Research on Instance Segmentation Algorithm for Caged Chickens in Infrared Images Based on Improved Mask R-CNN

Infrared images of caged chickens can provide valuable insights into their health status. Accurately detecting and segmenting individual chickens in these images is essential for effective health monitoring in large-scale chicken farming. However, the presence of obstacles such as cages, feeders, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 25; H. 19; S. 6237
Hauptverfasser: Chen, Youqing, Liu, Hang, Wang, Lun, Chen, Chen, Li, Siyu, Zhong, Binyuan, Qiao, Jihui, Ye, Rong, Li, Tong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 08.10.2025
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Infrared images of caged chickens can provide valuable insights into their health status. Accurately detecting and segmenting individual chickens in these images is essential for effective health monitoring in large-scale chicken farming. However, the presence of obstacles such as cages, feeders, and drinkers can obscure the chickens, while clustering and overlapping among them may further hinder segmentation accuracy. This study proposes a Mask R-CNN-based instance segmentation algorithm specifically designed for caged chickens in infrared images. The backbone network is enhanced by incorporating the CBAM within this algorithm, which is further combined with the AC-FPN architecture to improve the model’s ability to extract features. Experimental results demonstrate that the model achieves average AP and AR10 values of 78.66% and 85.80%, respectively, in object detection, as per the COCO performance metrics. In segmentation tasks, the model attains average AP and AR10 values of 73.94% and 80.42%, respectively, reflecting improvements of 32.91% and 17.78% over the original model. Notably, among all categories of chicken flocks, the ‘Chicken-many’ category achieved an impressive average segmentation accuracy of 98.51%, and the other categories also surpassed 93%. The proposed instance segmentation method for caged chickens in infrared images effectively facilitates the recognition and segmentation of chickens within the challenging imaging conditions typical of high-density caged environments, thereby contributing to enhanced production efficiency and the advancement of intelligent breeding management.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s25196237