Fusing Heterogeneous Features From Stacked Sparse Autoencoder for Histopathological Image Analysis

In the analysis of histopathological images, both holistic (e.g., architecture features) and local appearance features demonstrate excellent performance, while their accuracy may vary dramatically when providing different inputs. This motivates us to investigate how to fuse results from these featur...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of biomedical and health informatics Vol. 20; no. 5; pp. 1377 - 1383
Main Authors: Zhang, Xiaofan, Dou, Hang, Ju, Tao, Xu, Jun, Zhang, Shaoting
Format: Journal Article
Language:English
Published: United States IEEE 01.09.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2168-2194, 2168-2208, 2168-2208
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the analysis of histopathological images, both holistic (e.g., architecture features) and local appearance features demonstrate excellent performance, while their accuracy may vary dramatically when providing different inputs. This motivates us to investigate how to fuse results from these features to enhance the accuracy. Particularly, we employ content-based image retrieval approaches to discover morphologically relevant images for image-guided diagnosis, using holistic and local features, both of which are generated from the cell detection results by a stacked sparse autoencoder. Because of the dramatically different characteristics and representations of these heterogeneous features (i.e., holistic and local), their results may not agree with each other, causing difficulties for traditional fusion methods. In this paper, we employ a graph-based query-specific fusion approach where multiple retrieval results (i.e., rank lists) are integrated and reordered based on a fused graph. The proposed method is capable of combining the strengths of local or holistic features adaptively for different inputs. We evaluate our method on a challenging clinical problem, i.e., histopathological image-guided diagnosis of intraductal breast lesions, and it achieves 91.67% classification accuracy on 120 breast tissue images from 40 patients.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2194
2168-2208
2168-2208
DOI:10.1109/JBHI.2015.2461671