Multi-Agent DDPG-Based Multi-Device Charging Scheduling for IIoT Smart Grids

As electric vehicles (EVs) gain widespread adoption in industrial environments supported by Industrial Internet of Things (IIoT) smart grids technology, coordinated charging of multiple EVs has become vital for maintaining grid stability. In response to the scalability challenges faced by traditiona...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors (Basel, Switzerland) Ročník 25; číslo 17; s. 5226
Hlavní autori: Zeng, Haiyong, Huang, Yuanyan, Zhan, Kaijie, Yu, Zichao, Zhu, Hongyan, Li, Fangyan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 22.08.2025
Predmet:
ISSN:1424-8220, 1424-8220
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract As electric vehicles (EVs) gain widespread adoption in industrial environments supported by Industrial Internet of Things (IIoT) smart grids technology, coordinated charging of multiple EVs has become vital for maintaining grid stability. In response to the scalability challenges faced by traditional algorithms in multi-device environments and the limitations of discrete action spaces in continuous control scenarios, this paper proposes a dynamic charging scheduling algorithm for EVs based on Multi-Agent Deep Deterministic Policy Gradient (MADDPG). The algorithm combines real-time electricity prices, battery status monitoring, and distributed sensor data to dynamically optimize charging and discharging strategies of multiple EVs in continuous action spaces. The goal is to reduce charging costs and balance grid load through coordinated multi-agent learning. Experimental results show that, compared with baseline methods, the proposed MADDPG algorithm achieves a 41.12% cost reduction over a 30-day evaluation period. Additionally, it effectively adapts to price fluctuations and user demand changes through Vehicle-to-Grid technology, optimizing charging time allocation and enhancing grid stability.
AbstractList As electric vehicles (EVs) gain widespread adoption in industrial environments supported by Industrial Internet of Things (IIoT) smart grids technology, coordinated charging of multiple EVs has become vital for maintaining grid stability. In response to the scalability challenges faced by traditional algorithms in multi-device environments and the limitations of discrete action spaces in continuous control scenarios, this paper proposes a dynamic charging scheduling algorithm for EVs based on Multi-Agent Deep Deterministic Policy Gradient (MADDPG). The algorithm combines real-time electricity prices, battery status monitoring, and distributed sensor data to dynamically optimize charging and discharging strategies of multiple EVs in continuous action spaces. The goal is to reduce charging costs and balance grid load through coordinated multi-agent learning. Experimental results show that, compared with baseline methods, the proposed MADDPG algorithm achieves a 41.12% cost reduction over a 30-day evaluation period. Additionally, it effectively adapts to price fluctuations and user demand changes through Vehicle-to-Grid technology, optimizing charging time allocation and enhancing grid stability.
As electric vehicles (EVs) gain widespread adoption in industrial environments supported by Industrial Internet of Things (IIoT) smart grids technology, coordinated charging of multiple EVs has become vital for maintaining grid stability. In response to the scalability challenges faced by traditional algorithms in multi-device environments and the limitations of discrete action spaces in continuous control scenarios, this paper proposes a dynamic charging scheduling algorithm for EVs based on Multi-Agent Deep Deterministic Policy Gradient (MADDPG). The algorithm combines real-time electricity prices, battery status monitoring, and distributed sensor data to dynamically optimize charging and discharging strategies of multiple EVs in continuous action spaces. The goal is to reduce charging costs and balance grid load through coordinated multi-agent learning. Experimental results show that, compared with baseline methods, the proposed MADDPG algorithm achieves a 41.12% cost reduction over a 30-day evaluation period. Additionally, it effectively adapts to price fluctuations and user demand changes through Vehicle-to-Grid technology, optimizing charging time allocation and enhancing grid stability.As electric vehicles (EVs) gain widespread adoption in industrial environments supported by Industrial Internet of Things (IIoT) smart grids technology, coordinated charging of multiple EVs has become vital for maintaining grid stability. In response to the scalability challenges faced by traditional algorithms in multi-device environments and the limitations of discrete action spaces in continuous control scenarios, this paper proposes a dynamic charging scheduling algorithm for EVs based on Multi-Agent Deep Deterministic Policy Gradient (MADDPG). The algorithm combines real-time electricity prices, battery status monitoring, and distributed sensor data to dynamically optimize charging and discharging strategies of multiple EVs in continuous action spaces. The goal is to reduce charging costs and balance grid load through coordinated multi-agent learning. Experimental results show that, compared with baseline methods, the proposed MADDPG algorithm achieves a 41.12% cost reduction over a 30-day evaluation period. Additionally, it effectively adapts to price fluctuations and user demand changes through Vehicle-to-Grid technology, optimizing charging time allocation and enhancing grid stability.
Audience Academic
Author Zeng, Haiyong
Huang, Yuanyan
Zhu, Hongyan
Zhan, Kaijie
Yu, Zichao
Li, Fangyan
Author_xml – sequence: 1
  givenname: Haiyong
  orcidid: 0000-0003-4336-9492
  surname: Zeng
  fullname: Zeng, Haiyong
– sequence: 2
  givenname: Yuanyan
  orcidid: 0009-0006-6199-3562
  surname: Huang
  fullname: Huang, Yuanyan
– sequence: 3
  givenname: Kaijie
  orcidid: 0009-0003-8067-7555
  surname: Zhan
  fullname: Zhan, Kaijie
– sequence: 4
  givenname: Zichao
  surname: Yu
  fullname: Yu, Zichao
– sequence: 5
  givenname: Hongyan
  orcidid: 0000-0001-9837-6169
  surname: Zhu
  fullname: Zhu, Hongyan
– sequence: 6
  givenname: Fangyan
  surname: Li
  fullname: Li, Fangyan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40942654$$D View this record in MEDLINE/PubMed
BookMark eNpdkk1v1DAQhi1URD_gwB9AkbjAIcXfsY_bXVhWWgRSyzly7HHqVTYudoLEv8clZYWQDzMaPX5nXs1corMxjoDQa4KvGdP4Q6aCNIJS-QxdEE55rSjFZ__k5-gy5wPGlDGmXqBzjjWnUvALtP8yD1OoVz2MU7XZfNvWNyaDq5byBn4GC9X63qQ-jH11a-_BzcNj6mOqdrt4V90eTZqqbQouv0TPvRkyvHqKV-j7p49368_1_ut2t17ta8uJmGomjDJca9Z53bCOOa4bazounZFEgiSWCuU8tVJqAdJj5ZwlDneCeKawYFdot-i6aA7tQwplhF9tNKH9U4ipb8tMwQ7QKgAsqeEGe8udJkoSbI1xICjxVvGi9W7Rekjxxwx5ao8hWxgGM0Kcc8uowISWprigb_9DD3FOY3FaqOKBcNyoQl0vVG9K_zD6OCVjy3NwDLYszodSXykhBGeN0OXDmyfZuTuCO_n5u6QCvF8Am2LOCfwJIbh9PID2dADsN1O_nXg
Cites_doi 10.3390/en10111880
10.1016/j.ijepes.2022.108603
10.1109/TCYB.2020.2975134
10.1109/TSG.2021.3058996
10.1109/VTC2022-Fall57202.2022.10012762
10.1016/j.est.2024.111159
10.1109/TSG.2017.2789333
10.1109/TSG.2019.2930299
10.3390/smartcities7060142
10.1109/GLOBECOM54140.2023.10437665
10.1109/TII.2019.2950809
10.1016/j.rser.2019.109618
10.1109/ACCESS.2018.2835309
10.1007/s40313-021-00741-w
10.1109/TII.2022.3152218
10.1109/TSG.2018.2879572
10.1016/j.engappai.2023.106320
10.1109/JPROC.2020.3046112
10.1109/TNSE.2023.3321048
10.1109/LWC.2024.3376774
10.1109/ICIoT48696.2020.9089471
10.1109/JIOT.2020.3015204
10.1016/j.apenergy.2022.120111
10.1109/ICTEM60690.2024.10631931
10.1109/MVT.2022.3168502
10.1109/TTE.2024.3443691
10.1016/j.tre.2024.103698
10.1049/gtd2.13047
10.1109/TSG.2022.3186931
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
DOA
DOI 10.3390/s25175226
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef


PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_8ee062a4a0fc4d918610caade521fc84
A855543759
40942654
10_3390_s25175226
Genre Journal Article
GrantInformation_xml – fundername: Guangxi Science and Technology Base and Special Talent Program
  grantid: GuikeAD23026197
– fundername: Guangxi Natural Science Foundation
  grantid: 2024GXNSFBA010246
– fundername: Guangxi Young Talent Inclusive Support Program
  grantid: 2024
– fundername: Guangxi Key Laboratory of Brain-inspired Computing and Intelligent Chips
  grantid: BCIC-23-Z5
– fundername: National Natural Science Foundation of China
  grantid: 62301172
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
PUEGO
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
ID FETCH-LOGICAL-c415t-35a8a4993bf973b3d497cab46da616e61c258df2c6695e6f08ddc1d0b51f38053
IEDL.DBID 7X7
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001570073800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:34:54 EDT 2025
Thu Oct 02 21:28:36 EDT 2025
Tue Oct 07 07:46:34 EDT 2025
Tue Nov 04 18:10:24 EST 2025
Wed Sep 17 02:09:44 EDT 2025
Sat Nov 29 07:13:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords electric vehicle charging scheduling
smart grids
deep reinforcement learning
industrial internet of things
cost optimization management
smart sensors
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-35a8a4993bf973b3d497cab46da616e61c258df2c6695e6f08ddc1d0b51f38053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0003-8067-7555
0009-0006-6199-3562
0000-0001-9837-6169
0000-0003-4336-9492
OpenAccessLink https://www.proquest.com/docview/3249714078?pq-origsite=%requestingapplication%
PMID 40942654
PQID 3249714078
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_8ee062a4a0fc4d918610caade521fc84
proquest_miscellaneous_3250120530
proquest_journals_3249714078
gale_infotracacademiconefile_A855543759
pubmed_primary_40942654
crossref_primary_10_3390_s25175226
PublicationCentury 2000
PublicationDate 2025-08-22
PublicationDateYYYYMMDD 2025-08-22
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-22
  day: 22
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Mounir (ref_7) 2025; 15
Zhao (ref_24) 2024; 190
Zhang (ref_20) 2021; 8
Liu (ref_5) 2018; 6
Viegas (ref_32) 2021; 32
Hou (ref_12) 2024; 13
ref_14
Kataray (ref_6) 2023; 58
ref_34
ref_11
Shi (ref_16) 2018; 10
ref_10
Wan (ref_19) 2019; 10
Wang (ref_21) 2021; 17
Li (ref_22) 2023; 144
ref_31
Das (ref_3) 2020; 120
Zhang (ref_4) 2020; 51
Park (ref_27) 2022; 328
ref_15
Husain (ref_2) 2021; 109
Jiang (ref_1) 2024; 86
Ren (ref_33) 2023; 123
Aldossary (ref_13) 2024; 7
Zhang (ref_25) 2023; 11
Li (ref_28) 2024; 18
Costa (ref_17) 2024; 11
ref_23
Yan (ref_26) 2022; 18
Du (ref_18) 2020; 11
Zeng (ref_9) 2022; 17
Gao (ref_29) 2021; 12
ref_8
Liang (ref_30) 2022; 14
References_xml – ident: ref_15
  doi: 10.3390/en10111880
– volume: 144
  start-page: 108603
  year: 2023
  ident: ref_22
  article-title: Constrained Large-Scale Real-Time EV Scheduling Based on Recurrent Deep Reinforcement Learning
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2022.108603
– volume: 51
  start-page: 3157
  year: 2020
  ident: ref_4
  article-title: Deep-Learning-Based Probabilistic Forecasting of Electric Vehicle Charging Load with a Novel Queuing Model
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.2975134
– volume: 12
  start-page: 3594
  year: 2021
  ident: ref_29
  article-title: Consensus Multi-Agent Reinforcement Learning for Volt-Var Control in Power Distribution Networks
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2021.3058996
– ident: ref_10
  doi: 10.1109/VTC2022-Fall57202.2022.10012762
– volume: 86
  start-page: 111159
  year: 2024
  ident: ref_1
  article-title: A Comprehensive Review of Energy Storage Technology Development and Application for Pure Electric Vehicles
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2024.111159
– volume: 10
  start-page: 2127
  year: 2018
  ident: ref_16
  article-title: Model Predictive Control for Smart Grids with Multiple Electric-Vehicle Charging Stations
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2017.2789333
– volume: 11
  start-page: 1066
  year: 2020
  ident: ref_18
  article-title: Intelligent Multi-Microgrid Energy Management Based on Deep Neural Network and Model-Free Reinforcement Learning
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2019.2930299
– ident: ref_11
– volume: 58
  start-page: 103363
  year: 2023
  ident: ref_6
  article-title: Integration of Smart Grid with Renewable Energy Sources: Opportunities and Challenges–A Comprehensive Review
  publication-title: Sustain. Energy Technol. Assess.
– volume: 7
  start-page: 3678
  year: 2024
  ident: ref_13
  article-title: Enhancing Urban Electric Vehicle (EV) Fleet Management Efficiency in Smart Cities: A Predictive Hybrid Deep Learning Framework
  publication-title: Smart Cities
  doi: 10.3390/smartcities7060142
– ident: ref_23
  doi: 10.1109/GLOBECOM54140.2023.10437665
– volume: 17
  start-page: 849
  year: 2021
  ident: ref_21
  article-title: Reinforcement Learning for Real-Time Pricing and Scheduling Control in EV Charging Stations
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2950809
– volume: 120
  start-page: 109618
  year: 2020
  ident: ref_3
  article-title: Electric Vehicles Standards, Charging Infrastructure, and Impact on Grid Integration: A Technological Review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.109618
– volume: 6
  start-page: 25657
  year: 2018
  ident: ref_5
  article-title: Adaptive Blockchain-Based Electric Vehicle Participation Scheme in Smart Grid Platform
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2835309
– ident: ref_14
– volume: 32
  start-page: 1214
  year: 2021
  ident: ref_32
  article-title: Fuzzy Logic Controllers for Charging/Discharging Management of Battery Electric Vehicles in a Smart Grid
  publication-title: J. Control Autom. Electr. Syst.
  doi: 10.1007/s40313-021-00741-w
– volume: 18
  start-page: 8765
  year: 2022
  ident: ref_26
  article-title: A Cooperative Charging Control Strategy for Electric Vehicles Based on Multiagent Deep Reinforcement Learning
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2022.3152218
– volume: 10
  start-page: 5246
  year: 2019
  ident: ref_19
  article-title: Model-Free Real-Time EV Charging Scheduling Based on Deep Reinforcement Learning
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2018.2879572
– volume: 123
  start-page: 106320
  year: 2023
  ident: ref_33
  article-title: Electric Vehicle Charging and Discharging Scheduling Strategy Based on Dynamic Electricity Price
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106320
– volume: 109
  start-page: 1039
  year: 2021
  ident: ref_2
  article-title: Electric Drive Technology Trends, Challenges, and Opportunities for Future Electric Vehicles
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2020.3046112
– ident: ref_31
– volume: 11
  start-page: 1065
  year: 2023
  ident: ref_25
  article-title: Correlated Information Scheduling in Industrial Internet of Things Based on Multi-Heterogeneous-Agent-Reinforcement-Learning
  publication-title: IEEE Trans. Netw. Sci. Eng.
  doi: 10.1109/TNSE.2023.3321048
– volume: 13
  start-page: 1536
  year: 2024
  ident: ref_12
  article-title: Toward Proximity Surveillance and Data Collection in Industrial IoT: A Multi-Stage Statistical Optimization Design
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2024.3376774
– volume: 15
  start-page: 208
  year: 2025
  ident: ref_7
  article-title: Securing the Future: Real-Time Intrusion Detection in IIoT Smart Grids Through Innovative AI Solutions
  publication-title: J. Cybersecur. Inf. Manag.
– ident: ref_34
  doi: 10.1109/ICIoT48696.2020.9089471
– volume: 8
  start-page: 3075
  year: 2021
  ident: ref_20
  article-title: CDDPG: A Deep-Reinforcement-Learning-Based Approach for Electric Vehicle Charging Control
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3015204
– volume: 328
  start-page: 120111
  year: 2022
  ident: ref_27
  article-title: Multi-Agent Deep Reinforcement Learning Approach for EV Charging Scheduling in a Smart Grid
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.120111
– ident: ref_8
  doi: 10.1109/ICTEM60690.2024.10631931
– volume: 17
  start-page: 84
  year: 2022
  ident: ref_9
  article-title: Multicluster-Coordination Industrial Internet of Things: The Era of Nonorthogonal Transmission
  publication-title: IEEE Veh. Technol. Mag.
  doi: 10.1109/MVT.2022.3168502
– volume: 11
  start-page: 3549
  year: 2024
  ident: ref_17
  article-title: Lyapunov-Based Finite Control Set Applied to an EV Charger Grid Converter Under Distorted Voltage
  publication-title: IEEE Trans. Transp. Electr.
  doi: 10.1109/TTE.2024.3443691
– volume: 190
  start-page: 103698
  year: 2024
  ident: ref_24
  article-title: Reinforcement Learning for Electric Vehicle Charging Scheduling: A Systematic Review
  publication-title: Transp. Res. Part E Logist. Transp. Rev.
  doi: 10.1016/j.tre.2024.103698
– volume: 18
  start-page: 1172
  year: 2024
  ident: ref_28
  article-title: Decentralized Collaborative Optimal Scheduling for EV Charging Stations Based on Multi-Agent Reinforcement Learning
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/gtd2.13047
– volume: 14
  start-page: 559
  year: 2022
  ident: ref_30
  article-title: Real-Time Operation Management for Battery Swapping-Charging System via Multi-Agent Deep Reinforcement Learning
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2022.3186931
SSID ssj0023338
Score 2.457636
Snippet As electric vehicles (EVs) gain widespread adoption in industrial environments supported by Industrial Internet of Things (IIoT) smart grids technology,...
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 5226
SubjectTerms Algorithms
Communication
cost optimization management
Data exchange
Decision making
deep reinforcement learning
electric vehicle charging scheduling
Electric vehicles
Electricity
Energy consumption
Energy management
Industrial Internet of Things
Infrastructure
Integrated approach
Optimization
Prices and rates
Scheduling
Sensors
Smart grid technology
smart grids
smart sensors
Systems stability
Time management
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6higMcKh5tMRS0ICROVm3v-5gSWipVVaWkKLfVeh9VDyQoSfn9zNhOlMKBSy8-rPcwO-PZb8a78w3A51Yj6iEWlNp4Xorc2tLrGh8ieclTzLr7D_njUl9dmdnMXu-0-qI7YT09cK-4E5NSpRovfJWDiLY2iPfB-5gQd3IwHRNope0mmRpSLY6ZV88jxDGpP1kRMRdFGg_QpyPp_3cr_ivA7IDm7AXsDxEiG_WSvYQnaf4Knu_wBr6Gy65sthxRWRQbj6_Py1MEo8j64XEi72d0kE4diNgE7RLpwvktwwiVXVwspmzyE1fOzpd3cXUAN2ffpl-_l0NbhDIg2q5LLr3xmKjwNlvNWx6F1cG3QkWvapVUHRppYm6CUlYmlSsTY6hj1co6c4NOdwh788U8vQEW26R4laTKLRdCcGOs8FY1CVFLBV4X8GmjLverZ79wmDWQTt1WpwWckiK3E4iwuhtAM7rBjO5_ZizgC5nBkVutlz74oToA5SSCKjcyEgMfrqUt4HhjKTf428phWGiJelCbAj5uX6On0PGHn6fFPc2RVCkseVXAUW_hrcyU5TZKirePsZZ38KyhLsEV7kHNMeytl_fpPTwNv9d3q-WH7kP9AzSN6og
  priority: 102
  providerName: Directory of Open Access Journals
Title Multi-Agent DDPG-Based Multi-Device Charging Scheduling for IIoT Smart Grids
URI https://www.ncbi.nlm.nih.gov/pubmed/40942654
https://www.proquest.com/docview/3249714078
https://www.proquest.com/docview/3250120530
https://doaj.org/article/8ee062a4a0fc4d918610caade521fc84
Volume 25
WOSCitedRecordID wos001570073800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BywEOvKGGEi0IiZNV2_vw-oQSkpZIbWTRgsLJWu-uqx6IWzvlyG9nxnZSHhIXLntYW9bI857d-QbgbZmi10NfEKba8FBUZRaaNMZFeCO5d1Xa1SG_HKeLhV4us3wouLXDtcqNTewMtast1cgP0PFnBC6X6veXVyFNjaLT1WGExm3YpbHZJOfp8ibh4ph_9WhCHFP7g5bguSje-M0HdVD9fxvkP8LMzt0cPvhfQh_C_SHQZONeMh7BLb96DPd-gR98Asdd9204pu4qNp3mR-EEfZpj_fbUkxFhdB5Pg4zYKbLX0b31c4aBLpvP6zN2-g0ljx01F659Cp8PZ2cfPobDdIXQotNeh1wabTDf4WWVpbzkDsm2phTKGRUrr2KbSO2qxCqVSa-qSDtnYxeVMq64Rt19BjureuX3gLnSKx55qaqSCyG41pkwmUo8Oj9leRzAm83_Li57EI0Ckw9iSrFlSgAT4sT2BcK97jbq5rwY1KjQ3kcqMcJElRUuizVGf9YY5zEKqawWAbwjPhaknevGWDM0GSCdhHNVjLXE-ImnMgtgf8O-YlDbtrjhXQCvt49R4egUxax8fU3vSGo4ljwK4HkvIluaKVlOlBQv_v3xl3A3oTHCERqpZB921s21fwV37Pf1RduMOhnuVj2C3clskX8adaUCXE9-zHAvn5_kX38CXfD-Kg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQk48H4EChgE4hQ1iR9xDghtWdquuqwqdUF7C47tVD2wKckWxJ_iNzKTx5aHxK0HLjk4VpTEn79vxvbMALwoUlQ91IIw1YaHoiyy0KQxXoQ3kntXpu065MdpOpvpxSI73IAfQywMHascOLElaldZWiPfRuHPKLlcqt-cfgmpahTtrg4lNDpYHPjv39Bla15Pxji-L5Nk99387X7YVxUILYrVKuTSaIN2Pi_KLOUFd_hcawqhnFGx8iq2idSuTKxSmfSqjLRzNnZRIeOS64iqRCDlX0IeT8nZSxfnDh5Hf6_LXsR5Fm03lA6M7JvfNK8tDfC3APxh1rbytnvjf_sxN-F6b0izUYf8W7Dhl7fh2i_pFe_AtI0uDkcUPcbG48O9cAc127GueeyJJBmdN6BCTewI4evoXP4xQ0OeTSbVnB19xpnF9uoT19yFDxfyOfdgc1kt_QNgrvCKR16qsuBCCK51JkymEo_iriyPA3g-jG9-2iUJydG5IhDkaxAEsEMjv-5Aeb3bhqo-znuayLX3kUqMMFFphctijdatNcZ5tLJKq0UArwg3ObHPqjbW9EEU-J6UxysfaYn2IU9lFsDWAJe8p6UmP8dKAM_Wt5FQaJfILH11Rn0kBVRLHgVwv4Pk-p1pMSBRUjz898OfwpX9-ftpPp3MDh7B1YRKJkdIyMkWbK7qM_8YLtuvq5OmftLOHwafLhqXPwEo7lSl
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL2qUoRgwfthKDAgECsrtufh8QKhFJNiNUSRWlBZmfHMuOqCpDgpiF_j67jXdsJLYtcFGy9sy88z55x53HsBnlYpqh5qQZhqw0NRV1lo0hg3whvJvavTdhzy_SSdTvXRUTbbgu_rWBhaVrnmxJao3cLSGPkQhT-j5HKpHtb9sohZPn55-jmkClI007oup9FBZN9_-4rdt-WLIsd__SxJxq8PX70J-woDoUXhWoVcGm3Q8_OqzlJecYf3sKYSyhkVK69im0jt6sQqlUmv6kg7Z2MXVTKuuY6oYgTS_zZacpEMYHtWvJ192HT3OPb-ulxGnGfRcEnJwcjt_KaAbaGAv-XgD5Pbit346v_8ma7Bld5is1HXJq7Dlp_fgMu_JF68CZM27jgcUVwZy_PZXriLau5Ytzv3RJ-MViJQCSd2gMB2tGL_mKHFZ0WxOGQHn7DNsb3mxC1vwbtzeZ3bMJgv5v4uMFd5xSMvVV1xIQTXOhMmU4lH2VeWxwE8Wf_r8rRLH1Jit4sAUW4AEcAuoWBzAmX8bncsmuOyJ5BSex-pxAgT1Va4LNboe60xzqP_qq0WATwnDJXES6vGWNOHV-BzUoavcqQlOkeeyiyAnTV0yp6wluVP3ATweHMYqYbmj8zcL87oHEmh1pJHAdzp4Ll5ZhomSJQU9_598UdwEeFYTorp_n24lFAt5QiZOtmBwao58w_ggv2yOlk2D_vGxODjeQPzB-9EXvQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Agent+DDPG-Based+Multi-Device+Charging+Scheduling+for+IIoT+Smart+Grids&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zeng%2C+Haiyong&rft.au=Huang%2C+Yuanyan&rft.au=Zhan%2C+Kaijie&rft.au=Yu%2C+Zichao&rft.date=2025-08-22&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=17&rft.spage=5226&rft_id=info:doi/10.3390%2Fs25175226&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s25175226
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon