Stochastic Configuration Networks: Fundamentals and Algorithms

This paper contributes to the development of randomized methods for neural networks. The proposed learner model is generated incrementally by stochastic configuration (SC) algorithms, termed SC networks (SCNs). In contrast to the existing randomized learning algorithms for single layer feed-forward...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on cybernetics Vol. 47; no. 10; pp. 3466 - 3479
Main Authors: Wang, Dianhui, Li, Ming
Format: Journal Article
Language:English
Published: United States IEEE 01.10.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2168-2267, 2168-2275, 2168-2275
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper contributes to the development of randomized methods for neural networks. The proposed learner model is generated incrementally by stochastic configuration (SC) algorithms, termed SC networks (SCNs). In contrast to the existing randomized learning algorithms for single layer feed-forward networks, we randomly assign the input weights and biases of the hidden nodes in the light of a supervisory mechanism, and the output weights are analytically evaluated in either a constructive or selective manner. As fundamentals of SCN-based data modeling techniques, we establish some theoretical results on the universal approximation property. Three versions of SC algorithms are presented for data regression and classification problems in this paper. Simulation results concerning both data regression and classification indicate some remarkable merits of our proposed SCNs in terms of less human intervention on the network size setting, the scope adaptation of random parameters, fast learning, and sound generalization.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2017.2734043