Fusing Heterogeneous Features From Stacked Sparse Autoencoder for Histopathological Image Analysis

In the analysis of histopathological images, both holistic (e.g., architecture features) and local appearance features demonstrate excellent performance, while their accuracy may vary dramatically when providing different inputs. This motivates us to investigate how to fuse results from these featur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics Jg. 20; H. 5; S. 1377 - 1383
Hauptverfasser: Zhang, Xiaofan, Dou, Hang, Ju, Tao, Xu, Jun, Zhang, Shaoting
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.09.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2168-2194, 2168-2208, 2168-2208
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the analysis of histopathological images, both holistic (e.g., architecture features) and local appearance features demonstrate excellent performance, while their accuracy may vary dramatically when providing different inputs. This motivates us to investigate how to fuse results from these features to enhance the accuracy. Particularly, we employ content-based image retrieval approaches to discover morphologically relevant images for image-guided diagnosis, using holistic and local features, both of which are generated from the cell detection results by a stacked sparse autoencoder. Because of the dramatically different characteristics and representations of these heterogeneous features (i.e., holistic and local), their results may not agree with each other, causing difficulties for traditional fusion methods. In this paper, we employ a graph-based query-specific fusion approach where multiple retrieval results (i.e., rank lists) are integrated and reordered based on a fused graph. The proposed method is capable of combining the strengths of local or holistic features adaptively for different inputs. We evaluate our method on a challenging clinical problem, i.e., histopathological image-guided diagnosis of intraductal breast lesions, and it achieves 91.67% classification accuracy on 120 breast tissue images from 40 patients.
AbstractList In the analysis of histopathological images, both holistic (e.g., architecture features) and local appearance features demonstrate excellent performance, while their accuracy may vary dramatically when providing different inputs. This motivates us to investigate how to fuse results from these features to enhance the accuracy. Particularly, we employ content-based image retrieval approaches to discover morphologically relevant images for image-guided diagnosis, using holistic and local features, both of which are generated from the cell detection results by a stacked sparse autoencoder. Because of the dramatically different characteristics and representations of these heterogeneous features (i.e., holistic and local), their results may not agree with each other, causing difficulties for traditional fusion methods. In this paper, we employ a graph-based query-specific fusion approach where multiple retrieval results (i.e., rank lists) are integrated and reordered based on a fused graph. The proposed method is capable of combining the strengths of local or holistic features adaptively for different inputs. We evaluate our method on a challenging clinical problem, i.e., histopathological image-guided diagnosis of intraductal breast lesions, and it achieves 91.67% classification accuracy on 120 breast tissue images from 40 patients.
In the analysis of histopathological images, both holistic (e.g., architecture features) and local appearance features demonstrate excellent performance, while their accuracy may vary dramatically when providing different inputs. This motivates us to investigate how to fuse results from these features to enhance the accuracy. Particularly, we employ content-based image retrieval approaches to discover morphologically relevant images for image-guided diagnosis, using holistic and local features, both of which are generated from the cell detection results by a stacked sparse autoencoder. Because of the dramatically different characteristics and representations of these heterogeneous features (i.e., holistic and local), their results may not agree with each other, causing difficulties for traditional fusion methods. In this paper, we employ a graph-based query-specific fusion approach where multiple retrieval results (i.e., rank lists) are integrated and reordered based on a fused graph. The proposed method is capable of combining the strengths of local or holistic features adaptively for different inputs. We evaluate our method on a challenging clinical problem, i.e., histopathological image-guided diagnosis of intraductal breast lesions, and it achieves 91.67% classification accuracy on 120 breast tissue images from 40 patients.In the analysis of histopathological images, both holistic (e.g., architecture features) and local appearance features demonstrate excellent performance, while their accuracy may vary dramatically when providing different inputs. This motivates us to investigate how to fuse results from these features to enhance the accuracy. Particularly, we employ content-based image retrieval approaches to discover morphologically relevant images for image-guided diagnosis, using holistic and local features, both of which are generated from the cell detection results by a stacked sparse autoencoder. Because of the dramatically different characteristics and representations of these heterogeneous features (i.e., holistic and local), their results may not agree with each other, causing difficulties for traditional fusion methods. In this paper, we employ a graph-based query-specific fusion approach where multiple retrieval results (i.e., rank lists) are integrated and reordered based on a fused graph. The proposed method is capable of combining the strengths of local or holistic features adaptively for different inputs. We evaluate our method on a challenging clinical problem, i.e., histopathological image-guided diagnosis of intraductal breast lesions, and it achieves 91.67% classification accuracy on 120 breast tissue images from 40 patients.
In the analysis of histopathological images, both holistic (e.g., architecture features) and local appearance features demonstrate excellent performance, while their accuracy may vary dramatically when providing different inputs. This motivates us to investigate how to fuse results from these features to enhance the accuracy. Particularly, we employ content-based image retrieval approaches to discover morphologically relevant images for image-guided diagnosis, using holistic and local features, both of which are generated from the cell detection results by a stacked sparse autoencoder. Because of the dramatically different characteristics and representations of these heterogeneous features (i.e., holistic and local), their results may not agree with each other, causing difficulties for traditional fusion methods. In this paper, we employ a graph-based query-specific fusion approach where multiple retrieval results (i.e., rank lists) are integrated and reordered based on a fused graph. The proposed method is capable of combining the strengths of local or holistic features adaptively for different inputs. We evaluate our method on a challenging clinical problem, i.e., histopathological image-guided diagnosis of intraductal breast lesions, and it achieves [Formula Omitted] classification accuracy on [Formula Omitted] breast tissue images from [Formula Omitted] patients.
Author Tao Ju
Xiaofan Zhang
Jun Xu
Shaoting Zhang
Hang Dou
Author_xml – sequence: 1
  givenname: Xiaofan
  surname: Zhang
  fullname: Zhang, Xiaofan
– sequence: 2
  givenname: Hang
  surname: Dou
  fullname: Dou, Hang
– sequence: 3
  givenname: Tao
  surname: Ju
  fullname: Ju, Tao
– sequence: 4
  givenname: Jun
  surname: Xu
  fullname: Xu, Jun
– sequence: 5
  givenname: Shaoting
  surname: Zhang
  fullname: Zhang, Shaoting
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26241980$$D View this record in MEDLINE/PubMed
BookMark eNqNkstuFDEQRS0URB7kAxASaolNNjPY1W4_liFimEGRWATWlsddPTh0twfbvcjf43mxyALwpkrWuVfl8r0kZ2MYkZA3jM4Zo_rDl4_L1Rwoa-bABROSvSAXwISaAVB1duqZ5ufkOqVHWo4qV1q8IucggDOt6AVZL6bkx021xIwxbHDEMKVqgTZPEUsTw1A9ZOt-Yls9bG1MWN1OOeDoQoux6kKslj7lsLX5R-jDxjvbV6vBbgo32v4p-fSavOxsn_D6WK_I98Wnb3fL2f3Xz6u72_uZ46zJM6YpihaxE65mFmpRxkUlG4WNhaYrTcel1Ou17pxUHbZWuVJAUHAooK2vyM3BdxvDrwlTNoNPDvve7h9lmGqaWnAF8B9oLUGDLvXfaIFqWZZb0PfP0McwxbKFvSHVoPje8N2RmtYDtmYb_WDjkzn9SQHkAXAxpBSxM85nm30Yc7S-N4yaXQDMLgBmFwBzDEBRsmfKk_nfNG8PGo-If3jJJHCu6t-lmLml
CODEN IJBHA9
CitedBy_id crossref_primary_10_1016_j_ijepes_2021_107744
crossref_primary_10_1016_j_ipm_2022_103113
crossref_primary_10_1016_j_asoc_2021_107886
crossref_primary_10_1109_TMI_2018_2796130
crossref_primary_10_1016_j_compbiomed_2024_109213
crossref_primary_10_1007_s11042_020_09109_9
crossref_primary_10_2196_11966
crossref_primary_10_1016_j_compbiomed_2022_105944
crossref_primary_10_1016_j_neucom_2021_03_006
crossref_primary_10_1109_JBHI_2018_2827703
crossref_primary_10_1016_j_patcog_2017_05_010
crossref_primary_10_1007_s11042_023_15400_2
crossref_primary_10_1016_j_future_2018_05_002
crossref_primary_10_1109_ACCESS_2020_3020149
crossref_primary_10_1109_JBHI_2017_2723014
crossref_primary_10_1088_2057_1976_adcac9
crossref_primary_10_1109_TMI_2020_3043641
crossref_primary_10_1007_s12021_018_9361_5
crossref_primary_10_1016_j_apenergy_2020_114490
crossref_primary_10_1016_j_cmpb_2018_02_020
crossref_primary_10_1016_j_eswa_2019_01_056
crossref_primary_10_1109_TCBB_2023_3321593
crossref_primary_10_1109_JBHI_2018_2852639
crossref_primary_10_1109_TMM_2017_2729400
crossref_primary_10_1016_j_media_2021_102308
crossref_primary_10_1016_j_knosys_2021_107459
crossref_primary_10_1016_j_media_2021_102227
crossref_primary_10_1016_j_patcog_2016_09_041
crossref_primary_10_3390_app8071126
crossref_primary_10_1016_j_neucom_2022_12_017
crossref_primary_10_1155_2021_4022312
crossref_primary_10_1007_s11517_020_02281_y
crossref_primary_10_1007_s13369_020_05044_x
crossref_primary_10_1016_j_eswa_2020_113693
crossref_primary_10_1016_j_ymeth_2017_02_005
crossref_primary_10_3390_math11081777
crossref_primary_10_3389_fnagi_2022_916020
crossref_primary_10_1007_s10489_018_1393_x
crossref_primary_10_1080_09540091_2019_1674245
crossref_primary_10_3389_fnins_2021_829040
crossref_primary_10_1016_j_patcog_2018_12_013
crossref_primary_10_1016_j_media_2021_102267
crossref_primary_10_1016_j_media_2023_102762
crossref_primary_10_1016_j_media_2017_09_007
crossref_primary_10_1007_s11042_020_08772_2
Cites_doi 10.1023/B:VISI.0000029664.99615.94
10.1007/978-3-642-02976-9_17
10.1109/TBME.2011.2110648
10.1002/(SICI)1097-0320(19980901)33:1<32::AID-CYTO4>3.0.CO;2-D
10.1186/1471-2342-6-14
10.1016/j.ijmedinf.2003.11.024
10.1093/bioinformatics/bti1100
10.1109/ICCV.2003.1238663
10.1109/TMI.2007.898536
10.1109/IEMBS.2007.4353540
10.1145/2072545.2072547
10.1109/TIP.2012.2199502
10.1109/TPAMI.2014.2346201
10.1145/872757.872795
10.1109/CVPR.2011.5995373
10.1109/TSMCB.2011.2179533
10.1007/978-3-642-36678-9_9
10.1007/s001380050104
10.1109/ISBI.2014.6868041
10.1007/978-3-319-10470-6_60
10.1109/ICCV.2009.5459169
10.1109/TITB.2003.822952
10.1007/s11263-010-0338-6
10.1109/TMI.2014.2361481
10.1007/s10278-013-9619-2
10.1109/TIP.2012.2202676
10.1136/amiajnl-2011-000170
10.1006/jvci.1999.0413
10.3233/THC-2000-8505
10.1007/11519645_70
10.1109/RBME.2009.2034865
10.1109/TPAMI.2008.285
10.1007/978-3-540-75757-3_75
10.1109/TITB.2012.2185829
10.1007/s11265-008-0201-y
10.1109/TBME.2009.2035305
10.1109/ISBI.2015.7164110
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/JBHI.2015.2461671
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Technology Research Database
Engineering Research Database
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 1383
ExternalDocumentID 4223528241
26241980
10_1109_JBHI_2015_2461671
7172448
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Ralph E. Powe Junior Faculty Enhancement Award
– fundername: Charlotte Research Institute
– fundername: Oak Ridge Associated Universities
  funderid: 10.13039/100006225
– fundername: National Natural Science Foundation of China
  grantid: 61273259
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Jiangsu Province of China
  grantid: BK20141482
  funderid: 10.13039/501100004608
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
6IL
ADZIZ
CGR
CHZPO
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c415t-190e6deef6c31a236081e8758e5a25f758f4779bb9fc78feda8c8fe2602ce62d3
IEDL.DBID RIE
ISICitedReferencesCount 58
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000384000700020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2194
2168-2208
IngestDate Thu Oct 02 20:58:42 EDT 2025
Tue Oct 07 09:49:57 EDT 2025
Sat Sep 27 22:53:10 EDT 2025
Sun Nov 30 05:16:06 EST 2025
Wed Feb 19 02:44:13 EST 2025
Sat Nov 29 04:18:10 EST 2025
Tue Nov 18 22:27:45 EST 2025
Tue Aug 26 16:43:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-190e6deef6c31a236081e8758e5a25f758f4779bb9fc78feda8c8fe2602ce62d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26241980
PQID 1830928418
PQPubID 85417
PageCount 7
ParticipantIDs pubmed_primary_26241980
ieee_primary_7172448
proquest_miscellaneous_1837292918
proquest_miscellaneous_1855364822
proquest_miscellaneous_1818337008
crossref_primary_10_1109_JBHI_2015_2461671
crossref_citationtrail_10_1109_JBHI_2015_2461671
proquest_journals_1830928418
PublicationCentury 2000
PublicationDate 2016-Sept.
2016-9-00
2016-Sep
20160901
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-Sept.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref36
ref14
ref31
ref30
ref11
ref32
ref10
ref2
ref1
ref17
ref38
richardson (ref41) 0
ref19
ref18
liu (ref16) 0
ref24
ng (ref39) 2011
ref23
ref26
ref25
ref20
ref42
page (ref37) 1999
ref22
ref21
ref43
schnorrenberg (ref33) 2000; 8
ref28
ref27
ref29
ref8
ref9
ref4
doyle (ref7) 0
ref3
ref6
ref5
ref40
References_xml – ident: ref36
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: ref13
  doi: 10.1007/978-3-642-02976-9_17
– ident: ref14
  doi: 10.1109/TBME.2011.2110648
– ident: ref3
  doi: 10.1002/(SICI)1097-0320(19980901)33:1<32::AID-CYTO4>3.0.CO;2-D
– ident: ref23
  doi: 10.1186/1471-2342-6-14
– ident: ref8
  doi: 10.1016/j.ijmedinf.2003.11.024
– ident: ref25
  doi: 10.1093/bioinformatics/bti1100
– ident: ref15
  doi: 10.1109/ICCV.2003.1238663
– ident: ref5
  doi: 10.1109/TMI.2007.898536
– ident: ref24
  doi: 10.1109/IEMBS.2007.4353540
– start-page: 496
  year: 0
  ident: ref7
  article-title: Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features
  publication-title: Proc Int Symp Biomed Imag
– ident: ref32
  doi: 10.1145/2072545.2072547
– start-page: 2074
  year: 0
  ident: ref16
  article-title: Supervised hashing with kernels
  publication-title: Proc IEEE Conf Comput Vis Pattern Recog
– ident: ref30
  doi: 10.1109/TIP.2012.2199502
– ident: ref21
  doi: 10.1109/TPAMI.2014.2346201
– ident: ref20
  doi: 10.1145/872757.872795
– ident: ref40
  doi: 10.1109/CVPR.2011.5995373
– ident: ref18
  doi: 10.1109/TSMCB.2011.2179533
– ident: ref12
  doi: 10.1007/978-3-642-36678-9_9
– ident: ref31
  doi: 10.1007/s001380050104
– ident: ref38
  doi: 10.1109/ISBI.2014.6868041
– ident: ref17
  doi: 10.1007/978-3-319-10470-6_60
– start-page: 1441
  year: 0
  ident: ref41
  article-title: The intelligent surfer: Probabilistic combination of link and content information in pagerank
  publication-title: Proc Neural Inf Process Syst
– ident: ref19
  doi: 10.1109/ICCV.2009.5459169
– ident: ref34
  doi: 10.1109/TITB.2003.822952
– ident: ref27
  doi: 10.1109/ICCV.2003.1238663
– ident: ref42
  doi: 10.1007/s11263-010-0338-6
– ident: ref4
  doi: 10.1109/TMI.2014.2361481
– ident: ref11
  doi: 10.1007/s10278-013-9619-2
– ident: ref29
  doi: 10.1109/TIP.2012.2202676
– year: 1999
  ident: ref37
  article-title: The pagerank citation ranking: Bringing order to the web
– ident: ref10
  doi: 10.1136/amiajnl-2011-000170
– ident: ref28
  doi: 10.1006/jvci.1999.0413
– start-page: 72
  year: 2011
  ident: ref39
  article-title: Sparse autoencoder
  publication-title: lecture notes in CS
– volume: 8
  start-page: 291
  year: 2000
  ident: ref33
  article-title: Content-based retrieval of breast cancer biopsy slides
  publication-title: Technol Health Care
  doi: 10.3233/THC-2000-8505
– ident: ref9
  doi: 10.1007/11519645_70
– ident: ref1
  doi: 10.1109/RBME.2009.2034865
– ident: ref43
  doi: 10.1109/TPAMI.2008.285
– ident: ref26
  doi: 10.1007/978-3-540-75757-3_75
– ident: ref35
  doi: 10.1109/TITB.2012.2185829
– ident: ref6
  doi: 10.1007/s11265-008-0201-y
– ident: ref2
  doi: 10.1109/TBME.2009.2035305
– ident: ref22
  doi: 10.1109/ISBI.2015.7164110
SSID ssj0000816896
Score 2.453556
Snippet In the analysis of histopathological images, both holistic (e.g., architecture features) and local appearance features demonstrate excellent performance, while...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1377
SubjectTerms Accuracy
Algorithms
Biomedical imaging
Breast
Breast - diagnostic imaging
Breast lesion
Breast Neoplasms - diagnostic imaging
Cell Nucleus - pathology
Classification
Computer architecture
Diagnosis
Feature extraction
feature fusion
Female
Fuses
Histocytochemistry - methods
histopathological image analysis
Humans
Image analysis
Image classification
Image detection
Image Interpretation, Computer-Assisted - methods
Image retrieval
large-scale image retrieval
Machine Learning
Representations
Retrieval
stacked sparse autoencoder (SSAE)
Title Fusing Heterogeneous Features From Stacked Sparse Autoencoder for Histopathological Image Analysis
URI https://ieeexplore.ieee.org/document/7172448
https://www.ncbi.nlm.nih.gov/pubmed/26241980
https://www.proquest.com/docview/1830928418
https://www.proquest.com/docview/1818337008
https://www.proquest.com/docview/1837292918
https://www.proquest.com/docview/1855364822
Volume 20
WOSCitedRecordID wos000384000700020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library Online
  customDbUrl:
  eissn: 2168-2208
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816896
  issn: 2168-2194
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_aIuJLq1bt1VpW8ElMm4_NbvaxFY9rqUVQ4d7CZjMRwV7K9a5_f3-7-cAHe-BTFjIJm52Znd9kZmeIPmTKulhXNpINy0g6lUc2q-pIWmlkpWxSdQeFr_T1dTGfm29b9Gk8C8PMIfmMT_wwxPLr1q39r7JTuB6wRsU2bWuturNa4_-U0EAitONKMYigiLIPYiaxOb08n134PK78xNdPU9o3iEkVrJfx9SD_skihxcrjaDNYnene_833Oe326FKcdeLwgrZ48ZKefu3j5_tUTX2e-y8x80kwLWSH4fgLDwPXcLvFdNneCMBPaHYtvt_C52Vxtl61vthlzUsBgCtCXRHfx3jYNcXFDfYkMVQ3eUU_p19-fJ5FfZeFyMF4ryIgAlY1c6Ncltg0U1hJhhdTcG7TvMGgkVqbqjKN00XDtS0cLvCDUscqrbPXtLNoF3xAwgL9cGHxyXEjk1oVTmqQALO5NLfGTigeVrp0fQly3wnjTxlckdiUnk-l51PZ82lCH8dHbrv6G5uI9z0TRsJ-_Sd0NLCz7DX0rsRWFhvY5gS334-3oVs-YGLD8oMGVJmGbG2i8YHP1Gx-T55nSgKLTehNJ07jHAcpPPz33N_SM3yh6rLajmhntVzzO3ri7le_75bHUIR5cRwU4QEFXQHU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9wwDLeATcDLNgaD29gIEk_TCm2aps0jm3a6g-M0CSbxVqWpi5DGFR13-_tnpx_aAztpT41Ut0pjO_65dmyAk1hbF6aFDVSFKlBOJ4GNizJQVhlVaBsVzUHhSTqdZre35scafOnPwiCiTz7DUx76WH5ZuyX_Kjsj14OsUbYOLxKlZNic1ur_qPgWEr4hl6RBQKqo2jBmFJqzi6-jMWdyJadcQU2n3CJGarJfhitC_mWTfJOVf-NNb3eGr_9vxm_gVYsvxXkjEDuwhrO3sHnVRtB3oRhypvudGHEaTE3Sg-T6CwaCS3K8xXBePwgCoKTbpbh-JK8XxflyUXO5yxLngiCu8JVFuJNxt2-K8QPtSqKrb7IHP4ffb76NgrbPQuDIfC8CwgSoS8RKuziyMta0kkh-TIaJlUlFg0qlqSkKU7k0q7C0maMLeULSoZZl_A42ZvUMD0BYwj-YWfrksFJRqTOnUiIh1OZkYo0dQNitdO7aIuTcC-NX7p2R0OTMp5z5lLd8GsDn_pHHpgLHKuJdZkJP2K7_AA47duatjj7ltJmFhqxzRLeP-9ukXRwysX75iYao4pRkaxUNhz6lWf2eJIm1IjQ2gP1GnPo5dlL4_vm5H8HW6OZqkk_G08sPsE1fq5sct0PYWMyX-BFeut-L-6f5J68OfwB8SgQz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusing+Heterogeneous+Features+From+Stacked+Sparse+Autoencoder+for+Histopathological+Image+Analysis&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Zhang%2C+Xiaofan&rft.au=Dou%2C+Hang&rft.au=Ju%2C+Tao&rft.au=Xu%2C+Jun&rft.date=2016-09-01&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=20&rft.issue=5&rft.spage=1377&rft.epage=1383&rft_id=info:doi/10.1109%2FJBHI.2015.2461671&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon