating may be a reliable evaluation method, but it is expensive and time consuming, and more importantly, is difficult to be embedded into optimization frameworks. Here we propose an objective quality assessment algorithm for tone-mapped images by combining: 1) a multiscale signal fidelity measure on the basis of a modified structural similarity index and 2) a naturalness measure on the basis of intensity statistics of natural images. Validations using independent subject-rated image databases show good correlations between subjective ranking score and the proposed tone-mapped image quality index (TMQI). Furthermore, we demonstrate the extended applications of TMQI using two examples-parameter tuning for TMOs and adaptive fusion of multiple tone-mapped images.
Author Zhou Wang
Yeganeh, H.
Author_xml – sequence: 1
  givenname: H.
  surname: Yeganeh
  fullname: Yeganeh, H.
  email: hyeganeh@uwaterloo.ca
  organization: Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Waterloo, ON, Canada
– sequence: 2
  surname: Zhou Wang
  fullname: Zhou Wang
  email: zhouwang@ieee.org
  organization: Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Waterloo, ON, Canada
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26853954$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23047872$$D View this record in MEDLINE/PubMed
BookMark eNp9kUlLBDEQhYMo7ndBkL4IXnqsytbdRxGXAUWF8RzSmYpEehk7PYL_3siMCh6EgqrD915Rr_bYZtd3xNgRwgQRqvPZ9HHCAfmEc44FVxtsFyuJOYDkm2kGVeQFymqH7cX4CoBSod5mO1yALMqC7zL-UL-SG8M7ZU9L24TxI7uIkWJsqRuz3meztDG_t4sFzbNpa18oHrAtb5tIh-u-z56vr2aXt_ndw8308uIudxLVmIuipLkXQorK6TTVZa3LuUD0ILiqOdSkdSpV6wpqRdprbZVHsJqEdV7ss7OV72Lo35YUR9OG6KhpbEf9MhrkhVCAQkJCT9bosm5pbhZDaO3wYb7vTMDpGrDR2cYPtnMh_nK6VKJSMnF6xbmhj3Egb1wY7Rj6bhxsaAyC-QrepODNV_BmHXwSwh_ht_c_kuOVJBDRD65F-iBo8QlaposV
CODEN IIPRE4
CitedBy_id crossref_primary_10_1109_TCSII_2019_2903101
crossref_primary_10_1016_j_inffus_2023_02_027
crossref_primary_10_21122_2309_4923_2022_2_10_19
crossref_primary_10_1109_TCSVT_2021_3049940
crossref_primary_10_1016_j_sigpro_2017_12_020
crossref_primary_10_1109_TMM_2019_2933333
crossref_primary_10_1155_2021_2030142
crossref_primary_10_1016_j_ijleo_2020_165775
crossref_primary_10_3233_KES_190405
crossref_primary_10_1109_TIE_2017_2739708
crossref_primary_10_1016_j_jvcir_2020_103017
crossref_primary_10_1016_j_bspc_2021_102488
crossref_primary_10_1007_s42979_021_00935_8
crossref_primary_10_1016_j_compbiomed_2020_104179
crossref_primary_10_1109_TIP_2017_2778570
crossref_primary_10_1016_j_imavis_2024_105031
crossref_primary_10_1109_TIP_2017_2685941
crossref_primary_10_1145_3388887
crossref_primary_10_3390_rs16193641
crossref_primary_10_1109_TCE_2021_3130176
crossref_primary_10_1016_j_image_2020_115937
crossref_primary_10_1016_j_measurement_2024_116630
crossref_primary_10_1364_AO_457726
crossref_primary_10_3390_s21082625
crossref_primary_10_1049_ipr2_12060
crossref_primary_10_3390_s21186038
crossref_primary_10_3389_fnins_2016_00391
crossref_primary_10_1134_S0361768816060086
crossref_primary_10_1007_s11831_021_09587_6
crossref_primary_10_1016_j_compbiomed_2020_104048
crossref_primary_10_1109_JSYST_2023_3262593
crossref_primary_10_1109_TCSVT_2021_3100282
crossref_primary_10_1145_3225219
crossref_primary_10_1109_ACCESS_2021_3064295
crossref_primary_10_1007_s11831_020_09428_y
crossref_primary_10_1109_TCSVT_2022_3190057
crossref_primary_10_1109_TIP_2019_2936649
crossref_primary_10_1007_s11760_024_03262_6
crossref_primary_10_1155_2017_2837970
crossref_primary_10_1109_ACCESS_2020_2973273
crossref_primary_10_1109_TIE_2018_2851984
crossref_primary_10_1007_s00530_024_01588_2
crossref_primary_10_1109_TMI_2017_2701861
crossref_primary_10_1142_S2196888822500038
crossref_primary_10_1016_j_image_2018_07_008
crossref_primary_10_1109_TMM_2016_2518868
crossref_primary_10_1186_s13640_019_0445_4
crossref_primary_10_1007_s11263_021_01466_8
crossref_primary_10_1109_TIP_2020_2970541
crossref_primary_10_1088_1742_6596_2181_1_012011
crossref_primary_10_1007_s10044_025_01539_1
crossref_primary_10_1109_TNNLS_2019_2921597
crossref_primary_10_1109_TIP_2016_2621674
crossref_primary_10_1109_TMM_2019_2950570
crossref_primary_10_1007_s00530_023_01209_4
crossref_primary_10_1016_j_sigpro_2023_109135
crossref_primary_10_1109_TCSVT_2022_3214219
crossref_primary_10_1109_ACCESS_2018_2846772
crossref_primary_10_1016_j_patrec_2023_06_017
crossref_primary_10_3390_jimaging7080137
crossref_primary_10_1109_TCSVT_2016_2602764
crossref_primary_10_3390_s23125767
crossref_primary_10_1109_ACCESS_2019_2953786
crossref_primary_10_1109_JSTSP_2016_2637168
crossref_primary_10_3390_math12101541
crossref_primary_10_1109_TIP_2015_2442920
crossref_primary_10_1016_j_image_2021_116301
crossref_primary_10_21122_2309_4923_2018_1_51_57
crossref_primary_10_1016_j_jvcir_2016_12_008
crossref_primary_10_1109_TCSVT_2021_3060143
crossref_primary_10_1109_TMM_2017_2740023
crossref_primary_10_1007_s11760_015_0818_9
crossref_primary_10_3390_s25133887
crossref_primary_10_3390_electronics10091015
crossref_primary_10_1109_TITS_2024_3454597
crossref_primary_10_3390_s20205795
crossref_primary_10_1109_ACCESS_2023_3320809
crossref_primary_10_1109_TIP_2023_3247181
crossref_primary_10_1016_j_cviu_2017_11_001
crossref_primary_10_3390_a11080111
crossref_primary_10_1007_s11042_024_19841_1
crossref_primary_10_1016_j_procs_2016_06_039
crossref_primary_10_1145_3129505
crossref_primary_10_1007_s11277_023_10492_3
crossref_primary_10_1007_s11760_020_01773_6
crossref_primary_10_1002_sdtp_16116
crossref_primary_10_1109_ACCESS_2021_3080331
crossref_primary_10_1146_annurev_vision_100419_120301
crossref_primary_10_1109_TIP_2016_2579308
crossref_primary_10_1109_TIP_2017_2711279
crossref_primary_10_1016_j_optlastec_2024_111873
crossref_primary_10_1109_TIP_2017_2745202
crossref_primary_10_1016_j_bspc_2020_101996
crossref_primary_10_1016_j_sigpro_2022_108821
crossref_primary_10_1016_j_image_2025_117405
crossref_primary_10_1117_1_JEI_34_1_013053
crossref_primary_10_1007_s11760_024_03724_x
crossref_primary_10_1007_s11760_016_0942_1
crossref_primary_10_1016_j_image_2024_117130
crossref_primary_10_1109_ACCESS_2019_2943319
crossref_primary_10_1007_s00371_022_02475_5
crossref_primary_10_1145_2996296
crossref_primary_10_1007_s11263_024_02105_8
crossref_primary_10_1016_j_cviu_2017_11_013
crossref_primary_10_1007_s11432_019_2757_1
crossref_primary_10_1109_ACCESS_2022_3221956
crossref_primary_10_1007_s11760_025_04454_4
crossref_primary_10_1007_s13369_020_04414_9
crossref_primary_10_1109_ACCESS_2023_3263496
crossref_primary_10_1109_ACCESS_2022_3209665
crossref_primary_10_1007_s11263_022_01745_y
crossref_primary_10_1109_ACCESS_2023_3322041
crossref_primary_10_1109_ACCESS_2018_2866997
crossref_primary_10_1016_j_jvcir_2018_12_024
crossref_primary_10_1109_TIP_2019_2906501
crossref_primary_10_1016_j_cviu_2020_102971
crossref_primary_10_1016_j_dsp_2024_104591
crossref_primary_10_1049_iet_cvi_2015_0047
crossref_primary_10_3390_electronics11244072
crossref_primary_10_1016_j_jksuci_2023_101635
crossref_primary_10_1016_j_jvcir_2020_102752
crossref_primary_10_1007_s10278_025_01592_6
crossref_primary_10_1002_jemt_23759
crossref_primary_10_1016_j_dsp_2016_09_005
crossref_primary_10_3390_app112311497
crossref_primary_10_1016_j_bspc_2019_04_013
crossref_primary_10_1109_ACCESS_2020_3035086
crossref_primary_10_1016_j_ins_2020_03_067
crossref_primary_10_1109_TITS_2024_3359755
crossref_primary_10_3390_s22010040
crossref_primary_10_1002_ima_22277
crossref_primary_10_1016_j_cag_2013_10_001
crossref_primary_10_1364_AO_57_000839
crossref_primary_10_1016_j_neucom_2022_12_007
crossref_primary_10_1109_TIE_2020_2973887
crossref_primary_10_1111_cgf_13148
crossref_primary_10_1007_s00034_022_02017_3
crossref_primary_10_1007_s00034_025_03274_8
crossref_primary_10_1016_j_cag_2025_104213
crossref_primary_10_1016_j_image_2023_117075
crossref_primary_10_1016_j_dsp_2024_104828
crossref_primary_10_1145_3129675
crossref_primary_10_1109_TIP_2019_2944079
crossref_primary_10_1109_ACCESS_2019_2891957
crossref_primary_10_1016_j_ins_2017_12_008
crossref_primary_10_3390_rs13132432
crossref_primary_10_1007_s11045_021_00803_x
crossref_primary_10_1016_j_ins_2020_03_051
crossref_primary_10_1109_LSP_2018_2877893
crossref_primary_10_1109_TCSVT_2024_3374758
crossref_primary_10_1109_TCSVT_2017_2783938
crossref_primary_10_3390_s21113896
crossref_primary_10_1109_TIP_2014_2324288
crossref_primary_10_4316_AECE_2020_03001
crossref_primary_10_1016_j_aei_2024_102428
crossref_primary_10_1016_j_cag_2023_07_034
crossref_primary_10_1109_TMM_2019_2952256
crossref_primary_10_1049_iet_ipr_2019_1175
crossref_primary_10_1109_TIP_2015_2460015
crossref_primary_10_1109_TIM_2022_3222517
crossref_primary_10_3390_electronics12163485
crossref_primary_10_1016_j_dsp_2016_04_009
crossref_primary_10_1109_TPAMI_2022_3224253
crossref_primary_10_1007_s00799_014_0124_0
crossref_primary_10_1016_j_dsp_2023_103991
crossref_primary_10_1109_ACCESS_2020_2992749
crossref_primary_10_1007_s41233_017_0014_5
crossref_primary_10_21307_ijssis_2021_010
crossref_primary_10_1109_TIM_2022_3170983
crossref_primary_10_1109_TIP_2018_2889531
crossref_primary_10_1016_j_neucom_2016_02_047
crossref_primary_10_1016_j_image_2021_116595
crossref_primary_10_1145_3457905
crossref_primary_10_1007_s10043_020_00604_w
crossref_primary_10_1111_cgf_14459
crossref_primary_10_3390_s21010286
crossref_primary_10_1007_s11831_025_10226_7
crossref_primary_10_1109_TCSVT_2016_2620563
crossref_primary_10_1016_j_ultrasmedbio_2018_03_004
crossref_primary_10_1109_TCSVT_2018_2810212
crossref_primary_10_1109_TVCG_2018_2805355
crossref_primary_10_1109_ACCESS_2018_2868733
crossref_primary_10_1016_j_neucom_2016_10_050
crossref_primary_10_3390_jlpea3040337
crossref_primary_10_1016_j_displa_2024_102881
crossref_primary_10_1002_ima_22367
crossref_primary_10_1016_j_inffus_2017_10_010
crossref_primary_10_1177_20552076241306272
crossref_primary_10_1109_TMM_2021_3089019
crossref_primary_10_1007_s00371_019_01719_1
crossref_primary_10_1016_j_imavis_2024_105300
crossref_primary_10_1109_TCSVT_2021_3096528
crossref_primary_10_1109_ACCESS_2017_2694038
crossref_primary_10_1109_ACCESS_2022_3202940
crossref_primary_10_1109_TIP_2025_3570597
crossref_primary_10_3390_app9214658
crossref_primary_10_1007_s11227_024_06084_y
crossref_primary_10_3390_app10072513
crossref_primary_10_1109_TIE_2017_2652339
crossref_primary_10_1364_AO_55_010084
crossref_primary_10_1007_s11042_021_11182_7
crossref_primary_10_1016_j_knosys_2025_113827
crossref_primary_10_1109_ACCESS_2019_2937211
crossref_primary_10_1109_TIP_2019_2908778
crossref_primary_10_1109_ACCESS_2016_2604042
crossref_primary_10_1109_TMM_2020_2986583
crossref_primary_10_3390_electronics12061318
crossref_primary_10_1109_TMM_2022_3203211
crossref_primary_10_1016_j_compbiomed_2021_105005
crossref_primary_10_1049_iet_ipr_2020_0393
crossref_primary_10_1109_TIP_2019_2938310
crossref_primary_10_1080_1206212X_2015_1076604
crossref_primary_10_1109_TMM_2023_3278989
crossref_primary_10_1016_j_patcog_2025_112176
crossref_primary_10_1109_TII_2019_2927527
crossref_primary_10_1109_TIP_2017_2733164
crossref_primary_10_3390_s23020815
crossref_primary_10_1016_j_image_2022_116848
crossref_primary_10_3390_math11030785
crossref_primary_10_1016_j_neucom_2018_09_064
crossref_primary_10_3390_s22051957
crossref_primary_10_1002_ima_22460
crossref_primary_10_1016_j_image_2013_08_016
crossref_primary_10_1049_2024_5653845
crossref_primary_10_1109_TPAMI_2024_3448620
crossref_primary_10_3390_s23052516
crossref_primary_10_1111_exsy_13842
crossref_primary_10_1109_TIM_2023_3304668
crossref_primary_10_1007_s11760_025_04068_w
crossref_primary_10_1109_TCSVT_2019_2931510
crossref_primary_10_1016_j_ins_2019_10_009
crossref_primary_10_1002_aisy_202300310
crossref_primary_10_1049_htl_2019_0095
crossref_primary_10_1109_JSEN_2024_3477927
crossref_primary_10_1109_TIP_2024_3463418
crossref_primary_10_1109_TIP_2015_2456638
crossref_primary_10_3390_s21196373
crossref_primary_10_1049_iet_ipr_2019_1371
crossref_primary_10_3390_app9194011
crossref_primary_10_1016_j_dsp_2019_06_014
crossref_primary_10_1109_TNNLS_2021_3088907
crossref_primary_10_1016_j_cmpb_2020_105603
crossref_primary_10_1007_s11042_017_4425_3
crossref_primary_10_1051_matecconf_201823202004
crossref_primary_10_1016_j_dsp_2018_12_002
crossref_primary_10_1016_j_image_2014_11_002
crossref_primary_10_1016_j_bspc_2022_103534
crossref_primary_10_1007_s00530_024_01382_0
crossref_primary_10_1016_j_patrec_2019_10_018
crossref_primary_10_1109_ACCESS_2017_2666218
crossref_primary_10_1016_j_sigpro_2022_108782
crossref_primary_10_1109_TIM_2020_2975405
crossref_primary_10_1109_TMM_2022_3193059
crossref_primary_10_3390_s21124136
crossref_primary_10_1109_TPAMI_2021_3097891
crossref_primary_10_3390_s20185170
crossref_primary_10_1109_TVCG_2025_3566377
crossref_primary_10_1109_TMM_2025_3535338
crossref_primary_10_1049_el_2017_3227
crossref_primary_10_1364_AO_391150
crossref_primary_10_1049_ipr2_13236
crossref_primary_10_1007_s10586_025_05494_8
crossref_primary_10_1016_j_patcog_2019_01_010
crossref_primary_10_1109_TMM_2020_2991528
crossref_primary_10_1109_TCE_2020_2985742
crossref_primary_10_1109_TNNLS_2022_3175627
crossref_primary_10_1109_JDT_2016_2595587
crossref_primary_10_1109_TIP_2022_3146640
crossref_primary_10_1016_j_dsp_2025_105344
crossref_primary_10_1109_ACCESS_2022_3233546
crossref_primary_10_1016_j_dsp_2023_104015
crossref_primary_10_1016_j_jvcir_2018_03_007
crossref_primary_10_1109_TIP_2015_2436340
crossref_primary_10_3390_rs17050919
crossref_primary_10_1007_s11042_020_09532_y
crossref_primary_10_1016_j_dsp_2017_04_007
crossref_primary_10_3390_app9173443
crossref_primary_10_1049_ipr2_12276
crossref_primary_10_1109_TIP_2018_2823424
crossref_primary_10_1109_ACCESS_2017_2782320
crossref_primary_10_3390_e22080850
crossref_primary_10_1016_j_bspc_2024_106990
crossref_primary_10_1016_j_inffus_2024_102534
crossref_primary_10_1109_TGRS_2025_3601208
crossref_primary_10_1109_TIE_2017_2760247
crossref_primary_10_1007_s11263_020_01418_8
crossref_primary_10_1109_TCSVT_2023_3341626
crossref_primary_10_1111_cgf_13307
crossref_primary_10_1007_s11760_023_02661_5
crossref_primary_10_1109_TIP_2016_2571559
crossref_primary_10_1016_j_image_2025_117395
crossref_primary_10_1049_iet_ipr_2020_1165
crossref_primary_10_1109_ACCESS_2021_3056888
crossref_primary_10_1109_TMI_2019_2916101
crossref_primary_10_3390_electronics12010031
crossref_primary_10_3390_jimaging11090307
crossref_primary_10_1016_j_sigpro_2022_108637
crossref_primary_10_1109_LSP_2014_2381458
crossref_primary_10_1007_s00371_021_02392_z
crossref_primary_10_1016_j_image_2016_09_004
crossref_primary_10_1007_s00371_024_03441_z
crossref_primary_10_1109_ACCESS_2025_3563369
crossref_primary_10_1109_TIP_2017_2771449
crossref_primary_10_1117_1_JEI_33_4_043001
crossref_primary_10_1109_ACCESS_2021_3112046
crossref_primary_10_1109_TIP_2017_2713945
crossref_primary_10_1007_s11042_020_09034_x
crossref_primary_10_1109_TCSVT_2023_3290351
crossref_primary_10_3390_s20164378
crossref_primary_10_1002_jsid_612
crossref_primary_10_1016_j_compeleceng_2023_108892
crossref_primary_10_1109_TMM_2021_3089324
crossref_primary_10_1007_s11760_017_1104_9
crossref_primary_10_1109_TGRS_2024_3466388
crossref_primary_10_3389_fnins_2022_1100812
crossref_primary_10_1016_j_cag_2015_05_028
crossref_primary_10_1016_j_ins_2015_06_049
crossref_primary_10_1109_TMM_2023_3347638
Cites_doi 10.1145/566570.566573
10.1364/JOSA.60.000098
10.1109/MSP.2011.942471
10.1109/MSP.2008.930649
10.1109/TIT.1974.1055250
10.1117/12.586757
10.1109/ICIP.2010.5651143
10.1109/TIP.2010.2092435
10.1145/1080402.1080418
10.2352/CIC.2004.12.1.art00055
10.1146/annurev.neuro.24.1.1193
10.1109/PG.2007.17
10.1109/TCOM.1983.1095851
10.1109/TIP.2003.819861
10.1117/12.587782
10.1145/1073204.1073242
10.1145/344779.344810
10.1111/1467-8659.00689
10.1117/3.353254
10.1085/jgp.19.3.503
10.1109/TIP.2011.2157514
10.2200/S00010ED1V01Y200508IVM003
10.1145/566570.566575
10.1109/2945.646233
10.1038/nn1556
10.1145/566570.566574
10.1109/ICIP.2010.5651778
10.1109/ACSSC.2003.1292216
10.1145/965400.965487
ContentType Journal Article
Copyright 2014 INIST-CNRS
Copyright_xml – notice: 2014 INIST-CNRS
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
NPM
7X8
DOI 10.1109/TIP.2012.2221725
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 667
ExternalDocumentID 23047872
26853954
10_1109_TIP_2012_2221725
6319406
Genre orig-research
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
IQODW
RIG
NPM
PKN
Z5M
7X8
ID FETCH-LOGICAL-c415t-378edf33439c6edfb8b68d311f0325b20be66e665b690b5e6f66a5f10a6e3acf3
IEDL.DBID RIE
ISICitedReferencesCount 492
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000314717800020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Sun Sep 28 10:17:54 EDT 2025
Wed Feb 19 01:55:52 EST 2025
Wed Apr 02 07:25:20 EDT 2025
Tue Nov 18 22:33:40 EST 2025
Sat Nov 29 08:00:09 EST 2025
Tue Aug 26 16:46:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Dynamic response
perceptual image processing
Similarity
Image processing
Objective analysis
Image databank
structural similarity
Timbre
Algorithm
High dynamic range image
Subjective evaluation
Optimization
Image quality
HDR image
Tone mapping
Multiscale method
naturalness
Quality control
image quality assessment
Image fusion
Image evaluation
tone mapping operator
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-378edf33439c6edfb8b68d311f0325b20be66e665b690b5e6f66a5f10a6e3acf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23047872
PQID 1273501340
PQPubID 23479
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TIP_2012_2221725
pubmed_primary_23047872
proquest_miscellaneous_1273501340
pascalfrancis_primary_26853954
crossref_primary_10_1109_TIP_2012_2221725
ieee_primary_6319406
PublicationCentury 2000
PublicationDate 2013-02-01
PublicationDateYYYYMMDD 2013-02-01
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2013
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref35
ref34
ref12
ref15
ref36
ref11
ref32
ref2
ref39
ref17
ref38
(ref30) 2005
ref16
ref19
reinhard (ref1) 2010
ref18
(ref40) 2007
blum (ref44) 2006
(ref42) 2008
(ref43) 2010
ref24
ref26
kuang (ref7) 2004
ref25
ref20
larson (ref33) 2010; 19
adk (ref10) 2006
grand (ref23) 1968
ref21
ref28
ref27
guilford (ref22) 1954
cadik (ref37) 2005
mantiuk (ref13) 2005; 5666
aydm (ref14) 2008
ref8
(ref41) 2009
adk (ref29) 2005
yoshida (ref9) 2005; 5666
ref4
ref3
ref6
(ref31) 2004
ref5
References_xml – start-page: 1
  year: 2008
  ident: ref14
  article-title: Dynamic range independent image quality assessment
  publication-title: Proc Int Conf Comput Graph Interact Tech
– ident: ref5
  doi: 10.1145/566570.566573
– ident: ref26
  doi: 10.1364/JOSA.60.000098
– year: 2007
  ident: ref40
  publication-title: Open Source Community
– start-page: 920
  year: 2005
  ident: ref29
  article-title: The naturalness of reproduced high dynamic range images
  publication-title: Proc 9th Int Conf Inf Visual
– year: 2004
  ident: ref31
  publication-title: UCIDUncompressed Colour Image Database
– ident: ref18
  doi: 10.1109/MSP.2011.942471
– ident: ref20
  doi: 10.1109/MSP.2008.930649
– ident: ref25
  doi: 10.1109/TIT.1974.1055250
– volume: 5666
  start-page: 204
  year: 2005
  ident: ref13
  article-title: Predicting visible differences in high dynamic range images-model and its calibration
  publication-title: Proc SPIE
  doi: 10.1117/12.586757
– ident: ref11
  doi: 10.1109/ICIP.2010.5651143
– ident: ref17
  doi: 10.1109/TIP.2010.2092435
– ident: ref38
  doi: 10.1145/1080402.1080418
– start-page: 315
  year: 2004
  ident: ref7
  article-title: Testing HDR image rendering algorithms
  publication-title: Proc IS T/SID's Color Imag Conf
  doi: 10.2352/CIC.2004.12.1.art00055
– year: 2009
  ident: ref41
  publication-title: E Reinhard's High Dynamic Range Data
– ident: ref28
  doi: 10.1146/annurev.neuro.24.1.1193
– year: 2005
  ident: ref30
  publication-title: Computer vision test images
– year: 2005
  ident: ref37
  publication-title: Evaluation of Tone Mapping Operators
– ident: ref36
  doi: 10.1109/PG.2007.17
– ident: ref27
  doi: 10.1109/TCOM.1983.1095851
– start-page: 35
  year: 2006
  ident: ref10
  article-title: Image attributes and quality for evaluation of tone mapping operators
  publication-title: Proc Pacific Conf Comput Graph Appl
– ident: ref15
  doi: 10.1109/TIP.2003.819861
– year: 1954
  ident: ref22
  publication-title: Psychometric Methods
– volume: 5666
  start-page: 192
  year: 2005
  ident: ref9
  article-title: Perceptual evaluation of tone mapping operators with real-world scenes
  publication-title: Proc SPIE Human Vis Electron Imag
  doi: 10.1117/12.587782
– ident: ref8
  doi: 10.1145/1073204.1073242
– ident: ref39
  doi: 10.1145/344779.344810
– ident: ref4
  doi: 10.1111/1467-8659.00689
– ident: ref21
  doi: 10.1117/3.353254
– ident: ref24
  doi: 10.1085/jgp.19.3.503
– ident: ref34
  doi: 10.1109/TIP.2011.2157514
– volume: 19
  start-page: 11006-1
  year: 2010
  ident: ref33
  article-title: Most apparent distortion: Fullreference image quality assessment and the role of strategy
  publication-title: J Electron Imag
– year: 2010
  ident: ref43
  publication-title: P Debevec's High Dynamic Range Data
– ident: ref12
  doi: 10.2200/S00010ED1V01Y200508IVM003
– ident: ref2
  doi: 10.1145/566570.566575
– year: 2008
  ident: ref42
  publication-title: G Ward's High Dynamic Range Data
– ident: ref3
  doi: 10.1109/2945.646233
– year: 2010
  ident: ref1
  publication-title: High Dynamic Range Imaging Acquisition Display and Image-Based Lighting
– ident: ref32
  doi: 10.1038/nn1556
– ident: ref35
  doi: 10.1145/566570.566574
– ident: ref19
  doi: 10.1109/ICIP.2010.5651778
– year: 1968
  ident: ref23
  publication-title: Light Colour and Vision
– year: 2006
  ident: ref44
  publication-title: Multi-Sensor Image Fusion and Its Applications
– ident: ref16
  doi: 10.1109/ACSSC.2003.1292216
– ident: ref6
  doi: 10.1145/965400.965487
SSID ssj0014516
Score 2.5876908
Snippet Tone-mapping operators (TMOs) that convert high dynamic range (HDR) to low dynamic range (LDR) images provide practically useful tools for the visualization of...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 657
SubjectTerms Applied sciences
Brightness
Correlation
Detection, estimation, filtering, equalization, prediction
Dynamic range
Exact sciences and technology
High dynamic range image
image fusion
Image processing
image quality assessment
Information, signal and communications theory
naturalness
perceptual image processing
Quality assessment
Sensitivity
Signal and communications theory
Signal processing
Signal, noise
structural similarity
Telecommunications and information theory
tone mapping operator
Visualization
Title Objective Quality Assessment of Tone-Mapped Images
URI https://ieeexplore.ieee.org/document/6319406
https://www.ncbi.nlm.nih.gov/pubmed/23047872
https://www.proquest.com/docview/1273501340
Volume 22
WOSCitedRecordID wos000314717800020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_m8EEfnG5-1I9RwRfBbv1M2schDvfg3MOEvZWkTUDRdqyb4H_vJe2qAxWEPgSatOV-l9wvvcsdwBWSeE6YjxOJKDcjEliLewGzPFSPSKQeUvqy2AQdj8PZLJo04KY-CyOE0MFnoqea2pef5slK_SrrE9QXX-XX3qKUlme1ao-BKjirPZsBtSjS_rVL0o7609FExXC5PbSFaK9VsRrtbQqpu2GNdHkVFRzJCpSPLAtb_M48tQUatv737fuwVzFNc1CqxgE0RNaGVsU6zWpOF23Y_ZaSsAPuI38p10CzTK_xYQ7q5J1mLs1pngnrgc3n-JDRG65GxSE8De-mt_dWVVfBStBcL3FNCUUqPQ-5SEKwxRGuMPUcR9oIEXdtLgjBK-C4deaBIJIQFkjHZkR4LJHeETQzfNkJmD5NWUJdWwYS99iMM8lTW6YqCT9JcLwB_bV846RKOq5qX7zGevNhRzGCEytw4gocA67rEfMy4cYffTtK0HW_SsYGdDcgrO-7BMlJFPgGXK4xjXE2KRcJy0S-KmIH2VyArNi3DTguwf4aXenM6c9vPYMdV5fKUKEu59BcLlbiAraT9-Vzseiiys7CrlbZTwU74vM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-GCuqD082P-jEr-CLYrV9J18chjg23uYcJeytJm4Ci21g3wf_eS9pVByoIfQg0acvdJfdL73I_gGsE8ZwyHycSVWFGBLAW9wizPDSPUCQeQvqMbCIYDJrjcTgswW1xFkYIoZPPRF01dSw_mcZL9ausQdFefFVfe5P4vutkp7WKmIGinNWxTRJYAQL_VVDSDhuj7lBlcbl19IbosRVdjY43NQN3zR9pghWVHslSlJDMqC1-x57aB7XL__v6fdjLsabZyozjAEpiUoFyjjvNfFanFdj9VpSwCu4jf8lWQTMrsPFhtoryneZUmqPpRFh9NpvhQ7pvuB6lh_DUvh_ddaycWcGK0WEvcFVpikR6HqKRmGKLo8Kaiec40kYlcdfmglK8CMfNMyeCSkoZkY7NqPBYLL0j2Jjgy07A9IOExYFrSyJxl804kzyxZaLK8NMYxxvQWMk3ivOy44r94jXS2w87jFA5kVJOlCvHgJtixCwrufFH36oSdNEvl7EBtTUVFvddivAkJL4BVyudRjifVJCETcR0mUYO4jmCuNi3DTjOlP01OreZ05_fegnbnVG_F_W6g4cz2HE1cYZKfDmHjcV8KS5gK35fPKfzmjbcT6E75VI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Objective+quality+assessment+of+tone-mapped+images&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Yeganeh%2C+Hojatollah&rft.au=Wang%2C+Zhou&rft.date=2013-02-01&rft.issn=1941-0042&rft.eissn=1941-0042&rft.volume=22&rft.issue=2&rft.spage=657&rft_id=info:doi/10.1109%2FTIP.2012.2221725&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon