Research on Instance Segmentation Algorithm for Caged Chickens in Infrared Images Based on Improved Mask R-CNN

Infrared images of caged chickens can provide valuable insights into their health status. Accurately detecting and segmenting individual chickens in these images is essential for effective health monitoring in large-scale chicken farming. However, the presence of obstacles such as cages, feeders, an...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors (Basel, Switzerland) Ročník 25; číslo 19; s. 6237
Hlavní autori: Chen, Youqing, Liu, Hang, Wang, Lun, Chen, Chen, Li, Siyu, Zhong, Binyuan, Qiao, Jihui, Ye, Rong, Li, Tong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 08.10.2025
Predmet:
ISSN:1424-8220, 1424-8220
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Infrared images of caged chickens can provide valuable insights into their health status. Accurately detecting and segmenting individual chickens in these images is essential for effective health monitoring in large-scale chicken farming. However, the presence of obstacles such as cages, feeders, and drinkers can obscure the chickens, while clustering and overlapping among them may further hinder segmentation accuracy. This study proposes a Mask R-CNN-based instance segmentation algorithm specifically designed for caged chickens in infrared images. The backbone network is enhanced by incorporating the CBAM within this algorithm, which is further combined with the AC-FPN architecture to improve the model’s ability to extract features. Experimental results demonstrate that the model achieves average AP and AR10 values of 78.66% and 85.80%, respectively, in object detection, as per the COCO performance metrics. In segmentation tasks, the model attains average AP and AR10 values of 73.94% and 80.42%, respectively, reflecting improvements of 32.91% and 17.78% over the original model. Notably, among all categories of chicken flocks, the ‘Chicken-many’ category achieved an impressive average segmentation accuracy of 98.51%, and the other categories also surpassed 93%. The proposed instance segmentation method for caged chickens in infrared images effectively facilitates the recognition and segmentation of chickens within the challenging imaging conditions typical of high-density caged environments, thereby contributing to enhanced production efficiency and the advancement of intelligent breeding management.
AbstractList Infrared images of caged chickens can provide valuable insights into their health status. Accurately detecting and segmenting individual chickens in these images is essential for effective health monitoring in large-scale chicken farming. However, the presence of obstacles such as cages, feeders, and drinkers can obscure the chickens, while clustering and overlapping among them may further hinder segmentation accuracy. This study proposes a Mask R-CNN-based instance segmentation algorithm specifically designed for caged chickens in infrared images. The backbone network is enhanced by incorporating the CBAM within this algorithm, which is further combined with the AC-FPN architecture to improve the model's ability to extract features. Experimental results demonstrate that the model achieves average AP and AR10 values of 78.66% and 85.80%, respectively, in object detection, as per the COCO performance metrics. In segmentation tasks, the model attains average AP and AR10 values of 73.94% and 80.42%, respectively, reflecting improvements of 32.91% and 17.78% over the original model. Notably, among all categories of chicken flocks, the 'Chicken-many' category achieved an impressive average segmentation accuracy of 98.51%, and the other categories also surpassed 93%. The proposed instance segmentation method for caged chickens in infrared images effectively facilitates the recognition and segmentation of chickens within the challenging imaging conditions typical of high-density caged environments, thereby contributing to enhanced production efficiency and the advancement of intelligent breeding management.Infrared images of caged chickens can provide valuable insights into their health status. Accurately detecting and segmenting individual chickens in these images is essential for effective health monitoring in large-scale chicken farming. However, the presence of obstacles such as cages, feeders, and drinkers can obscure the chickens, while clustering and overlapping among them may further hinder segmentation accuracy. This study proposes a Mask R-CNN-based instance segmentation algorithm specifically designed for caged chickens in infrared images. The backbone network is enhanced by incorporating the CBAM within this algorithm, which is further combined with the AC-FPN architecture to improve the model's ability to extract features. Experimental results demonstrate that the model achieves average AP and AR10 values of 78.66% and 85.80%, respectively, in object detection, as per the COCO performance metrics. In segmentation tasks, the model attains average AP and AR10 values of 73.94% and 80.42%, respectively, reflecting improvements of 32.91% and 17.78% over the original model. Notably, among all categories of chicken flocks, the 'Chicken-many' category achieved an impressive average segmentation accuracy of 98.51%, and the other categories also surpassed 93%. The proposed instance segmentation method for caged chickens in infrared images effectively facilitates the recognition and segmentation of chickens within the challenging imaging conditions typical of high-density caged environments, thereby contributing to enhanced production efficiency and the advancement of intelligent breeding management.
Infrared images of caged chickens can provide valuable insights into their health status. Accurately detecting and segmenting individual chickens in these images is essential for effective health monitoring in large-scale chicken farming. However, the presence of obstacles such as cages, feeders, and drinkers can obscure the chickens, while clustering and overlapping among them may further hinder segmentation accuracy. This study proposes a Mask R-CNN-based instance segmentation algorithm specifically designed for caged chickens in infrared images. The backbone network is enhanced by incorporating the CBAM within this algorithm, which is further combined with the AC-FPN architecture to improve the model’s ability to extract features. Experimental results demonstrate that the model achieves average AP and AR10 values of 78.66% and 85.80%, respectively, in object detection, as per the COCO performance metrics. In segmentation tasks, the model attains average AP and AR10 values of 73.94% and 80.42%, respectively, reflecting improvements of 32.91% and 17.78% over the original model. Notably, among all categories of chicken flocks, the ‘Chicken-many’ category achieved an impressive average segmentation accuracy of 98.51%, and the other categories also surpassed 93%. The proposed instance segmentation method for caged chickens in infrared images effectively facilitates the recognition and segmentation of chickens within the challenging imaging conditions typical of high-density caged environments, thereby contributing to enhanced production efficiency and the advancement of intelligent breeding management.
Infrared images of caged chickens can provide valuable insights into their health status. Accurately detecting and segmenting individual chickens in these images is essential for effective health monitoring in large-scale chicken farming. However, the presence of obstacles such as cages, feeders, and drinkers can obscure the chickens, while clustering and overlapping among them may further hinder segmentation accuracy. This study proposes a Mask R-CNN-based instance segmentation algorithm specifically designed for caged chickens in infrared images. The backbone network is enhanced by incorporating the CBAM within this algorithm, which is further combined with the AC-FPN architecture to improve the model’s ability to extract features. Experimental results demonstrate that the model achieves average AP and AR[sup.10] values of 78.66% and 85.80%, respectively, in object detection, as per the COCO performance metrics. In segmentation tasks, the model attains average AP and AR[sup.10] values of 73.94% and 80.42%, respectively, reflecting improvements of 32.91% and 17.78% over the original model. Notably, among all categories of chicken flocks, the ‘Chicken-many’ category achieved an impressive average segmentation accuracy of 98.51%, and the other categories also surpassed 93%. The proposed instance segmentation method for caged chickens in infrared images effectively facilitates the recognition and segmentation of chickens within the challenging imaging conditions typical of high-density caged environments, thereby contributing to enhanced production efficiency and the advancement of intelligent breeding management.
Infrared images of caged chickens can provide valuable insights into their health status. Accurately detecting and segmenting individual chickens in these images is essential for effective health monitoring in large-scale chicken farming. However, the presence of obstacles such as cages, feeders, and drinkers can obscure the chickens, while clustering and overlapping among them may further hinder segmentation accuracy. This study proposes a Mask R-CNN-based instance segmentation algorithm specifically designed for caged chickens in infrared images. The backbone network is enhanced by incorporating the CBAM within this algorithm, which is further combined with the AC-FPN architecture to improve the model's ability to extract features. Experimental results demonstrate that the model achieves average AP and AR values of 78.66% and 85.80%, respectively, in object detection, as per the COCO performance metrics. In segmentation tasks, the model attains average AP and AR values of 73.94% and 80.42%, respectively, reflecting improvements of 32.91% and 17.78% over the original model. Notably, among all categories of chicken flocks, the 'Chicken-many' category achieved an impressive average segmentation accuracy of 98.51%, and the other categories also surpassed 93%. The proposed instance segmentation method for caged chickens in infrared images effectively facilitates the recognition and segmentation of chickens within the challenging imaging conditions typical of high-density caged environments, thereby contributing to enhanced production efficiency and the advancement of intelligent breeding management.
