Fusing Heterogeneous Features From Stacked Sparse Autoencoder for Histopathological Image Analysis
In the analysis of histopathological images, both holistic (e.g., architecture features) and local appearance features demonstrate excellent performance, while their accuracy may vary dramatically when providing different inputs. This motivates us to investigate how to fuse results from these featur...
Gespeichert in:
| Veröffentlicht in: | IEEE journal of biomedical and health informatics Jg. 20; H. 5; S. 1377 - 1383 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.09.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2168-2194, 2168-2208, 2168-2208 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In the analysis of histopathological images, both holistic (e.g., architecture features) and local appearance features demonstrate excellent performance, while their accuracy may vary dramatically when providing different inputs. This motivates us to investigate how to fuse results from these features to enhance the accuracy. Particularly, we employ content-based image retrieval approaches to discover morphologically relevant images for image-guided diagnosis, using holistic and local features, both of which are generated from the cell detection results by a stacked sparse autoencoder. Because of the dramatically different characteristics and representations of these heterogeneous features (i.e., holistic and local), their results may not agree with each other, causing difficulties for traditional fusion methods. In this paper, we employ a graph-based query-specific fusion approach where multiple retrieval results (i.e., rank lists) are integrated and reordered based on a fused graph. The proposed method is capable of combining the strengths of local or holistic features adaptively for different inputs. We evaluate our method on a challenging clinical problem, i.e., histopathological image-guided diagnosis of intraductal breast lesions, and it achieves 91.67% classification accuracy on 120 breast tissue images from 40 patients. |
|---|---|
| AbstractList | In the analysis of histopathological images, both holistic (e.g., architecture features) and local appearance features demonstrate excellent performance, while their accuracy may vary dramatically when providing different inputs. This motivates us to investigate how to fuse results from these features to enhance the accuracy. Particularly, we employ content-based image retrieval approaches to discover morphologically relevant images for image-guided diagnosis, using holistic and local features, both of which are generated from the cell detection results by a stacked sparse autoencoder. Because of the dramatically different characteristics and representations of these heterogeneous features (i.e., holistic and local), their results may not agree with each other, causing difficulties for traditional fusion methods. In this paper, we employ a graph-based query-specific fusion approach where multiple retrieval results (i.e., rank lists) are integrated and reordered based on a fused graph. The proposed method is capable of combining the strengths of local or holistic features adaptively for different inputs. We evaluate our method on a challenging clinical problem, i.e., histopathological image-guided diagnosis of intraductal breast lesions, and it achieves 91.67% classification accuracy on 120 breast tissue images from 40 patients. In the analysis of histopathological images, both holistic (e.g., architecture features) and local appearance features demonstrate excellent performance, while their accuracy may vary dramatically when providing different inputs. This motivates us to investigate how to fuse results from these features to enhance the accuracy. Particularly, we employ content-based image retrieval approaches to discover morphologically relevant images for image-guided diagnosis, using holistic and local features, both of which are generated from the cell detection results by a stacked sparse autoencoder. Because of the dramatically different characteristics and representations of these heterogeneous features (i.e., holistic and local), their results may not agree with each other, causing difficulties for traditional fusion methods. In this paper, we employ a graph-based query-specific fusion approach where multiple retrieval results (i.e., rank lists) are integrated and reordered based on a fused graph. The proposed method is capable of combining the strengths of local or holistic features adaptively for different inputs. We evaluate our method on a challenging clinical problem, i.e., histopathological image-guided diagnosis of intraductal breast lesions, and it achieves 91.67% classification accuracy on 120 breast tissue images from 40 patients.In the analysis of histopathological images, both holistic (e.g., architecture features) and local appearance features demonstrate excellent performance, while their accuracy may vary dramatically when providing different inputs. This motivates us to investigate how to fuse results from these features to enhance the accuracy. Particularly, we employ content-based image retrieval approaches to discover morphologically relevant images for image-guided diagnosis, using holistic and local features, both of which are generated from the cell detection results by a stacked sparse autoencoder. Because of the dramatically different characteristics and representations of these heterogeneous features (i.e., holistic and local), their results may not agree with each other, causing difficulties for traditional fusion methods. In this paper, we employ a graph-based query-specific fusion approach where multiple retrieval results (i.e., rank lists) are integrated and reordered based on a fused graph. The proposed method is capable of combining the strengths of local or holistic features adaptively for different inputs. We evaluate our method on a challenging clinical problem, i.e., histopathological image-guided diagnosis of intraductal breast lesions, and it achieves 91.67% classification accuracy on 120 breast tissue images from 40 patients. In the analysis of histopathological images, both holistic (e.g., architecture features) and local appearance features demonstrate excellent performance, while their accuracy may vary dramatically when providing different inputs. This motivates us to investigate how to fuse results from these features to enhance the accuracy. Particularly, we employ content-based image retrieval approaches to discover morphologically relevant images for image-guided diagnosis, using holistic and local features, both of which are generated from the cell detection results by a stacked sparse autoencoder. Because of the dramatically different characteristics and representations of these heterogeneous features (i.e., holistic and local), their results may not agree with each other, causing difficulties for traditional fusion methods. In this paper, we employ a graph-based query-specific fusion approach where multiple retrieval results (i.e., rank lists) are integrated and reordered based on a fused graph. The proposed method is capable of combining the strengths of local or holistic features adaptively for different inputs. We evaluate our method on a challenging clinical problem, i.e., histopathological image-guided diagnosis of intraductal breast lesions, and it achieves [Formula Omitted] classification accuracy on [Formula Omitted] breast tissue images from [Formula Omitted] patients. |
| Author | Tao Ju Xiaofan Zhang Jun Xu Shaoting Zhang Hang Dou |
| Author_xml | – sequence: 1 givenname: Xiaofan surname: Zhang fullname: Zhang, Xiaofan – sequence: 2 givenname: Hang surname: Dou fullname: Dou, Hang – sequence: 3 givenname: Tao surname: Ju fullname: Ju, Tao – sequence: 4 givenname: Jun surname: Xu fullname: Xu, Jun – sequence: 5 givenname: Shaoting surname: Zhang fullname: Zhang, Shaoting |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26241980$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkstuFDEQRS0URB7kAxASaolNNjPY1W4_liFimEGRWATWlsddPTh0twfbvcjf43mxyALwpkrWuVfl8r0kZ2MYkZA3jM4Zo_rDl4_L1Rwoa-bABROSvSAXwISaAVB1duqZ5ufkOqVHWo4qV1q8IucggDOt6AVZL6bkx021xIwxbHDEMKVqgTZPEUsTw1A9ZOt-Yls9bG1MWN1OOeDoQoux6kKslj7lsLX5R-jDxjvbV6vBbgo32v4p-fSavOxsn_D6WK_I98Wnb3fL2f3Xz6u72_uZ46zJM6YpihaxE65mFmpRxkUlG4WNhaYrTcel1Ou17pxUHbZWuVJAUHAooK2vyM3BdxvDrwlTNoNPDvve7h9lmGqaWnAF8B9oLUGDLvXfaIFqWZZb0PfP0McwxbKFvSHVoPje8N2RmtYDtmYb_WDjkzn9SQHkAXAxpBSxM85nm30Yc7S-N4yaXQDMLgBmFwBzDEBRsmfKk_nfNG8PGo-If3jJJHCu6t-lmLml |
| CODEN | IJBHA9 |
| CitedBy_id | crossref_primary_10_1016_j_ijepes_2021_107744 crossref_primary_10_1016_j_ipm_2022_103113 crossref_primary_10_1016_j_asoc_2021_107886 crossref_primary_10_1109_TMI_2018_2796130 crossref_primary_10_1016_j_compbiomed_2024_109213 crossref_primary_10_1007_s11042_020_09109_9 crossref_primary_10_2196_11966 crossref_primary_10_1016_j_compbiomed_2022_105944 crossref_primary_10_1016_j_neucom_2021_03_006 crossref_primary_10_1109_JBHI_2018_2827703 crossref_primary_10_1016_j_patcog_2017_05_010 crossref_primary_10_1007_s11042_023_15400_2 crossref_primary_10_1016_j_future_2018_05_002 crossref_primary_10_1109_ACCESS_2020_3020149 crossref_primary_10_1109_JBHI_2017_2723014 crossref_primary_10_1088_2057_1976_adcac9 crossref_primary_10_1109_TMI_2020_3043641 crossref_primary_10_1007_s12021_018_9361_5 crossref_primary_10_1016_j_apenergy_2020_114490 crossref_primary_10_1016_j_cmpb_2018_02_020 crossref_primary_10_1016_j_eswa_2019_01_056 crossref_primary_10_1109_TCBB_2023_3321593 crossref_primary_10_1109_JBHI_2018_2852639 crossref_primary_10_1109_TMM_2017_2729400 crossref_primary_10_1016_j_media_2021_102308 crossref_primary_10_1016_j_knosys_2021_107459 crossref_primary_10_1016_j_media_2021_102227 crossref_primary_10_1016_j_patcog_2016_09_041 crossref_primary_10_3390_app8071126 crossref_primary_10_1016_j_neucom_2022_12_017 crossref_primary_10_1155_2021_4022312 crossref_primary_10_1007_s11517_020_02281_y crossref_primary_10_1007_s13369_020_05044_x crossref_primary_10_1016_j_eswa_2020_113693 crossref_primary_10_1016_j_ymeth_2017_02_005 crossref_primary_10_3390_math11081777 crossref_primary_10_3389_fnagi_2022_916020 crossref_primary_10_1007_s10489_018_1393_x crossref_primary_10_1080_09540091_2019_1674245 crossref_primary_10_3389_fnins_2021_829040 crossref_primary_10_1016_j_patcog_2018_12_013 crossref_primary_10_1016_j_media_2021_102267 crossref_primary_10_1016_j_media_2023_102762 crossref_primary_10_1016_j_media_2017_09_007 crossref_primary_10_1007_s11042_020_08772_2 |
| Cites_doi | 10.1023/B:VISI.0000029664.99615.94 10.1007/978-3-642-02976-9_17 10.1109/TBME.2011.2110648 10.1002/(SICI)1097-0320(19980901)33:1<32::AID-CYTO4>3.0.CO;2-D 10.1186/1471-2342-6-14 10.1016/j.ijmedinf.2003.11.024 10.1093/bioinformatics/bti1100 10.1109/ICCV.2003.1238663 10.1109/TMI.2007.898536 10.1109/IEMBS.2007.4353540 10.1145/2072545.2072547 10.1109/TIP.2012.2199502 10.1109/TPAMI.2014.2346201 10.1145/872757.872795 10.1109/CVPR.2011.5995373 10.1109/TSMCB.2011.2179533 10.1007/978-3-642-36678-9_9 10.1007/s001380050104 10.1109/ISBI.2014.6868041 10.1007/978-3-319-10470-6_60 10.1109/ICCV.2009.5459169 10.1109/TITB.2003.822952 10.1007/s11263-010-0338-6 10.1109/TMI.2014.2361481 10.1007/s10278-013-9619-2 10.1109/TIP.2012.2202676 10.1136/amiajnl-2011-000170 10.1006/jvci.1999.0413 10.3233/THC-2000-8505 10.1007/11519645_70 10.1109/RBME.2009.2034865 10.1109/TPAMI.2008.285 10.1007/978-3-540-75757-3_75 10.1109/TITB.2012.2185829 10.1007/s11265-008-0201-y 10.1109/TBME.2009.2035305 10.1109/ISBI.2015.7164110 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
| DOI | 10.1109/JBHI.2015.2461671 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Technology Research Database Engineering Research Database MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library Online url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2168-2208 |
| EndPage | 1383 |
| ExternalDocumentID | 4223528241 26241980 10_1109_JBHI_2015_2461671 7172448 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Ralph E. Powe Junior Faculty Enhancement Award – fundername: Charlotte Research Institute – fundername: Oak Ridge Associated Universities funderid: 10.13039/100006225 – fundername: National Natural Science Foundation of China grantid: 61273259 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Jiangsu Province of China grantid: BK20141482 funderid: 10.13039/501100004608 |
| GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 6IL ADZIZ CGR CHZPO CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c415t-190e6deef6c31a236081e8758e5a25f758f4779bb9fc78feda8c8fe2602ce62d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 58 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000384000700020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2194 2168-2208 |
| IngestDate | Thu Oct 02 20:58:42 EDT 2025 Tue Oct 07 09:49:57 EDT 2025 Sat Sep 27 22:53:10 EDT 2025 Sun Nov 30 05:16:06 EST 2025 Wed Feb 19 02:44:13 EST 2025 Sat Nov 29 04:18:10 EST 2025 Tue Nov 18 22:27:45 EST 2025 Tue Aug 26 16:43:01 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c415t-190e6deef6c31a236081e8758e5a25f758f4779bb9fc78feda8c8fe2602ce62d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 26241980 |
| PQID | 1830928418 |
| PQPubID | 85417 |
| PageCount | 7 |
| ParticipantIDs | pubmed_primary_26241980 ieee_primary_7172448 proquest_miscellaneous_1837292918 proquest_miscellaneous_1855364822 proquest_miscellaneous_1818337008 crossref_primary_10_1109_JBHI_2015_2461671 crossref_citationtrail_10_1109_JBHI_2015_2461671 proquest_journals_1830928418 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-Sept. 2016-9-00 2016-Sep 20160901 |
| PublicationDateYYYYMMDD | 2016-09-01 |
| PublicationDate_xml | – month: 09 year: 2016 text: 2016-Sept. |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE journal of biomedical and health informatics |
| PublicationTitleAbbrev | JBHI |
| PublicationTitleAlternate | IEEE J Biomed Health Inform |
| PublicationYear | 2016 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref15 ref36 ref14 ref31 ref30 ref11 ref32 ref10 ref2 ref1 ref17 ref38 richardson (ref41) 0 ref19 ref18 liu (ref16) 0 ref24 ng (ref39) 2011 ref23 ref26 ref25 ref20 ref42 page (ref37) 1999 ref22 ref21 ref43 schnorrenberg (ref33) 2000; 8 ref28 ref27 ref29 ref8 ref9 ref4 doyle (ref7) 0 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref36 doi: 10.1023/B:VISI.0000029664.99615.94 – ident: ref13 doi: 10.1007/978-3-642-02976-9_17 – ident: ref14 doi: 10.1109/TBME.2011.2110648 – ident: ref3 doi: 10.1002/(SICI)1097-0320(19980901)33:1<32::AID-CYTO4>3.0.CO;2-D – ident: ref23 doi: 10.1186/1471-2342-6-14 – ident: ref8 doi: 10.1016/j.ijmedinf.2003.11.024 – ident: ref25 doi: 10.1093/bioinformatics/bti1100 – ident: ref15 doi: 10.1109/ICCV.2003.1238663 – ident: ref5 doi: 10.1109/TMI.2007.898536 – ident: ref24 doi: 10.1109/IEMBS.2007.4353540 – start-page: 496 year: 0 ident: ref7 article-title: Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features publication-title: Proc Int Symp Biomed Imag – ident: ref32 doi: 10.1145/2072545.2072547 – start-page: 2074 year: 0 ident: ref16 article-title: Supervised hashing with kernels publication-title: Proc IEEE Conf Comput Vis Pattern Recog – ident: ref30 doi: 10.1109/TIP.2012.2199502 – ident: ref21 doi: 10.1109/TPAMI.2014.2346201 – ident: ref20 doi: 10.1145/872757.872795 – ident: ref40 doi: 10.1109/CVPR.2011.5995373 – ident: ref18 doi: 10.1109/TSMCB.2011.2179533 – ident: ref12 doi: 10.1007/978-3-642-36678-9_9 – ident: ref31 doi: 10.1007/s001380050104 – ident: ref38 doi: 10.1109/ISBI.2014.6868041 – ident: ref17 doi: 10.1007/978-3-319-10470-6_60 – start-page: 1441 year: 0 ident: ref41 article-title: The intelligent surfer: Probabilistic combination of link and content information in pagerank publication-title: Proc Neural Inf Process Syst – ident: ref19 doi: 10.1109/ICCV.2009.5459169 – ident: ref34 doi: 10.1109/TITB.2003.822952 – ident: ref27 doi: 10.1109/ICCV.2003.1238663 – ident: ref42 doi: 10.1007/s11263-010-0338-6 – ident: ref4 doi: 10.1109/TMI.2014.2361481 – ident: ref11 doi: 10.1007/s10278-013-9619-2 – ident: ref29 doi: 10.1109/TIP.2012.2202676 – year: 1999 ident: ref37 article-title: The pagerank citation ranking: Bringing order to the web – ident: ref10 doi: 10.1136/amiajnl-2011-000170 – ident: ref28 doi: 10.1006/jvci.1999.0413 – start-page: 72 year: 2011 ident: ref39 article-title: Sparse autoencoder publication-title: lecture notes in CS – volume: 8 start-page: 291 year: 2000 ident: ref33 article-title: Content-based retrieval of breast cancer biopsy slides publication-title: Technol Health Care doi: 10.3233/THC-2000-8505 – ident: ref9 doi: 10.1007/11519645_70 – ident: ref1 doi: 10.1109/RBME.2009.2034865 – ident: ref43 doi: 10.1109/TPAMI.2008.285 – ident: ref26 doi: 10.1007/978-3-540-75757-3_75 – ident: ref35 doi: 10.1109/TITB.2012.2185829 – ident: ref6 doi: 10.1007/s11265-008-0201-y – ident: ref2 doi: 10.1109/TBME.2009.2035305 – ident: ref22 doi: 10.1109/ISBI.2015.7164110 |
| SSID | ssj0000816896 |
| Score | 2.453556 |
| Snippet | In the analysis of histopathological images, both holistic (e.g., architecture features) and local appearance features demonstrate excellent performance, while... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1377 |
| SubjectTerms | Accuracy Algorithms Biomedical imaging Breast Breast - diagnostic imaging Breast lesion Breast Neoplasms - diagnostic imaging Cell Nucleus - pathology Classification Computer architecture Diagnosis Feature extraction feature fusion Female Fuses Histocytochemistry - methods histopathological image analysis Humans Image analysis Image classification Image detection Image Interpretation, Computer-Assisted - methods Image retrieval large-scale image retrieval Machine Learning Representations Retrieval stacked sparse autoencoder (SSAE) |
| Title | Fusing Heterogeneous Features From Stacked Sparse Autoencoder for Histopathological Image Analysis |
| URI | https://ieeexplore.ieee.org/document/7172448 https://www.ncbi.nlm.nih.gov/pubmed/26241980 https://www.proquest.com/docview/1830928418 https://www.proquest.com/docview/1818337008 https://www.proquest.com/docview/1837292918 https://www.proquest.com/docview/1855364822 |
| Volume | 20 |
| WOSCitedRecordID | wos000384000700020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library Online customDbUrl: eissn: 2168-2208 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816896 issn: 2168-2194 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_aIuJLq1bt1VpW8ElMm4_NbvaxFY9rqUVQ4d7CZjMRwV7K9a5_f3-7-cAHe-BTFjIJm52Znd9kZmeIPmTKulhXNpINy0g6lUc2q-pIWmlkpWxSdQeFr_T1dTGfm29b9Gk8C8PMIfmMT_wwxPLr1q39r7JTuB6wRsU2bWuturNa4_-U0EAitONKMYigiLIPYiaxOb08n134PK78xNdPU9o3iEkVrJfx9SD_skihxcrjaDNYnene_833Oe326FKcdeLwgrZ48ZKefu3j5_tUTX2e-y8x80kwLWSH4fgLDwPXcLvFdNneCMBPaHYtvt_C52Vxtl61vthlzUsBgCtCXRHfx3jYNcXFDfYkMVQ3eUU_p19-fJ5FfZeFyMF4ryIgAlY1c6Ncltg0U1hJhhdTcG7TvMGgkVqbqjKN00XDtS0cLvCDUscqrbPXtLNoF3xAwgL9cGHxyXEjk1oVTmqQALO5NLfGTigeVrp0fQly3wnjTxlckdiUnk-l51PZ82lCH8dHbrv6G5uI9z0TRsJ-_Sd0NLCz7DX0rsRWFhvY5gS334-3oVs-YGLD8oMGVJmGbG2i8YHP1Gx-T55nSgKLTehNJ07jHAcpPPz33N_SM3yh6rLajmhntVzzO3ri7le_75bHUIR5cRwU4QEFXQHU |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9wwDLeATcDLNgaD29gIEk_TCm2aps0jm3a6g-M0CSbxVqWpi5DGFR13-_tnpx_aAztpT41Ut0pjO_65dmyAk1hbF6aFDVSFKlBOJ4GNizJQVhlVaBsVzUHhSTqdZre35scafOnPwiCiTz7DUx76WH5ZuyX_Kjsj14OsUbYOLxKlZNic1ur_qPgWEr4hl6RBQKqo2jBmFJqzi6-jMWdyJadcQU2n3CJGarJfhitC_mWTfJOVf-NNb3eGr_9vxm_gVYsvxXkjEDuwhrO3sHnVRtB3oRhypvudGHEaTE3Sg-T6CwaCS3K8xXBePwgCoKTbpbh-JK8XxflyUXO5yxLngiCu8JVFuJNxt2-K8QPtSqKrb7IHP4ffb76NgrbPQuDIfC8CwgSoS8RKuziyMta0kkh-TIaJlUlFg0qlqSkKU7k0q7C0maMLeULSoZZl_A42ZvUMD0BYwj-YWfrksFJRqTOnUiIh1OZkYo0dQNitdO7aIuTcC-NX7p2R0OTMp5z5lLd8GsDn_pHHpgLHKuJdZkJP2K7_AA47duatjj7ltJmFhqxzRLeP-9ukXRwysX75iYao4pRkaxUNhz6lWf2eJIm1IjQ2gP1GnPo5dlL4_vm5H8HW6OZqkk_G08sPsE1fq5sct0PYWMyX-BFeut-L-6f5J68OfwB8SgQz |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusing+Heterogeneous+Features+From+Stacked+Sparse+Autoencoder+for+Histopathological+Image+Analysis&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Zhang%2C+Xiaofan&rft.au=Dou%2C+Hang&rft.au=Ju%2C+Tao&rft.au=Xu%2C+Jun&rft.date=2016-09-01&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=20&rft.issue=5&rft.spage=1377&rft.epage=1383&rft_id=info:doi/10.1109%2FJBHI.2015.2461671&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |