Multi-Agent DDPG-Based Multi-Device Charging Scheduling for IIoT Smart Grids
As electric vehicles (EVs) gain widespread adoption in industrial environments supported by Industrial Internet of Things (IIoT) smart grids technology, coordinated charging of multiple EVs has become vital for maintaining grid stability. In response to the scalability challenges faced by traditiona...
Uloženo v:
| Vydáno v: | Sensors (Basel, Switzerland) Ročník 25; číslo 17; s. 5226 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
22.08.2025
|
| Témata: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | As electric vehicles (EVs) gain widespread adoption in industrial environments supported by Industrial Internet of Things (IIoT) smart grids technology, coordinated charging of multiple EVs has become vital for maintaining grid stability. In response to the scalability challenges faced by traditional algorithms in multi-device environments and the limitations of discrete action spaces in continuous control scenarios, this paper proposes a dynamic charging scheduling algorithm for EVs based on Multi-Agent Deep Deterministic Policy Gradient (MADDPG). The algorithm combines real-time electricity prices, battery status monitoring, and distributed sensor data to dynamically optimize charging and discharging strategies of multiple EVs in continuous action spaces. The goal is to reduce charging costs and balance grid load through coordinated multi-agent learning. Experimental results show that, compared with baseline methods, the proposed MADDPG algorithm achieves a 41.12% cost reduction over a 30-day evaluation period. Additionally, it effectively adapts to price fluctuations and user demand changes through Vehicle-to-Grid technology, optimizing charging time allocation and enhancing grid stability. |
|---|---|
| AbstractList | As electric vehicles (EVs) gain widespread adoption in industrial environments supported by Industrial Internet of Things (IIoT) smart grids technology, coordinated charging of multiple EVs has become vital for maintaining grid stability. In response to the scalability challenges faced by traditional algorithms in multi-device environments and the limitations of discrete action spaces in continuous control scenarios, this paper proposes a dynamic charging scheduling algorithm for EVs based on Multi-Agent Deep Deterministic Policy Gradient (MADDPG). The algorithm combines real-time electricity prices, battery status monitoring, and distributed sensor data to dynamically optimize charging and discharging strategies of multiple EVs in continuous action spaces. The goal is to reduce charging costs and balance grid load through coordinated multi-agent learning. Experimental results show that, compared with baseline methods, the proposed MADDPG algorithm achieves a 41.12% cost reduction over a 30-day evaluation period. Additionally, it effectively adapts to price fluctuations and user demand changes through Vehicle-to-Grid technology, optimizing charging time allocation and enhancing grid stability. As electric vehicles (EVs) gain widespread adoption in industrial environments supported by Industrial Internet of Things (IIoT) smart grids technology, coordinated charging of multiple EVs has become vital for maintaining grid stability. In response to the scalability challenges faced by traditional algorithms in multi-device environments and the limitations of discrete action spaces in continuous control scenarios, this paper proposes a dynamic charging scheduling algorithm for EVs based on Multi-Agent Deep Deterministic Policy Gradient (MADDPG). The algorithm combines real-time electricity prices, battery status monitoring, and distributed sensor data to dynamically optimize charging and discharging strategies of multiple EVs in continuous action spaces. The goal is to reduce charging costs and balance grid load through coordinated multi-agent learning. Experimental results show that, compared with baseline methods, the proposed MADDPG algorithm achieves a 41.12% cost reduction over a 30-day evaluation period. Additionally, it effectively adapts to price fluctuations and user demand changes through Vehicle-to-Grid technology, optimizing charging time allocation and enhancing grid stability.As electric vehicles (EVs) gain widespread adoption in industrial environments supported by Industrial Internet of Things (IIoT) smart grids technology, coordinated charging of multiple EVs has become vital for maintaining grid stability. In response to the scalability challenges faced by traditional algorithms in multi-device environments and the limitations of discrete action spaces in continuous control scenarios, this paper proposes a dynamic charging scheduling algorithm for EVs based on Multi-Agent Deep Deterministic Policy Gradient (MADDPG). The algorithm combines real-time electricity prices, battery status monitoring, and distributed sensor data to dynamically optimize charging and discharging strategies of multiple EVs in continuous action spaces. The goal is to reduce charging costs and balance grid load through coordinated multi-agent learning. Experimental results show that, compared with baseline methods, the proposed MADDPG algorithm achieves a 41.12% cost reduction over a 30-day evaluation period. Additionally, it effectively adapts to price fluctuations and user demand changes through Vehicle-to-Grid technology, optimizing charging time allocation and enhancing grid stability. |
| Audience | Academic |
| Author | Zeng, Haiyong Huang, Yuanyan Zhu, Hongyan Zhan, Kaijie Yu, Zichao Li, Fangyan |
| Author_xml | – sequence: 1 givenname: Haiyong orcidid: 0000-0003-4336-9492 surname: Zeng fullname: Zeng, Haiyong – sequence: 2 givenname: Yuanyan orcidid: 0009-0006-6199-3562 surname: Huang fullname: Huang, Yuanyan – sequence: 3 givenname: Kaijie orcidid: 0009-0003-8067-7555 surname: Zhan fullname: Zhan, Kaijie – sequence: 4 givenname: Zichao surname: Yu fullname: Yu, Zichao – sequence: 5 givenname: Hongyan orcidid: 0000-0001-9837-6169 surname: Zhu fullname: Zhu, Hongyan – sequence: 6 givenname: Fangyan surname: Li fullname: Li, Fangyan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40942654$$D View this record in MEDLINE/PubMed |
| BookMark | eNpdkk1v1DAQhi1URD_gwB9AkbjAIcXfsY_bXVhWWgRSyzly7HHqVTYudoLEv8clZYWQDzMaPX5nXs1corMxjoDQa4KvGdP4Q6aCNIJS-QxdEE55rSjFZ__k5-gy5wPGlDGmXqBzjjWnUvALtP8yD1OoVz2MU7XZfNvWNyaDq5byBn4GC9X63qQ-jH11a-_BzcNj6mOqdrt4V90eTZqqbQouv0TPvRkyvHqKV-j7p49368_1_ut2t17ta8uJmGomjDJca9Z53bCOOa4bazounZFEgiSWCuU8tVJqAdJj5ZwlDneCeKawYFdot-i6aA7tQwplhF9tNKH9U4ipb8tMwQ7QKgAsqeEGe8udJkoSbI1xICjxVvGi9W7Rekjxxwx5ao8hWxgGM0Kcc8uowISWprigb_9DD3FOY3FaqOKBcNyoQl0vVG9K_zD6OCVjy3NwDLYszodSXykhBGeN0OXDmyfZuTuCO_n5u6QCvF8Am2LOCfwJIbh9PID2dADsN1O_nXg |
| Cites_doi | 10.3390/en10111880 10.1016/j.ijepes.2022.108603 10.1109/TCYB.2020.2975134 10.1109/TSG.2021.3058996 10.1109/VTC2022-Fall57202.2022.10012762 10.1016/j.est.2024.111159 10.1109/TSG.2017.2789333 10.1109/TSG.2019.2930299 10.3390/smartcities7060142 10.1109/GLOBECOM54140.2023.10437665 10.1109/TII.2019.2950809 10.1016/j.rser.2019.109618 10.1109/ACCESS.2018.2835309 10.1007/s40313-021-00741-w 10.1109/TII.2022.3152218 10.1109/TSG.2018.2879572 10.1016/j.engappai.2023.106320 10.1109/JPROC.2020.3046112 10.1109/TNSE.2023.3321048 10.1109/LWC.2024.3376774 10.1109/ICIoT48696.2020.9089471 10.1109/JIOT.2020.3015204 10.1016/j.apenergy.2022.120111 10.1109/ICTEM60690.2024.10631931 10.1109/MVT.2022.3168502 10.1109/TTE.2024.3443691 10.1016/j.tre.2024.103698 10.1049/gtd2.13047 10.1109/TSG.2022.3186931 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 DOA |
| DOI | 10.3390/s25175226 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database (ProQuest) url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_8ee062a4a0fc4d918610caade521fc84 A855543759 40942654 10_3390_s25175226 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Guangxi Science and Technology Base and Special Talent Program grantid: GuikeAD23026197 – fundername: Guangxi Natural Science Foundation grantid: 2024GXNSFBA010246 – fundername: Guangxi Young Talent Inclusive Support Program grantid: 2024 – fundername: Guangxi Key Laboratory of Brain-inspired Computing and Intelligent Chips grantid: BCIC-23-Z5 – fundername: National Natural Science Foundation of China grantid: 62301172 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM PUEGO 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 |
| ID | FETCH-LOGICAL-c415t-35a8a4993bf973b3d497cab46da616e61c258df2c6695e6f08ddc1d0b51f38053 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001570073800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:34:54 EDT 2025 Thu Oct 02 21:28:36 EDT 2025 Tue Oct 07 07:46:34 EDT 2025 Tue Nov 04 18:10:24 EST 2025 Wed Sep 17 02:09:44 EDT 2025 Sat Nov 29 07:13:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Keywords | electric vehicle charging scheduling smart grids deep reinforcement learning industrial internet of things cost optimization management smart sensors |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c415t-35a8a4993bf973b3d497cab46da616e61c258df2c6695e6f08ddc1d0b51f38053 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0009-0003-8067-7555 0009-0006-6199-3562 0000-0001-9837-6169 0000-0003-4336-9492 |
| OpenAccessLink | https://doaj.org/article/8ee062a4a0fc4d918610caade521fc84 |
| PMID | 40942654 |
| PQID | 3249714078 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8ee062a4a0fc4d918610caade521fc84 proquest_miscellaneous_3250120530 proquest_journals_3249714078 gale_infotracacademiconefile_A855543759 pubmed_primary_40942654 crossref_primary_10_3390_s25175226 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-22 |
| PublicationDateYYYYMMDD | 2025-08-22 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Mounir (ref_7) 2025; 15 Zhao (ref_24) 2024; 190 Zhang (ref_20) 2021; 8 Liu (ref_5) 2018; 6 Viegas (ref_32) 2021; 32 Hou (ref_12) 2024; 13 ref_14 Kataray (ref_6) 2023; 58 ref_34 ref_11 Shi (ref_16) 2018; 10 ref_10 Wan (ref_19) 2019; 10 Wang (ref_21) 2021; 17 Li (ref_22) 2023; 144 ref_31 Das (ref_3) 2020; 120 Zhang (ref_4) 2020; 51 Park (ref_27) 2022; 328 ref_15 Husain (ref_2) 2021; 109 Jiang (ref_1) 2024; 86 Ren (ref_33) 2023; 123 Aldossary (ref_13) 2024; 7 Zhang (ref_25) 2023; 11 Li (ref_28) 2024; 18 Costa (ref_17) 2024; 11 ref_23 Yan (ref_26) 2022; 18 Du (ref_18) 2020; 11 Zeng (ref_9) 2022; 17 Gao (ref_29) 2021; 12 ref_8 Liang (ref_30) 2022; 14 |
| References_xml | – ident: ref_15 doi: 10.3390/en10111880 – volume: 144 start-page: 108603 year: 2023 ident: ref_22 article-title: Constrained Large-Scale Real-Time EV Scheduling Based on Recurrent Deep Reinforcement Learning publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2022.108603 – volume: 51 start-page: 3157 year: 2020 ident: ref_4 article-title: Deep-Learning-Based Probabilistic Forecasting of Electric Vehicle Charging Load with a Novel Queuing Model publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.2975134 – volume: 12 start-page: 3594 year: 2021 ident: ref_29 article-title: Consensus Multi-Agent Reinforcement Learning for Volt-Var Control in Power Distribution Networks publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2021.3058996 – ident: ref_10 doi: 10.1109/VTC2022-Fall57202.2022.10012762 – volume: 86 start-page: 111159 year: 2024 ident: ref_1 article-title: A Comprehensive Review of Energy Storage Technology Development and Application for Pure Electric Vehicles publication-title: J. Energy Storage doi: 10.1016/j.est.2024.111159 – volume: 10 start-page: 2127 year: 2018 ident: ref_16 article-title: Model Predictive Control for Smart Grids with Multiple Electric-Vehicle Charging Stations publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2017.2789333 – volume: 11 start-page: 1066 year: 2020 ident: ref_18 article-title: Intelligent Multi-Microgrid Energy Management Based on Deep Neural Network and Model-Free Reinforcement Learning publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2019.2930299 – ident: ref_11 – volume: 58 start-page: 103363 year: 2023 ident: ref_6 article-title: Integration of Smart Grid with Renewable Energy Sources: Opportunities and Challenges–A Comprehensive Review publication-title: Sustain. Energy Technol. Assess. – volume: 7 start-page: 3678 year: 2024 ident: ref_13 article-title: Enhancing Urban Electric Vehicle (EV) Fleet Management Efficiency in Smart Cities: A Predictive Hybrid Deep Learning Framework publication-title: Smart Cities doi: 10.3390/smartcities7060142 – ident: ref_23 doi: 10.1109/GLOBECOM54140.2023.10437665 – volume: 17 start-page: 849 year: 2021 ident: ref_21 article-title: Reinforcement Learning for Real-Time Pricing and Scheduling Control in EV Charging Stations publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2019.2950809 – volume: 120 start-page: 109618 year: 2020 ident: ref_3 article-title: Electric Vehicles Standards, Charging Infrastructure, and Impact on Grid Integration: A Technological Review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.109618 – volume: 6 start-page: 25657 year: 2018 ident: ref_5 article-title: Adaptive Blockchain-Based Electric Vehicle Participation Scheme in Smart Grid Platform publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2835309 – ident: ref_14 – volume: 32 start-page: 1214 year: 2021 ident: ref_32 article-title: Fuzzy Logic Controllers for Charging/Discharging Management of Battery Electric Vehicles in a Smart Grid publication-title: J. Control Autom. Electr. Syst. doi: 10.1007/s40313-021-00741-w – volume: 18 start-page: 8765 year: 2022 ident: ref_26 article-title: A Cooperative Charging Control Strategy for Electric Vehicles Based on Multiagent Deep Reinforcement Learning publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2022.3152218 – volume: 10 start-page: 5246 year: 2019 ident: ref_19 article-title: Model-Free Real-Time EV Charging Scheduling Based on Deep Reinforcement Learning publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2018.2879572 – volume: 123 start-page: 106320 year: 2023 ident: ref_33 article-title: Electric Vehicle Charging and Discharging Scheduling Strategy Based on Dynamic Electricity Price publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106320 – volume: 109 start-page: 1039 year: 2021 ident: ref_2 article-title: Electric Drive Technology Trends, Challenges, and Opportunities for Future Electric Vehicles publication-title: Proc. IEEE doi: 10.1109/JPROC.2020.3046112 – ident: ref_31 – volume: 11 start-page: 1065 year: 2023 ident: ref_25 article-title: Correlated Information Scheduling in Industrial Internet of Things Based on Multi-Heterogeneous-Agent-Reinforcement-Learning publication-title: IEEE Trans. Netw. Sci. Eng. doi: 10.1109/TNSE.2023.3321048 – volume: 13 start-page: 1536 year: 2024 ident: ref_12 article-title: Toward Proximity Surveillance and Data Collection in Industrial IoT: A Multi-Stage Statistical Optimization Design publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2024.3376774 – volume: 15 start-page: 208 year: 2025 ident: ref_7 article-title: Securing the Future: Real-Time Intrusion Detection in IIoT Smart Grids Through Innovative AI Solutions publication-title: J. Cybersecur. Inf. Manag. – ident: ref_34 doi: 10.1109/ICIoT48696.2020.9089471 – volume: 8 start-page: 3075 year: 2021 ident: ref_20 article-title: CDDPG: A Deep-Reinforcement-Learning-Based Approach for Electric Vehicle Charging Control publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3015204 – volume: 328 start-page: 120111 year: 2022 ident: ref_27 article-title: Multi-Agent Deep Reinforcement Learning Approach for EV Charging Scheduling in a Smart Grid publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.120111 – ident: ref_8 doi: 10.1109/ICTEM60690.2024.10631931 – volume: 17 start-page: 84 year: 2022 ident: ref_9 article-title: Multicluster-Coordination Industrial Internet of Things: The Era of Nonorthogonal Transmission publication-title: IEEE Veh. Technol. Mag. doi: 10.1109/MVT.2022.3168502 – volume: 11 start-page: 3549 year: 2024 ident: ref_17 article-title: Lyapunov-Based Finite Control Set Applied to an EV Charger Grid Converter Under Distorted Voltage publication-title: IEEE Trans. Transp. Electr. doi: 10.1109/TTE.2024.3443691 – volume: 190 start-page: 103698 year: 2024 ident: ref_24 article-title: Reinforcement Learning for Electric Vehicle Charging Scheduling: A Systematic Review publication-title: Transp. Res. Part E Logist. Transp. Rev. doi: 10.1016/j.tre.2024.103698 – volume: 18 start-page: 1172 year: 2024 ident: ref_28 article-title: Decentralized Collaborative Optimal Scheduling for EV Charging Stations Based on Multi-Agent Reinforcement Learning publication-title: IET Gener. Transm. Distrib. doi: 10.1049/gtd2.13047 – volume: 14 start-page: 559 year: 2022 ident: ref_30 article-title: Real-Time Operation Management for Battery Swapping-Charging System via Multi-Agent Deep Reinforcement Learning publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2022.3186931 |
| SSID | ssj0023338 |
| Score | 2.457636 |
| Snippet | As electric vehicles (EVs) gain widespread adoption in industrial environments supported by Industrial Internet of Things (IIoT) smart grids technology,... |
| SourceID | doaj proquest gale pubmed crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 5226 |
| SubjectTerms | Algorithms Communication cost optimization management Data exchange Decision making deep reinforcement learning electric vehicle charging scheduling Electric vehicles Electricity Energy consumption Energy management Industrial Internet of Things Infrastructure Integrated approach Optimization Prices and rates Scheduling Sensors Smart grid technology smart grids smart sensors Systems stability Time management |
| SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4QAH3qWBggxC4mQ1cfzKCW1ZWipVVaUWaW-WYztVD2xKsu3vZybJbnlIXLgmVjTKvL6xPd8AfEBM4L01hnsTDJe21hzBUcPRKaWV6GE6DDyzx-bkxC4W1em04dZP1yrXMXEI1LENtEe-h4m_InI5Yz9d_eA0NYpOV6cRGnfhHo3NJjs3i9uCq8T6a2QTKrG03-uJnovwxm85aKDq_zsg_wEzh3Rz8Ph_BX0CjyagyWajZTyFO2n5DB7-Qj_4HI6H7ls-o-4qNp-fHvJ9zGmRjY_niYIIo_N4GmTEzlC9ke6tXzAEuuzoqD1nZ9_R8thhdxn7F_Dt4Mv55698mq7AAybtFS-Vtx7rnbJuKlPWZUSxg6-ljl4XOukiCGVjI4LWlUq6yW2MoYh5rYqmtOi727C1bJdpB5hMdR1CqGk-gjTaVEIFoT1CxyRsHnUG79f_212NJBoOiw9SitsoJYN90sRmAfFeDw_a7sJNbuRsSrkWXvq8CTJWhUX0F7yPCVFIE6zM4CPp0ZF3rjof_NRkgHISz5WbWYX4qTSqymB3rT43uW3vbnWXwbvNa3Q4OkXxy9Re0xpFDceqzDN4OZrIRmYqloVW8tW_P_4aHggaI5xjkBK7sLXqrtMbuB9uVpd993aw4Z_jiPei priority: 102 providerName: ProQuest |
| Title | Multi-Agent DDPG-Based Multi-Device Charging Scheduling for IIoT Smart Grids |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40942654 https://www.proquest.com/docview/3249714078 https://www.proquest.com/docview/3250120530 https://doaj.org/article/8ee062a4a0fc4d918610caade521fc84 |
| Volume | 25 |
| WOSCitedRecordID | wos001570073800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database (ProQuest) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5B4UAPFW_clmhBSJys2t73MSFpidRGFi1SOFnr3TXqgaRKUo789s7YTlTgwIXLHsZ72J3x7Hyj3fkG4ANiAueM1qnTXqfC1CpFcNSk6JTCCPQw5Vue2XM9m5n53Jb3Wn3Rm7COHrhT3ImJMVOFEy5rvAg2NxjvvXMhYtxpvGmZQDNtt8lUn2pxzLw6HiGOSf3Jmoi5CGn8Fn1akv6_j-I_AGYbaE6fwkGPENmwW9kzeBAXz2H_Hm_gCzhvy2bTIZVFsfG4PEtHGIwC68TjSN7P6CKdOhCxS7RLoAfn3xkiVDadLq_Y5Q_cOTtbXYf1S_h6Orn69Dnt2yKkHqPtJuXSGYeJCq8bq3nNg7Dau1qo4FSuosp9IU1oCq-UlVE1mQnB5yGrZd5wg073CvYWy0V8A0zEuvbe19TYQGilbSF9oRxivliYLKgE3m_VVd107BcVZg2k02qn0wRGpMjdBCKsbgVoxqo3Y_UvMybwkcxQkVttVs67vjoA10kEVdXQSAQ-XEubwPHWUlXvb-sKYaEl6kFtEni3-4yeQtcfbhGXtzRHUqWw5FkCrzsL79ZMWW6hpDj8H3s5gicFdQnO8AwqjmFvs7qNb-Gx_7m5Xq8G8FDPdTuaATwaTWbll0H78-J48WuCsnJ6UX67A6jO8KY |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQk48H4EChgE4mQ1cRLbOSC0ZWm76rKq1EXaW-rYTtUDm5JsQfwpfiMzeWx5SNx64OpElhN__uYb2zMD8Ao1gTFaKW6UVTzRheQojkqOizLRCa4wads8s1M1m-nFIjvcgB9DLAxdqxw4sSVqV1naI99Gw59Rcjml35194VQ1ik5XhxIaHSwO_Pdv6LI1bydjnN_XQux-mL_f531VAW7RWK14nBptUOfHRZmpuIgd9mtNkUhnZCS9jKxItSuFlTJLvSxD7ZyNXFikURnrkKpEIOVfQR5X5OypxYWDF6O_12UviuMs3G4oHRjpm99sXlsa4G8D8Iesbc3b7q3_7cfchpu9kGajDvl3YMMv78KNX9Ir3oNpG13MRxQ9xsbjwz2-gzbbsa557IkkGd03oEJN7Ajh6-he_glDIc8mk2rOjj7jymJ79alr7sOnS_mcB7C5rJb-EbDEF4W1tqD6D4mSKhOpFdKgNPZCh04G8HKY3_ysSxKSo3NFIMjXIAhgh2Z-_QLl9W4bqvok72ki196HUpjEhKVNXBZpVLfWGOdRZZVWJwG8IdzkxD6r2ljTB1HgOCmPVz7SKerDWKVZAFsDXPKelpr8AisBvFg_RkKhUyKz9NU5vZNSQHUahwE87CC5HjNtBgiZJo__3flzuLY__zjNp5PZwRO4LqhkcoiELLZgc1Wf-6dw1X5dnTb1s3b9MDi-bFz-BHZjVHc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VW4TgwPsRKGAQiFO0WcdxnANCW5YtUZdVpBapPQXHdqoe2C3JFsRf49cxkxcviVsPXBMrceJvvvn8mBmA56gJtFZx7OvYxL5QhfRRHJU-GqVQAi1MmibP7CJeLtXRUZJtwfc-FoaOVfac2BC1XRtaIx-j408ouVysxmV3LCKbzV-fffapghTttPblNFqI7LtvX3H6Vr9KZzjWLzifvz18887vKgz4Bh3Xxg8jrTRq_rAokzgsQovvMLoQ0mo5kU5ODI-ULbmRMomcLANlrZnYoIgmZagCqhiB9L-NklzwEWxn6fvseJjuhTj7a3MZhWESjGtKDkZq5zcP2BQK-Nsd_CFyG2c3v_4__6YbcK2T2Gza2sRN2HKrW3D1l8SLt2HRxB37U4orY7NZtufvoje3rL08c0SfjE4iUAkndoDAtnRi_4ShxGdpuj5kB5_Q5thedWrrO_DhQj7nLoxW65W7D0y4ojDGFFQZQsQyTnhkuNQomh1XgZUePOvHOj9r04fkOO0iQOQDIDzYJRQMDSjjd3NhXZ3kHYHkyrlAci10UBphk4lC3Wu0tg71V2mU8OAlYSgnXtpU2uguvAL7SRm-8qmKUDmGcZR4sNNDJ-8Iq85_4saDp8NtpBraP9Irtz6nNhGFWkdh4MG9Fp5Dn2mZgMtIPPj3w5_AZYRjvkiX-w_hCqdaygEyNd-B0aY6d4_gkvmyOa2rx50xMfh40cD8AS9MXsY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Agent+DDPG-Based+Multi-Device+Charging+Scheduling+for+IIoT+Smart+Grids&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Haiyong+Zeng&rft.au=Yuanyan+Huang&rft.au=Kaijie+Zhan&rft.au=Zichao+Yu&rft.date=2025-08-22&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=25&rft.issue=17&rft.spage=5226&rft_id=info:doi/10.3390%2Fs25175226&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8ee062a4a0fc4d918610caade521fc84 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |