Automatic estimation of the aortic lumen geometry by ellipse tracking

Purpose The shape and size of the aortic lumen can be associated with several aortic diseases. Automated computer segmentation can provide a mechanism for extracting the main features of the aorta that may be used as a diagnostic aid for physicians. This article presents a new fully automated algori...

Full description

Saved in:
Bibliographic Details
Published in:International journal for computer assisted radiology and surgery Vol. 14; no. 2; pp. 345 - 355
Main Authors: Tahoces, Pablo G., Alvarez, Luis, González, Esther, Cuenca, Carmelo, Trujillo, Agustín, Santana-Cedrés, Daniel, Esclarín, Julio, Gomez, Luis, Mazorra, Luis, Alemán-Flores, Miguel, Carreira, José M.
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.02.2019
Springer Nature B.V
Subjects:
ISSN:1861-6410, 1861-6429, 1861-6429
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Purpose The shape and size of the aortic lumen can be associated with several aortic diseases. Automated computer segmentation can provide a mechanism for extracting the main features of the aorta that may be used as a diagnostic aid for physicians. This article presents a new fully automated algorithm to extract the aorta geometry for either normal (with and without contrast) or abnormal computed tomography (CT) cases. Methods The algorithm we propose is a fast incremental technique that computes the 3D geometry of the aortic lumen from an initial contour located inside it. Our approach is based on the optimization of the 3D orientation of the cross sections of the aorta. The method uses a robust ellipse estimation algorithm and an energy-based optimization technique to automatically track the centerline and the cross sections. The optimization involves the size and eccentricity of the ellipse which best fits the aorta contour on each cross-sectional plane. The method works directly on the original CT and does not require a prior segmentation of the aortic lumen. We present experimental results to show the accuracy of the method and its ability to cope with challenging CT cases where the aortic lumen may have low contrast, different kinds of pathologies, artifacts, and even significant angulations due to severe elongations. Results The algorithm correctly tracked the aorta geometry in 380 of 385 CT cases. The mean of the dice similarity coefficient was 0.951 for aorta cross sections that were randomly selected from the whole database. The mean distance to a manually delineated segmentation of the aortic lumen was 0.9 mm for sixteen selected cases. Conclusions The results achieved after the evaluation demonstrate that the proposed algorithm is robust and accurate for the automatic extraction of the aorta geometry for both normal (with and without contrast) and abnormal CT volumes.
AbstractList The shape and size of the aortic lumen can be associated with several aortic diseases. Automated computer segmentation can provide a mechanism for extracting the main features of the aorta that may be used as a diagnostic aid for physicians. This article presents a new fully automated algorithm to extract the aorta geometry for either normal (with and without contrast) or abnormal computed tomography (CT) cases. The algorithm we propose is a fast incremental technique that computes the 3D geometry of the aortic lumen from an initial contour located inside it. Our approach is based on the optimization of the 3D orientation of the cross sections of the aorta. The method uses a robust ellipse estimation algorithm and an energy-based optimization technique to automatically track the centerline and the cross sections. The optimization involves the size and eccentricity of the ellipse which best fits the aorta contour on each cross-sectional plane. The method works directly on the original CT and does not require a prior segmentation of the aortic lumen. We present experimental results to show the accuracy of the method and its ability to cope with challenging CT cases where the aortic lumen may have low contrast, different kinds of pathologies, artifacts, and even significant angulations due to severe elongations. The algorithm correctly tracked the aorta geometry in 380 of 385 CT cases. The mean of the dice similarity coefficient was 0.951 for aorta cross sections that were randomly selected from the whole database. The mean distance to a manually delineated segmentation of the aortic lumen was 0.9 mm for sixteen selected cases. The results achieved after the evaluation demonstrate that the proposed algorithm is robust and accurate for the automatic extraction of the aorta geometry for both normal (with and without contrast) and abnormal CT volumes.
PurposeThe shape and size of the aortic lumen can be associated with several aortic diseases. Automated computer segmentation can provide a mechanism for extracting the main features of the aorta that may be used as a diagnostic aid for physicians. This article presents a new fully automated algorithm to extract the aorta geometry for either normal (with and without contrast) or abnormal computed tomography (CT) cases.MethodsThe algorithm we propose is a fast incremental technique that computes the 3D geometry of the aortic lumen from an initial contour located inside it. Our approach is based on the optimization of the 3D orientation of the cross sections of the aorta. The method uses a robust ellipse estimation algorithm and an energy-based optimization technique to automatically track the centerline and the cross sections. The optimization involves the size and eccentricity of the ellipse which best fits the aorta contour on each cross-sectional plane. The method works directly on the original CT and does not require a prior segmentation of the aortic lumen. We present experimental results to show the accuracy of the method and its ability to cope with challenging CT cases where the aortic lumen may have low contrast, different kinds of pathologies, artifacts, and even significant angulations due to severe elongations.ResultsThe algorithm correctly tracked the aorta geometry in 380 of 385 CT cases. The mean of the dice similarity coefficient was 0.951 for aorta cross sections that were randomly selected from the whole database. The mean distance to a manually delineated segmentation of the aortic lumen was 0.9 mm for sixteen selected cases.ConclusionsThe results achieved after the evaluation demonstrate that the proposed algorithm is robust and accurate for the automatic extraction of the aorta geometry for both normal (with and without contrast) and abnormal CT volumes.
Purpose The shape and size of the aortic lumen can be associated with several aortic diseases. Automated computer segmentation can provide a mechanism for extracting the main features of the aorta that may be used as a diagnostic aid for physicians. This article presents a new fully automated algorithm to extract the aorta geometry for either normal (with and without contrast) or abnormal computed tomography (CT) cases. Methods The algorithm we propose is a fast incremental technique that computes the 3D geometry of the aortic lumen from an initial contour located inside it. Our approach is based on the optimization of the 3D orientation of the cross sections of the aorta. The method uses a robust ellipse estimation algorithm and an energy-based optimization technique to automatically track the centerline and the cross sections. The optimization involves the size and eccentricity of the ellipse which best fits the aorta contour on each cross-sectional plane. The method works directly on the original CT and does not require a prior segmentation of the aortic lumen. We present experimental results to show the accuracy of the method and its ability to cope with challenging CT cases where the aortic lumen may have low contrast, different kinds of pathologies, artifacts, and even significant angulations due to severe elongations. Results The algorithm correctly tracked the aorta geometry in 380 of 385 CT cases. The mean of the dice similarity coefficient was 0.951 for aorta cross sections that were randomly selected from the whole database. The mean distance to a manually delineated segmentation of the aortic lumen was 0.9 mm for sixteen selected cases. Conclusions The results achieved after the evaluation demonstrate that the proposed algorithm is robust and accurate for the automatic extraction of the aorta geometry for both normal (with and without contrast) and abnormal CT volumes.
The shape and size of the aortic lumen can be associated with several aortic diseases. Automated computer segmentation can provide a mechanism for extracting the main features of the aorta that may be used as a diagnostic aid for physicians. This article presents a new fully automated algorithm to extract the aorta geometry for either normal (with and without contrast) or abnormal computed tomography (CT) cases.PURPOSEThe shape and size of the aortic lumen can be associated with several aortic diseases. Automated computer segmentation can provide a mechanism for extracting the main features of the aorta that may be used as a diagnostic aid for physicians. This article presents a new fully automated algorithm to extract the aorta geometry for either normal (with and without contrast) or abnormal computed tomography (CT) cases.The algorithm we propose is a fast incremental technique that computes the 3D geometry of the aortic lumen from an initial contour located inside it. Our approach is based on the optimization of the 3D orientation of the cross sections of the aorta. The method uses a robust ellipse estimation algorithm and an energy-based optimization technique to automatically track the centerline and the cross sections. The optimization involves the size and eccentricity of the ellipse which best fits the aorta contour on each cross-sectional plane. The method works directly on the original CT and does not require a prior segmentation of the aortic lumen. We present experimental results to show the accuracy of the method and its ability to cope with challenging CT cases where the aortic lumen may have low contrast, different kinds of pathologies, artifacts, and even significant angulations due to severe elongations.METHODSThe algorithm we propose is a fast incremental technique that computes the 3D geometry of the aortic lumen from an initial contour located inside it. Our approach is based on the optimization of the 3D orientation of the cross sections of the aorta. The method uses a robust ellipse estimation algorithm and an energy-based optimization technique to automatically track the centerline and the cross sections. The optimization involves the size and eccentricity of the ellipse which best fits the aorta contour on each cross-sectional plane. The method works directly on the original CT and does not require a prior segmentation of the aortic lumen. We present experimental results to show the accuracy of the method and its ability to cope with challenging CT cases where the aortic lumen may have low contrast, different kinds of pathologies, artifacts, and even significant angulations due to severe elongations.The algorithm correctly tracked the aorta geometry in 380 of 385 CT cases. The mean of the dice similarity coefficient was 0.951 for aorta cross sections that were randomly selected from the whole database. The mean distance to a manually delineated segmentation of the aortic lumen was 0.9 mm for sixteen selected cases.RESULTSThe algorithm correctly tracked the aorta geometry in 380 of 385 CT cases. The mean of the dice similarity coefficient was 0.951 for aorta cross sections that were randomly selected from the whole database. The mean distance to a manually delineated segmentation of the aortic lumen was 0.9 mm for sixteen selected cases.The results achieved after the evaluation demonstrate that the proposed algorithm is robust and accurate for the automatic extraction of the aorta geometry for both normal (with and without contrast) and abnormal CT volumes.CONCLUSIONSThe results achieved after the evaluation demonstrate that the proposed algorithm is robust and accurate for the automatic extraction of the aorta geometry for both normal (with and without contrast) and abnormal CT volumes.
Author Tahoces, Pablo G.
Alvarez, Luis
Santana-Cedrés, Daniel
Gomez, Luis
Mazorra, Luis
González, Esther
Carreira, José M.
Esclarín, Julio
Cuenca, Carmelo
Trujillo, Agustín
Alemán-Flores, Miguel
Author_xml – sequence: 1
  givenname: Pablo G.
  orcidid: 0000-0001-5245-2349
  surname: Tahoces
  fullname: Tahoces, Pablo G.
  email: pablo.tahoces@usc.es
  organization: Department of Electronics and Computer Science, Universidad de Santiago de Compostela
– sequence: 2
  givenname: Luis
  orcidid: 0000-0002-6953-9587
  surname: Alvarez
  fullname: Alvarez, Luis
  organization: CTIM, Universidad de Las Palmas de Gran Canaria
– sequence: 3
  givenname: Esther
  surname: González
  fullname: González, Esther
  organization: CTIM, Universidad de Las Palmas de Gran Canaria
– sequence: 4
  givenname: Carmelo
  surname: Cuenca
  fullname: Cuenca, Carmelo
  organization: CTIM, Universidad de Las Palmas de Gran Canaria
– sequence: 5
  givenname: Agustín
  surname: Trujillo
  fullname: Trujillo, Agustín
  organization: CTIM, Universidad de Las Palmas de Gran Canaria
– sequence: 6
  givenname: Daniel
  surname: Santana-Cedrés
  fullname: Santana-Cedrés, Daniel
  organization: CTIM, Universidad de Las Palmas de Gran Canaria
– sequence: 7
  givenname: Julio
  surname: Esclarín
  fullname: Esclarín, Julio
  organization: CTIM, Universidad de Las Palmas de Gran Canaria
– sequence: 8
  givenname: Luis
  surname: Gomez
  fullname: Gomez, Luis
  organization: CTIM, Universidad de Las Palmas de Gran Canaria
– sequence: 9
  givenname: Luis
  surname: Mazorra
  fullname: Mazorra, Luis
  organization: CTIM, Universidad de Las Palmas de Gran Canaria
– sequence: 10
  givenname: Miguel
  surname: Alemán-Flores
  fullname: Alemán-Flores, Miguel
  organization: CTIM, Universidad de Las Palmas de Gran Canaria
– sequence: 11
  givenname: José M.
  surname: Carreira
  fullname: Carreira, José M.
  organization: Complejo Hospitalario Universitario de Santiago (CHUS)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30244307$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9LwzAcxYNM3A_9A7xIwIuXar5JmrTHMeYPGHjRc2izdHa2zUzaw_57021OGOgpD_J5yeO9MRo0tjEIXQO5B0LkgweIeRIRSCJIBETkDI12QnCaDo4ayBCNvV8TwmPJ4gs0ZIRyzogcofm0a22dtaXGxrdlr2yDbYHbD4Mz6_qLqqtNg1fG1qZ1W5xvsamqcuMNbl2mP8tmdYnOi6zy5upwTtD74_xt9hwtXp9eZtNFpDnEbURzoo0QGuIYWCELSGLDloIxHTMNBAyVjOe50FRzTXiaa7YsZJamRc6Bcsom6G7_7sbZry4EVnXpdUiTNcZ2XlEAkFwmPA3o7Qm6tp1rQrpASUmJEEwG6uZAdXltlmrjQgVuq34KCgDsAe2s984URwSI6kdQ-xFUGEH1fSsSPPLEo8t2V2zoq6z-ddK904dfmpVxv6H_Nn0D7hiY9Q
CitedBy_id crossref_primary_10_1038_s41598_019_50251_8
crossref_primary_10_1016_j_jvcir_2023_103928
crossref_primary_10_1007_s13398_022_01242_4
crossref_primary_10_1016_j_compbiomed_2021_104533
crossref_primary_10_1016_j_jiph_2020_06_033
crossref_primary_10_1007_s11517_019_02110_x
crossref_primary_10_1016_j_compbiomed_2023_107002
crossref_primary_10_1007_s10462_021_10074_4
crossref_primary_10_3724_SP_J_1089_2022_19038
crossref_primary_10_1145_3728632
crossref_primary_10_1002_mp_15289
Cites_doi 10.1007/BFb0056195
10.1136/bmj.312.7023.71
10.1007/s11548-013-0924-5
10.1109/JBHI.2013.2269292
10.1016/j.media.2009.07.011
10.1007/s10278-013-9622-7
10.1109/TMI.2008.2011480
10.1007/s10851-018-0798-9
10.1016/j.jacc.2010.02.010
10.1109/CISP.2009.5305569
10.3109/10929088.2013.816978
10.1007/s13244-013-0270-8
10.1016/j.jacc.2009.08.084
10.1118/1.4924500
10.1006/cviu.2000.0866
10.1016/j.jacc.2011.06.012
10.1118/1.3528204
10.1007/s11554-015-0531-5
ContentType Journal Article
Copyright CARS 2018
2018© CARS 2018
Copyright_xml – notice: CARS 2018
– notice: 2018© CARS 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1007/s11548-018-1861-0
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1861-6429
EndPage 355
ExternalDocumentID 30244307
10_1007_s11548_018_1861_0
Genre Journal Article
GrantInformation_xml – fundername: Secretaría de Estado de Investigación, Desarrollo e Innovación
  grantid: TIN2016-76373-P; MTM2016-75339-P
  funderid: http://dx.doi.org/10.13039/501100007136
– fundername: Secretaría de Estado de Investigación, Desarrollo e Innovación
  grantid: MTM2016-75339-P
– fundername: Secretaría de Estado de Investigación, Desarrollo e Innovación
  grantid: TIN2016-76373-P
GroupedDBID ---
-5E
-5G
-BR
-EM
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABOCM
ABPLI
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ARMRJ
ASPBG
AVWKF
AVXWI
AXYYD
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CS3
CSCUP
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LLZTM
M4Y
MA-
N9A
NPVJJ
NQJWS
NU0
O93
O9I
O9J
OAM
P2P
P9S
PF0
PT4
QOR
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S27
S37
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7R
Z7V
Z7X
Z82
Z83
Z87
Z88
ZMTXR
ZOVNA
~A9
-Y2
2VQ
7X7
88E
8FI
8FJ
AANXM
AARHV
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABRTQ
ABULA
ABUWG
ACSTC
ADHKG
ADKFA
AEBTG
AEKMD
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHSBF
AHWEU
AIXLP
AJBLW
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CAG
CCPQU
CITATION
COF
EN4
FYUFA
H13
HCIFZ
HMCUK
IHE
M1P
N2Q
O9-
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PSQYO
S1Z
UKHRP
AAYZH
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ID FETCH-LOGICAL-c415t-2b0ce66c15513f7f185e3d633c53c101e2734bb6c2c4c049bc3df7a99fb412423
IEDL.DBID RSV
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000458112800016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1861-6410
1861-6429
IngestDate Mon Jul 21 11:10:10 EDT 2025
Tue Oct 07 06:46:02 EDT 2025
Thu Apr 03 06:55:31 EDT 2025
Tue Nov 18 22:26:57 EST 2025
Sat Nov 29 01:30:15 EST 2025
Fri Feb 21 02:42:13 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Aorta
CT images
Cross section
Centerline
Ellipse tracking
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-2b0ce66c15513f7f185e3d633c53c101e2734bb6c2c4c049bc3df7a99fb412423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6953-9587
0000-0001-5245-2349
OpenAccessLink http://hdl.handle.net/10553/43472
PMID 30244307
PQID 2177206637
PQPubID 2043910
PageCount 11
ParticipantIDs proquest_miscellaneous_2111747849
proquest_journals_2177206637
pubmed_primary_30244307
crossref_primary_10_1007_s11548_018_1861_0
crossref_citationtrail_10_1007_s11548_018_1861_0
springer_journals_10_1007_s11548_018_1861_0
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Germany
– name: Heidelberg
PublicationSubtitle A journal for interdisciplinary research, development and applications of image guided diagnosis and therapy
PublicationTitle International journal for computer assisted radiology and surgery
PublicationTitleAbbrev Int J CARS
PublicationTitleAlternate Int J Comput Assist Radiol Surg
PublicationYear 2019
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Hiratzka, Bakris, Beckman, Bersin, Carr, Casey, Eagle, Hermann, Isselbacher, Kazerooni, Kouchoukos, Lytle, Milewicz, Reich, Sen, Shinn, Svensson, Williams (CR2) 2010; 55
Martinez-Mera, Tahoces, Carreira, Suárez-Cuenca, Souto (CR5) 2013; 18
Elefteriades, Farkas (CR13) 2010; 55
CR4
Kurugol, Come, Diaz, Ross (CR6) 2015; 42
Avila-Montes, Kurkure, Nakazato, Berman, Dey, Kakadiaris (CR21) 2013; 17
Armato, McLennan, Bidaut, McNitt-Gray, Meyer, Reeves, Zhao, Aberle, Henschke, Hoffman, Kazerooni, MacMahon, Van Beeke, Yankelevitz, Biancardi, Bland, Brown, Engelmann, Laderach, Max, Pais, Qing, Roberts, Smith, Starkey, Batrah, Caligiuri, Farooqi, Gladish, Jude, Munden, Petkovska, Quint, Schwartz, Sundaram, Dodd, Fenimore, Gur, Petrick, Freymann, Kirby, Hughes, Casteele, Gupte, Sallamm, Heath, Kuhn, Dharaiya, Burns, Fryd, Salganicoff, Anand, Shreter, Vastagh, Croft (CR18) 2011; 38
Alvarez, González, Cuenca, Trujillo, Tahoces, Carreira (CR12) 2018; 60
Alvarez, Trujillo, Cuenca, González, Esclarín, Gomez, Mazorra, Alemán-Flores, Tahoces, Carreira (CR11) 2017
Xie, Padgett, Biancardi, Reeves (CR8) 2014; 9
Clark, Vendt, Smith, Freymann, Kirby, Koppel, Moore, Phillips, Maffitt, Pringle, Tarbox, Prior (CR19) 2013; 26
Isgum, Staring, Rutten, Prokop, Viergever, Van Ginneken (CR20) 2009; 28
Lesage, Angelini, Bloch, Funka-Lea (CR3) 2009; 13
Krissian, Malandain, Ayache, Vaillant, Trousset (CR9) 2000; 80
Frangi, Niessen, Vincken, Viergever (CR10) 1998
Rajiah, Schoenhagen (CR14) 2013; 4
Redheuil, Yu, Mousseaux, Harouni, Kachenoura, Wu, Bluemke, Lima (CR15) 2011; 58
Cuenca, González, Trujillo, Esclarín, Mazorra, Alvarez, Martínez-Mera, Tahoces, Carreira (CR17) 2018; 14
Alvarez, González, Esclarín, Gomez, Alemán-Flores, Trujillo, Cuenca, Mazorra, Tahoces, Carreira (CR16) 2017
Dasgupta, Mukhopadhyay, Mehre, Bhattacharyya (CR7) 2016
Sackett, Rosenberg, Mc Gray, Haynes, Richardson (CR1) 1996; 312
Avijit Dasgupta (1861_CR7) 2016
OC Avila-Montes (1861_CR21) 2013; 17
LF Hiratzka (1861_CR2) 2010; 55
A Redheuil (1861_CR15) 2011; 58
Luis Alvarez (1861_CR11) 2017
K Clark (1861_CR19) 2013; 26
S Kurugol (1861_CR6) 2015; 42
Alejandro F. Frangi (1861_CR10) 1998
L Alvarez (1861_CR12) 2018; 60
Luis Alvarez (1861_CR16) 2017
DL Sackett (1861_CR1) 1996; 312
JA Elefteriades (1861_CR13) 2010; 55
1861_CR4
D Lesage (1861_CR3) 2009; 13
C Cuenca (1861_CR17) 2018; 14
I Isgum (1861_CR20) 2009; 28
Y Xie (1861_CR8) 2014; 9
SG Armato (1861_CR18) 2011; 38
Prabhakar Rajiah (1861_CR14) 2013; 4
K Krissian (1861_CR9) 2000; 80
JA Martinez-Mera (1861_CR5) 2013; 18
References_xml – volume: 14
  start-page: 793
  year: 2018
  end-page: 802
  ident: CR17
  article-title: Fast and accurate circle tracking using active contour models
  publication-title: J Real-Time Image Process
– volume: 60
  start-page: 1095
  issue: 7
  year: 2018
  end-page: 1110
  ident: CR12
  article-title: Ellipse motion estimation using parametric snakes
  publication-title: J Math Imaging Vis
– start-page: 187
  year: 2016
  end-page: 195
  ident: CR7
  article-title: Morphological Geodesic Active Contour Based Automatic Aorta Segmentation in Thoracic CT Images
  publication-title: Advances in Intelligent Systems and Computing
– start-page: 130
  year: 1998
  end-page: 137
  ident: CR10
  article-title: Multiscale vessel enhancement filtering
  publication-title: Medical Image Computing and Computer-Assisted Intervention — MICCAI’98
– volume: 55
  start-page: 841
  issue: 9
  year: 2010
  end-page: 857
  ident: CR13
  article-title: Thoracic aortic aneurysm. Clinical pertinent controversies and uncertainties
  publication-title: J Am Coll Cardiol
– volume: 58
  start-page: 1262
  issue: 12
  year: 2011
  end-page: 1270
  ident: CR15
  article-title: Age-related changes in aortic arch geometry relationship with proximal aortic function and left ventricular mass and remodeling
  publication-title: J Am Coll Cardiol
– volume: 4
  start-page: 671
  issue: 5
  year: 2013
  end-page: 689
  ident: CR14
  article-title: The role of computed tomography in pre-procedural planning of cardiovascular surgery and intervention
  publication-title: Insights into Imaging
– ident: CR4
– volume: 312
  start-page: 71
  year: 1996
  end-page: 2
  ident: CR1
  article-title: Evidence-based medicine: what it is and what it isn’t
  publication-title: BMJ
– volume: 80
  start-page: 130
  issue: 2
  year: 2000
  end-page: 171
  ident: CR9
  article-title: Model-based detection of tubular structures in 3D images
  publication-title: Comput Vis Image Underst
– volume: 9
  start-page: 211
  year: 2014
  end-page: 219
  ident: CR8
  article-title: Automated aorta segmentation in low-dose chest CT images
  publication-title: Int J Comput Assoc Radiol
– start-page: 174
  year: 2017
  end-page: 181
  ident: CR11
  article-title: Tracking the Aortic Lumen Geometry by Optimizing the 3D Orientation of Its Cross-sections
  publication-title: Lecture Notes in Computer Science
– volume: 17
  start-page: 936
  issue: 5
  year: 2013
  end-page: 49
  ident: CR21
  article-title: Segmentation of the thoracic aorta in noncontrast cardiac CT images
  publication-title: IEEE J Biomed Health Inform
– volume: 55
  start-page: 1509
  issue: 14
  year: 2010
  end-page: 1544
  ident: CR2
  article-title: 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/ STS/SVM Guidelines for the diagnosis and management of patients with thoracic aortic disease
  publication-title: J Am Coll Cardiol
– volume: 38
  start-page: 915
  issue: 2
  year: 2011
  end-page: 931
  ident: CR18
  article-title: The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): a completed reference database of lung nodules on CT scans
  publication-title: Med Phys
– volume: 26
  start-page: 1045
  issue: 6
  year: 2013
  end-page: 1057
  ident: CR19
  article-title: The cancer imaging archive (TCIA): maintaining and operating a public information repository
  publication-title: J Digit Imaging
– start-page: 3
  year: 2017
  end-page: 11
  ident: CR16
  article-title: Robust Detection of Circles in the Vessel Contours and Application to Local Probability Density Estimation
  publication-title: Lecture Notes in Computer Science
– volume: 13
  start-page: 819
  issue: 6
  year: 2009
  end-page: 845
  ident: CR3
  article-title: A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes
  publication-title: Med Image Anal
– volume: 42
  start-page: 5467
  issue: 9
  year: 2015
  end-page: 5478
  ident: CR6
  article-title: Automated quantitative 3D analysis of aorta size, morphology, and mural calcification distributions
  publication-title: Med Phys
– volume: 18
  start-page: 109
  issue: 5–6
  year: 2013
  end-page: 117
  ident: CR5
  article-title: A hybrid method based on level set and 3D region growing for segmentation of the thoracic aorta
  publication-title: Comput Aided Surg
– volume: 28
  start-page: 1000
  issue: 7
  year: 2009
  end-page: 1010
  ident: CR20
  article-title: Multi-atlas-based segmentation with local decision fusion application to cardiac and aortic segmentation in CT scans
  publication-title: IEEE Trans Med Imag
– start-page: 130
  volume-title: Medical Image Computing and Computer-Assisted Intervention — MICCAI’98
  year: 1998
  ident: 1861_CR10
  doi: 10.1007/BFb0056195
– volume: 312
  start-page: 71
  year: 1996
  ident: 1861_CR1
  publication-title: BMJ
  doi: 10.1136/bmj.312.7023.71
– volume: 9
  start-page: 211
  year: 2014
  ident: 1861_CR8
  publication-title: Int J Comput Assoc Radiol
  doi: 10.1007/s11548-013-0924-5
– volume: 17
  start-page: 936
  issue: 5
  year: 2013
  ident: 1861_CR21
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2013.2269292
– volume: 13
  start-page: 819
  issue: 6
  year: 2009
  ident: 1861_CR3
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2009.07.011
– volume: 26
  start-page: 1045
  issue: 6
  year: 2013
  ident: 1861_CR19
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-013-9622-7
– volume: 28
  start-page: 1000
  issue: 7
  year: 2009
  ident: 1861_CR20
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2008.2011480
– volume: 60
  start-page: 1095
  issue: 7
  year: 2018
  ident: 1861_CR12
  publication-title: J Math Imaging Vis
  doi: 10.1007/s10851-018-0798-9
– volume: 55
  start-page: 1509
  issue: 14
  year: 2010
  ident: 1861_CR2
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2010.02.010
– ident: 1861_CR4
  doi: 10.1109/CISP.2009.5305569
– volume: 18
  start-page: 109
  issue: 5–6
  year: 2013
  ident: 1861_CR5
  publication-title: Comput Aided Surg
  doi: 10.3109/10929088.2013.816978
– start-page: 174
  volume-title: Lecture Notes in Computer Science
  year: 2017
  ident: 1861_CR11
– volume: 4
  start-page: 671
  issue: 5
  year: 2013
  ident: 1861_CR14
  publication-title: Insights into Imaging
  doi: 10.1007/s13244-013-0270-8
– volume: 55
  start-page: 841
  issue: 9
  year: 2010
  ident: 1861_CR13
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2009.08.084
– volume: 42
  start-page: 5467
  issue: 9
  year: 2015
  ident: 1861_CR6
  publication-title: Med Phys
  doi: 10.1118/1.4924500
– start-page: 187
  volume-title: Advances in Intelligent Systems and Computing
  year: 2016
  ident: 1861_CR7
– volume: 80
  start-page: 130
  issue: 2
  year: 2000
  ident: 1861_CR9
  publication-title: Comput Vis Image Underst
  doi: 10.1006/cviu.2000.0866
– volume: 58
  start-page: 1262
  issue: 12
  year: 2011
  ident: 1861_CR15
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2011.06.012
– volume: 38
  start-page: 915
  issue: 2
  year: 2011
  ident: 1861_CR18
  publication-title: Med Phys
  doi: 10.1118/1.3528204
– start-page: 3
  volume-title: Lecture Notes in Computer Science
  year: 2017
  ident: 1861_CR16
– volume: 14
  start-page: 793
  year: 2018
  ident: 1861_CR17
  publication-title: J Real-Time Image Process
  doi: 10.1007/s11554-015-0531-5
SSID ssj0045735
Score 2.25125
Snippet Purpose The shape and size of the aortic lumen can be associated with several aortic diseases. Automated computer segmentation can provide a mechanism for...
The shape and size of the aortic lumen can be associated with several aortic diseases. Automated computer segmentation can provide a mechanism for extracting...
PurposeThe shape and size of the aortic lumen can be associated with several aortic diseases. Automated computer segmentation can provide a mechanism for...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 345
SubjectTerms Algorithms
Aorta
Aorta - diagnostic imaging
Automation
Computed tomography
Computer Imaging
Computer Science
Contours
Coronary vessels
Cross-sections
Diagnostic systems
Feature extraction
Geometry
Health Informatics
Humans
Imaging
Imaging, Three-Dimensional - methods
Medicine
Medicine & Public Health
Optimization
Optimization techniques
Original Article
Pattern Recognition and Graphics
Pattern Recognition, Automated - methods
Physicians
Radiology
Reproducibility of Results
Segmentation
Shape
Surgery
Tomography, X-Ray Computed - methods
Tracking
Vision
Title Automatic estimation of the aortic lumen geometry by ellipse tracking
URI https://link.springer.com/article/10.1007/s11548-018-1861-0
https://www.ncbi.nlm.nih.gov/pubmed/30244307
https://www.proquest.com/docview/2177206637
https://www.proquest.com/docview/2111747849
Volume 14
WOSCitedRecordID wos000458112800016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1861-6429
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045735
  issn: 1861-6410
  databaseCode: RSV
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB68EF-st_FiBZ-UQNvd7iaPIooPWsSLvoXsdCOCJtKmQv-9MzlaxAP0NZlMwuzOldmZD-BIK211bFp-gNL6KqGENcRm4PeNC5CuGSwbha9Mtxv0euFN1cc9rE-71yXJwlJPm904uqbUl7KeQFMOPAvz5O0Cxmu4vXusza_qmAJVs6DRqjUpZX7H4rMz-hJhfqmOFk7novGvz12B5SrGFKflpliFGZeuQaPGbxCVOq_B4nVVWF-H89NRnhXTWwWP3Sj7GUWWCIoPRZwxJ8FmLBVPLnt1-WAs7Fi4opDgRD6IkX-5b8DDxfn92aVfISz4SI4799u2iU5rLGBeEpOQ83ayr6XEjkRSVsfDb6zV2EaFlEtYlP3ExGGYWEatbstNmEuz1G2DCDpkOmPGIEWrJGUhWlkpiSUHCZQDetCsRR1hNX6cUTBeoungZJZYRBKLWGJR04PjySNv5eyN34j36vWLKjUcRpRvGZ5XL40Hh5PbpEBcFYlTl42YptViEAEVerBVrvvkbZIiGEVW0IOTepGnzH_8lJ0_Ue_CEgVhYXkSfA_m8sHI7cMCvufPw8EBzJpecFDs8A-WPu__
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9tADLcGm4AXyspgATZuEk-gSG3vepc8VogKRFshxhBvUc69oElbgtp0Ev89dj5aTQUkeE0cJ_Kdv-KzfwBHWmmrY9P2A5TWVwklrCG2An9sXIB0zWDZKDwwo1FwdxdeVX3c0_q0e12SLCz1otmNo2tKfSnrCTTlwCvwUZHD4oH51z9va_OruqZA1SxotGrPS5nPsfjfGS1FmEvV0cLp9Bvv-twt2KxiTNErN8Vn-ODSJjRq_AZRqXMT1oZVYX0bznqzPCumtwoeu1H2M4osERQfijhjToLNWCruXfbX5ZNHYR-FKwoJTuSTGPmX-xf41T-7OT33K4QFH8lx537HttBpjQXMS2ISct5OjrWU2JVIyup4-I21GjuokHIJi3KcmDgME8uo1R25A6tplrqvIIIumc6YMUjRKklZiFZWSmLJQQLlgB60alFHWI0fZxSMP9FicDJLLCKJRSyxqOXB8fyRh3L2xmvEB_X6RZUaTiPKtwzPq5fGgx_z26RAXBWJU5fNmKbdZhABFXqwW677_G2SIhhFVtCDk3qRF8xf_JS9N1Efwvr5zXAQDS5Gl_uwQQFZWJ4KP4DVfDJz3-AT_st_Tyffi33-BDam8fs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB6VtEJcoAQKphQWqScqiyS72bWPqCRqBUSRaFFulneyrpDARomDlH_PjB-JEA-p4mqP19a-Zj7PzvcBfNdKWx2bth-gtL5KCLCG2Ar8sXEB0jWDZaHwhRkMgtEoHFY6p9P6tHudkixrGpilKc1P7sfJybLwjSNtgsGEgAJNeHgFPio-R89w_eq63opV1xQKm4WNJoM6rflSE08d07No81mmtHBA_Y13f_pnWK9iT3FaTpZN-ODSJmzUug6iWuZNWL2sEu5b0Dud5VnB6iqYjqOscxRZIihuFHHGLQne3lLxz2V3Lp_MhZ0LVyQYnMgnMfKv-G342-_9-fnLr5QXfCSHnvsd20KnNRbyL4lJyKk7OdZSYlciLWLHpDjWauygQsIYFuU4MXEYJpbVrDvyCzTSLHW7IIIubakxa5OiVZLQiVZWSmqSgwfChh606m6PsKIlZ3WM22hJqMw9FlGPRdxjUcuD48Uj9yUnx1vG-_VYRtXynEaEwwzz2EvjwdHiNi0szpbEqctmbNNus7iACj3YKefA4m2SIhtFu6MHP-oBXzb-6qfs_Zf1IawOz_rRxe_B-VdYozgtLA-L70Mjn8zcN_iED_nNdHJQTPlH2XD63w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+estimation+of+the+aortic+lumen+geometry+by+ellipse+tracking&rft.jtitle=International+journal+for+computer+assisted+radiology+and+surgery&rft.au=Tahoces%2C+Pablo+G&rft.au=Alvarez%2C+Luis&rft.au=Gonz%C3%A1lez%2C+Esther&rft.au=Cuenca%2C+Carmelo&rft.date=2019-02-01&rft.eissn=1861-6429&rft.volume=14&rft.issue=2&rft.spage=345&rft_id=info:doi/10.1007%2Fs11548-018-1861-0&rft_id=info%3Apmid%2F30244307&rft.externalDocID=30244307
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-6410&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-6410&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-6410&client=summon