Audience Academic
Author Liu, Hang
Zhong, Binyuan
Chen, Chen
Li, Tong
Li, Siyu
Ye, Rong
Wang, Lun
Qiao, Jihui
Chen, Youqing
Author_xml – sequence: 1
  givenname: Youqing
  surname: Chen
  fullname: Chen, Youqing
– sequence: 2
  givenname: Hang
  surname: Liu
  fullname: Liu, Hang
– sequence: 3
  givenname: Lun
  surname: Wang
  fullname: Wang, Lun
– sequence: 4
  givenname: Chen
  surname: Chen
  fullname: Chen, Chen
– sequence: 5
  givenname: Siyu
  surname: Li
  fullname: Li, Siyu
– sequence: 6
  givenname: Binyuan
  surname: Zhong
  fullname: Zhong, Binyuan
– sequence: 7
  givenname: Jihui
  surname: Qiao
  fullname: Qiao, Jihui
– sequence: 8
  givenname: Rong
  surname: Ye
  fullname: Ye, Rong
– sequence: 9
  givenname: Tong
  orcidid: 0000-0002-3257-213X
  surname: Li
  fullname: Li, Tong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41095059$$D View this record in MEDLINE/PubMed
BookMark eNpdUk1v1DAQtVAR_YADfwBF4gKHFH_ETnJcIqArlSIVOEeTsZ31dmMXO4vEv8fptiuELI2fn988ezRzTk588IaQ14xeCtHSD4lL1iou6mfkjFW8KhvO6ck_-JScp7SllAshmhfktGK0lVS2Z8TfmmQg4qYIvlj7NINHU3w342T8DLPL7Go3hujmzVTYEIsORqOLbuPwzvhUuCXLRoiZXE_5LhUfIeXDYjfdx_A746-Q7orbsru5eUmeW9gl8-pxvyA_P3_60V2V19--rLvVdYkVk3PJ5SCUFZYZM7BG1TpjrChHhoi81jW2KLDVUqPFRmiFA7UCqKhNvWBxQdYHXx1g299HN0H80wdw_QMR4thDnB3uTK9rNYgcWjvIqskRlKTMwtDUFdMMste7g1eu5tfepLmfXEKz24E3YZ96wRWrW64qlqVv_5Nuwz76XOmDijatkMvnLg-qEfL7ztswR8C8tJkc5tZal_lVoziTQlVNTnjzaLsfJqOP9Ty1MQveHwQYQ0rR2KOE0X4Zkf44IuIvt36rYQ
Cites_doi 10.3390/ani12030232
10.1007/978-3-030-01234-2_1
10.1109/TNNLS.2023.3310985
10.1109/TPAMI.2016.2577031
10.1109/ACCESS.2021.3074297
10.1016/j.compag.2024.108916
10.1111/jfpe.70180
10.1016/j.compag.2024.109045
10.1016/j.compag.2024.109436
10.1109/CVPR.2017.106
10.1007/978-3-319-10602-1_48
10.1109/ICCV.2017.322
10.1109/5.726791
10.1109/JSTARS.2024.3523418
10.1016/j.cag.2024.104112
10.1109/CVPR52688.2022.01167
10.1109/ICCV.2015.169
10.1109/ICCCNT61001.2024.10724906
10.3390/agronomy13010196
10.1016/j.compag.2022.106695
10.1016/j.compag.2024.109339
10.1109/CVPR.2016.90
10.1109/TPAMI.2024.3435571
10.1109/CVPR.2017.243
10.1109/CVPR.2014.81
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
DOA
DOI 10.3390/s25196237
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database ProQuest
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Publicly Available Content Database


MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_d76b3d769fb5489fba6501fab8741d1a
A862153648
41095059
10_3390_s25196237
Genre Journal Article
GeographicLocations United States
China
GeographicLocations_xml – name: China
– name: United States
GrantInformation_xml – fundername: Tong Li
  grantid: 202302AE090020
– fundername: Tong Li
  grantid: 202305AF150126
– fundername: Tong Li
  grantid: 202407AB110010
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
M48
PKEHL
PQEST
PQUKI
7X8
ID FETCH-LOGICAL-c415t-25b36f3f1eeb1867df3fc402c1ccc27d7c9c3c9d5dcfc83d6cb0f3a037e76cb03
IEDL.DBID 7X7
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001593939600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Mon Oct 20 20:05:29 EDT 2025
Sat Oct 18 22:55:13 EDT 2025
Sat Oct 18 23:33:07 EDT 2025
Tue Nov 04 05:01:33 EST 2025
Mon Oct 20 01:42:01 EDT 2025
Sat Nov 29 07:12:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords instance segmentation
AC-FPN
CBAM
caged chickens
Mask R-CNN
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-25b36f3f1eeb1867df3fc402c1ccc27d7c9c3c9d5dcfc83d6cb0f3a037e76cb03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3257-213X
OpenAccessLink https://www.proquest.com/docview/3261089350?pq-origsite=%requestingapplication%
PMID 41095059
PQID 3261089350
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_d76b3d769fb5489fba6501fab8741d1a
proquest_miscellaneous_3261792641
proquest_journals_3261089350
gale_infotracacademiconefile_A862153648
pubmed_primary_41095059
crossref_primary_10_3390_s25196237
PublicationCentury 2000
PublicationDate 2025-10-08
PublicationDateYYYYMMDD 2025-10-08
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-08
  day: 08
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Ren (ref_18) 2015; 39
Wei (ref_8) 2025; 41
Zhao (ref_3) 2023; 54
Wang (ref_9) 2025; 18
ref_36
ref_35
Ji (ref_7) 2024; 40
Chen (ref_23) 2025; 48
ref_34
ref_33
ref_32
Dalva (ref_13) 2024; 35
ref_31
Yuan (ref_21) 2025; 126
ref_30
Li (ref_22) 2021; 9
ref_19
ref_17
ref_39
ref_16
ref_38
ref_37
Yang (ref_1) 2024; 221
ref_25
ref_24
Lecun (ref_15) 1998; 86
Yang (ref_10) 2024; 225
ref_20
ref_2
ref_29
ref_28
ref_27
Azad (ref_40) 2024; 46
ref_26
Lamping (ref_6) 2022; 194
Saeidifar (ref_12) 2024; 226
Li (ref_4) 2020; 36
Vania (ref_14) 2021; 8
ref_5
Yang (ref_11) 2024; 222
References_xml – ident: ref_5
  doi: 10.3390/ani12030232
– ident: ref_28
– ident: ref_32
  doi: 10.1007/978-3-030-01234-2_1
– volume: 35
  start-page: 17021
  year: 2024
  ident: ref_13
  article-title: Benchmarking the Robustness of Instance Segmentation Models
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2023.3310985
– ident: ref_30
– volume: 39
  start-page: 1137
  year: 2015
  ident: ref_18
  article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– volume: 36
  start-page: 10
  year: 2020
  ident: ref_4
  article-title: Research Progress on Key Technologies and Facilities for Environmental Control in Large-scale Chicken Farming in China
  publication-title: Trans. Chin. Soc. Agric. Eng.
– volume: 9
  start-page: 61398
  year: 2021
  ident: ref_22
  article-title: Chicken image segmentation via multi-scale attention-based deep convolutional neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3074297
– ident: ref_24
– volume: 40
  start-page: 218
  year: 2024
  ident: ref_7
  article-title: Estimation of Feed Intake per Cage in Stacked Cage-Raised Chickens Based on Improved YOLOv8n
  publication-title: Trans. Chin. Soc. Agric. Eng.
– ident: ref_26
– ident: ref_34
– volume: 221
  start-page: 34
  year: 2024
  ident: ref_1
  article-title: Development and trends of chicken farming robots in chicken farming tasks: A review
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2024.108916
– volume: 48
  start-page: e70180
  year: 2025
  ident: ref_23
  article-title: A Semantic Segmentation Method for Segmenting Chicken Parts Based on a Lightweight DeepLabv3+
  publication-title: J. Food Process Eng.
  doi: 10.1111/jfpe.70180
– volume: 222
  start-page: 12
  year: 2024
  ident: ref_11
  article-title: An innovative segment anything model for precision poultry monitoring
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2024.109045
– volume: 226
  start-page: 15
  year: 2024
  ident: ref_12
  article-title: Zero-shot image segmentation for monitoring thermal conditions of individual cage-free laying hens
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2024.109436
– volume: 8
  start-page: 1023
  year: 2021
  ident: ref_14
  article-title: Intervertebral disc instance segmentation using a multistage optimization mask-RCNN (MOM-RCNN)
  publication-title: J. Comput. Des. Eng.
– ident: ref_33
  doi: 10.1109/CVPR.2017.106
– ident: ref_29
  doi: 10.1007/978-3-319-10602-1_48
– ident: ref_19
  doi: 10.1109/ICCV.2017.322
– volume: 86
  start-page: 2278
  year: 1998
  ident: ref_15
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 18
  start-page: 3281
  year: 2025
  ident: ref_9
  article-title: Infrared Image Enhancement: A Review
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2024.3523418
– volume: 126
  start-page: 104112
  year: 2025
  ident: ref_21
  article-title: Global Recurrent Mask R-CNN: Marine ship instance segmentation
  publication-title: Comput. Graph.
  doi: 10.1016/j.cag.2024.104112
– ident: ref_37
  doi: 10.1109/CVPR52688.2022.01167
– volume: 54
  start-page: 300
  year: 2023
  ident: ref_3
  article-title: Automatic Recognition and Counting Method for Caged Chickens/Eggs Based on Improved YOLO v7
  publication-title: Trans. Chin. Soc. Agric. Mach.
– ident: ref_25
– ident: ref_17
  doi: 10.1109/ICCV.2015.169
– ident: ref_39
  doi: 10.1109/ICCCNT61001.2024.10724906
– ident: ref_27
– ident: ref_2
– ident: ref_20
  doi: 10.3390/agronomy13010196
– volume: 194
  start-page: 13
  year: 2022
  ident: ref_6
  article-title: ChickenNet-an end-to-end approach for plumage condition assessment of laying hens in commercial farms using computer vision
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.106695
– volume: 225
  start-page: 17
  year: 2024
  ident: ref_10
  article-title: Computer Vision-Based cybernetics systems for promoting modern poultry Farming: A critical review
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2024.109339
– volume: 41
  start-page: 156
  year: 2025
  ident: ref_8
  article-title: Real-Time Detection of Dead Caged Chickens Based on Improved YOLOv8n
  publication-title: Trans. Chin. Soc. Agric. Eng.
– ident: ref_31
  doi: 10.1109/CVPR.2016.90
– ident: ref_38
– ident: ref_36
– volume: 46
  start-page: 10076
  year: 2024
  ident: ref_40
  article-title: Medical Image Segmentation Review: The Success of U-Net
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2024.3435571
– ident: ref_35
  doi: 10.1109/CVPR.2017.243
– ident: ref_16
  doi: 10.1109/CVPR.2014.81
SSID ssj0023338
Score 2.4611356
Snippet Infrared images of caged chickens can provide valuable insights into their health status. Accurately detecting and segmenting individual chickens in these...
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 6237
SubjectTerms AC-FPN
Algorithms
Animals
Automation
caged chickens
CBAM
Chickens
Datasets
Deep learning
Farms
Heat detection
Image Processing, Computer-Assisted - methods
Infrared Rays
instance segmentation
Livestock farms
Mask R-CNN
Neural networks
Neural Networks, Computer
Poultry
Poultry industry
Telecommunication systems
Thermography
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQxQEOiG8CBRmExCmqE2ft-LhdUdEDK8SH1JvljO1StZtFmy2_n2cnuypw4MLFsmInmszYnveS8Zixt61Xbd1oKpV3pmyCD6VRXpdkvDBAdIqcyIdN6OWyPTszn24c9ZViwsb0wKPijrxWnURhYgdwjdIBU1TRdS18oa8yNBLa7MjURLUkmNeYR0iC1B8NaX8mHL3-zfvkJP1_L8V_AMzsaE7us3sTQuTzUbIH7FboH7K7N_IGPmL9Ll6Or3t-mgEeBf4lnK-mnUQ9n1-dr8H7v684UClfYNXwPIVdXIK28ot0V9yk2HN-ukLbwI_hzXx-XP7KgPpHN1zyz-ViuXzMvp28_7r4UE4HJ5QEf7wt61knVZSxCliJW6U96gSiSBUR1dprMiRhjZmnSK30ijoRpRNSB53q8gk76Nd9eMZ4pUBhVE161lHjhWyhctHFqDtByjlRsDc7hdofY34MC16RtG73Wi_YcVL1vkNKaZ0vwNB2MrT9l6EL9i4ZyqaJt904ctP-AciZUljZObgZlm_VtAU73NnSTjNysICplQA4m0Hk1_tmzKX0g8T1YX099tEGELEq2NNxDOxlbiqAUWDR5__jXV6wO3U6RzjHEh6yg-3mOrxkt-nn9mLYvMpD-ReRi_kc
  priority: 102
  providerName: Directory of Open Access Journals
Title Research on Instance Segmentation Algorithm for Caged Chickens in Infrared Images Based on Improved Mask R-CNN
URI https://www.ncbi.nlm.nih.gov/pubmed/41095059
https://www.proquest.com/docview/3261089350
https://www.proquest.com/docview/3261792641
https://doaj.org/article/d76b3d769fb5489fba6501fab8741d1a
Volume 25
WOSCitedRecordID wos001593939600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BLgf2wPsRWCqDkDhF68SpnZxQW3VFD42qBaRyipxxUlZLk90ky5HfzthJuzwkLlwsy3EcS2PPfJ8zngF4GxsZh5FCXxqd-FFhCj-RRvmYGJ4QopOouUs2odI0Xq-T1XDg1g5ulTud6BS1qdGekZ8QzAg4Gdcxf3955dusUfbv6pBC4zYc2rTZdp2r9Q3hEsS_-mhCgqj9SWtvaZK5V7_ZIBeq_2-F_AfMdObm9P7_TvQB3BuAJpv0K-Mh3CqqR3D0S_jBx1Dt3O5YXbGFw4lYsI_FZjtcSKrY5NuGxu6-bhmBWzYj5WOY9d64IPbLzu1bZWNd2NliS89aNiWjaNxw7rCC6kvdXrAzf5amT-Dz6fzT7IM_5F_wkcx654fjXMhSlEFBCj2WylAdiW9igIihMgoTFCTUscESY2Ek5rwUmgtVKFsXT-GgqqviObBAEhOSIapxjpHhIjaB5nlZqpyj1Jp78GYnkeyyD7ORET2xYsv2YvNgamW172AjY7uGutlkw0bLjJK5oCIpcyJjVGrCoEGp85iwE33Vg3dW0pndv12jUQ_XEGieNhJWNiGKR1ZARrEHxzsBZ8PGbrMb6Xrwev-YtqT9z6Kror7u-6iEkGbgwbN-Ee3nHAWEaQnSvvj34C_hbmgTDTtnw2M46Jrr4hXcwe_deduM3Cp3ZTyCw-k8XZ2N3GEClcsfc2pbLZarLz8BQpsM6w
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceD8CBQwC9RTViXft5IDQdqHqqm2EoEh7C87YWaqySUlSEH-K38g4jy0PiVsPXCIrD8dJvsx8XzKeAXgeGRmFI4W-NDr2R9ZYP5ZG-RgbHhOjk6h5W2xCJUk0n8dv1-DHMBfGhVUONrE11KZE9418i2hGwMm5jvmrky--qxrl_q4OJTQ6WOzZ799IstUvZ6_p-b4Iw503h9Ndv68q4CM5q8YPx5mQucgDS2YqkspQG0lFYYCIoTIKYxQ01LHBHCNhJGY8F5oLZZVrC-r3AlwkO66c2FPzM4EnSO912YuEiPlW7WaFEr1Qv_m8tjTA3w7gD1rbured6__bjbkB13oizSYd8m_Cmi1uwdVf0ivehmIIK2RlwWYtD0bL3tvFsp9wVbDJ5wVdS_NpyYi8sykZV8NcdMoxqXt25I7KKxeiz2ZL2lazbXL6pu2u_RhD7QNdH7N3_jRJ7sCHc7ngu7BelIW9DyyQpPRkiGqc4chwEZlA8yzPVcZRas09eDYgID3p0oikJL8cTNIVTDzYdthY7eAyf7crymqR9oYkNUpmghZxnpHYpKUmjh3kOouIG9JZPdh0yEqdfWoqjbqfZkHjdJm-0glJWPJychR5sDEAKu0NV52eocmDp6vNZHLcfyRd2PK020fFxKQDD-51oF2NeRQQZyfK_uDfnT-By7uHB_vp_izZewhXQldUuQ2s3ID1pjq1j-ASfm2O6upx-4Yx-HjeyP0JsbZnBQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFKFy4P0wFFgQiJOVtdfZtQ8IpSkRUWkU8ZDak1nPrtOqxCl2CuKv8euY9SO8JG49cLFWfqzX9ueZ77NnZwCexkbGYaTQl0YnfmSN9RNplI-J4QkxOoma18Um1HQaHxwksw343s2FcWGVnU2sDbVZovtG3ieaEXByrgPez9uwiNnu-OXpZ99VkHJ_WrtyGg1E9uy3ryTfqheTXXrWz8Jw_Or96LXfVhjwkRzXyg8HmZC5yANLJiuWylAbSVFhgIihMgoTFDTsgcEcY2EkZjwXmgtllWsL6vcCbBIlj8IebM4m-7PDtdwTpP6aXEZCJLxfuTmiRDbUbx6wLhTwtzv4g-TWzm589X--TdfgSkux2bB5J67Dhi1uwOVfEi_ehKILOGTLgk1qhoyWvbPzRTsVq2DDT3O6ltXRghGtZyMyu4a5uJUT0v3s2B2Vly54n00WtK1iO0QHTN1d_ZmG2vu6OmFv_dF0egs-nMsF34ZesSzsXWCBJA0oQ1SDDCPDRWwCzbM8VxlHqTX34EmHhvS0STCSkjBzkEnXkPFgx-FkvYPLCV6vWJbztDUxqVEyE7RI8oxkKC01se8g11lMrJHO6sFzh7LUWa5VqVG3EzBonC4HWDokcUv-T0axB9sduNLWpFXpT2R58Hi9mYyR-8OkC7s8a_ZRCXHswIM7DYDXY44CYvNE5u_9u_NHcIkAm76ZTPfuw1boqi3XEZfb0FuVZ_YBXMQvq-OqfNi-bgw-njd0fwDwR3FU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Instance+Segmentation+Algorithm+for+Caged+Chickens+in+Infrared+Images+Based+on+Improved+Mask+R-CNN&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Chen%2C+Youqing&rft.au=Liu%2C+Hang&rft.au=Wang%2C+Lun&rft.au=Chen%2C+Chen&rft.date=2025-10-08&rft.eissn=1424-8220&rft.volume=25&rft.issue=19&rft_id=info:doi/10.3390%2Fs25196237&rft_id=info%3Apmid%2F41095059&rft.externalDocID=41095059
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon