Stacked sparse autoencoder networks and statistical shape models for automatic staging of distal femur trochlear dysplasia

Background The quantitative morphological analysis of the trochlear region in the distal femur and the precise staging of the potential dysplastic condition constitute a key point for the use of personalized treatment options for the patella‐femoral joint. In this paper, we integrated statistical sh...

Full description

Saved in:
Bibliographic Details
Published in:The international journal of medical robotics + computer assisted surgery Vol. 14; no. 6; pp. e1947 - n/a
Main Authors: Cerveri, Pietro, Belfatto, Antonella, Baroni, Guido, Manzotti, Alfonso
Format: Journal Article
Language:English
Published: England Wiley Subscription Services, Inc 01.12.2018
Subjects:
ISSN:1478-5951, 1478-596X, 1478-596X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background The quantitative morphological analysis of the trochlear region in the distal femur and the precise staging of the potential dysplastic condition constitute a key point for the use of personalized treatment options for the patella‐femoral joint. In this paper, we integrated statistical shape models (SSM), able to represent the individual morphology of the trochlea by means of a set of parameters and stacked sparse autoencoder (SSPA) networks, which exploit the parameters to discriminate among different levels of abnormalities. Methods Two datasets of distal femur reconstructions were obtained from CT scans, including pathologic and physiologic shapes. Both of them were processed to compute SSM of healthy and dysplastic trochlear regions. The parameters obtained by the 3D‐3D reconstruction of a femur shape were fed into a trained SSPA classifier to automatically establish the membership to one of three clinical conditions, namely, healthy, mild dysplasia, and severe dysplasia of the trochlea. The validation was performed on a subset of the shapes not used in the construction of the SSM, by verifying the occurrence of a correct classification. Results A major finding of the work is that SSM are able to represent anomalies of the trochlear geometry by means of specific eigenmodes of variation and to model the interplay between morphologic features related to dysplasia. Exploiting the patient‐specific morphing parameters of SSM, computed by means of a 3D‐3D reconstruction, SSPA is demonstrated to outperform traditional discriminant analysis in classifying healthy, mild, and severe trochlear dysplasia providing 99%, 97%, and 98% accuracy for each of the three classes, respectively (discriminant analysis accuracy: 85%, 89%, and 77%). Conclusions From a clinical point of view, this paper contributes to support the increasing role of SSM, integrated with deep learning techniques, in diagnostics and therapy definition as quantitative and advanced visualization tools.
AbstractList The quantitative morphological analysis of the trochlear region in the distal femur and the precise staging of the potential dysplastic condition constitute a key point for the use of personalized treatment options for the patella-femoral joint. In this paper, we integrated statistical shape models (SSM), able to represent the individual morphology of the trochlea by means of a set of parameters and stacked sparse autoencoder (SSPA) networks, which exploit the parameters to discriminate among different levels of abnormalities.BACKGROUNDThe quantitative morphological analysis of the trochlear region in the distal femur and the precise staging of the potential dysplastic condition constitute a key point for the use of personalized treatment options for the patella-femoral joint. In this paper, we integrated statistical shape models (SSM), able to represent the individual morphology of the trochlea by means of a set of parameters and stacked sparse autoencoder (SSPA) networks, which exploit the parameters to discriminate among different levels of abnormalities.Two datasets of distal femur reconstructions were obtained from CT scans, including pathologic and physiologic shapes. Both of them were processed to compute SSM of healthy and dysplastic trochlear regions. The parameters obtained by the 3D-3D reconstruction of a femur shape were fed into a trained SSPA classifier to automatically establish the membership to one of three clinical conditions, namely, healthy, mild dysplasia, and severe dysplasia of the trochlea. The validation was performed on a subset of the shapes not used in the construction of the SSM, by verifying the occurrence of a correct classification.METHODSTwo datasets of distal femur reconstructions were obtained from CT scans, including pathologic and physiologic shapes. Both of them were processed to compute SSM of healthy and dysplastic trochlear regions. The parameters obtained by the 3D-3D reconstruction of a femur shape were fed into a trained SSPA classifier to automatically establish the membership to one of three clinical conditions, namely, healthy, mild dysplasia, and severe dysplasia of the trochlea. The validation was performed on a subset of the shapes not used in the construction of the SSM, by verifying the occurrence of a correct classification.A major finding of the work is that SSM are able to represent anomalies of the trochlear geometry by means of specific eigenmodes of variation and to model the interplay between morphologic features related to dysplasia. Exploiting the patient-specific morphing parameters of SSM, computed by means of a 3D-3D reconstruction, SSPA is demonstrated to outperform traditional discriminant analysis in classifying healthy, mild, and severe trochlear dysplasia providing 99%, 97%, and 98% accuracy for each of the three classes, respectively (discriminant analysis accuracy: 85%, 89%, and 77%).RESULTSA major finding of the work is that SSM are able to represent anomalies of the trochlear geometry by means of specific eigenmodes of variation and to model the interplay between morphologic features related to dysplasia. Exploiting the patient-specific morphing parameters of SSM, computed by means of a 3D-3D reconstruction, SSPA is demonstrated to outperform traditional discriminant analysis in classifying healthy, mild, and severe trochlear dysplasia providing 99%, 97%, and 98% accuracy for each of the three classes, respectively (discriminant analysis accuracy: 85%, 89%, and 77%).From a clinical point of view, this paper contributes to support the increasing role of SSM, integrated with deep learning techniques, in diagnostics and therapy definition as quantitative and advanced visualization tools.CONCLUSIONSFrom a clinical point of view, this paper contributes to support the increasing role of SSM, integrated with deep learning techniques, in diagnostics and therapy definition as quantitative and advanced visualization tools.
The quantitative morphological analysis of the trochlear region in the distal femur and the precise staging of the potential dysplastic condition constitute a key point for the use of personalized treatment options for the patella-femoral joint. In this paper, we integrated statistical shape models (SSM), able to represent the individual morphology of the trochlea by means of a set of parameters and stacked sparse autoencoder (SSPA) networks, which exploit the parameters to discriminate among different levels of abnormalities. Two datasets of distal femur reconstructions were obtained from CT scans, including pathologic and physiologic shapes. Both of them were processed to compute SSM of healthy and dysplastic trochlear regions. The parameters obtained by the 3D-3D reconstruction of a femur shape were fed into a trained SSPA classifier to automatically establish the membership to one of three clinical conditions, namely, healthy, mild dysplasia, and severe dysplasia of the trochlea. The validation was performed on a subset of the shapes not used in the construction of the SSM, by verifying the occurrence of a correct classification. A major finding of the work is that SSM are able to represent anomalies of the trochlear geometry by means of specific eigenmodes of variation and to model the interplay between morphologic features related to dysplasia. Exploiting the patient-specific morphing parameters of SSM, computed by means of a 3D-3D reconstruction, SSPA is demonstrated to outperform traditional discriminant analysis in classifying healthy, mild, and severe trochlear dysplasia providing 99%, 97%, and 98% accuracy for each of the three classes, respectively (discriminant analysis accuracy: 85%, 89%, and 77%). From a clinical point of view, this paper contributes to support the increasing role of SSM, integrated with deep learning techniques, in diagnostics and therapy definition as quantitative and advanced visualization tools.
BackgroundThe quantitative morphological analysis of the trochlear region in the distal femur and the precise staging of the potential dysplastic condition constitute a key point for the use of personalized treatment options for the patella‐femoral joint. In this paper, we integrated statistical shape models (SSM), able to represent the individual morphology of the trochlea by means of a set of parameters and stacked sparse autoencoder (SSPA) networks, which exploit the parameters to discriminate among different levels of abnormalities.MethodsTwo datasets of distal femur reconstructions were obtained from CT scans, including pathologic and physiologic shapes. Both of them were processed to compute SSM of healthy and dysplastic trochlear regions. The parameters obtained by the 3D‐3D reconstruction of a femur shape were fed into a trained SSPA classifier to automatically establish the membership to one of three clinical conditions, namely, healthy, mild dysplasia, and severe dysplasia of the trochlea. The validation was performed on a subset of the shapes not used in the construction of the SSM, by verifying the occurrence of a correct classification.ResultsA major finding of the work is that SSM are able to represent anomalies of the trochlear geometry by means of specific eigenmodes of variation and to model the interplay between morphologic features related to dysplasia. Exploiting the patient‐specific morphing parameters of SSM, computed by means of a 3D‐3D reconstruction, SSPA is demonstrated to outperform traditional discriminant analysis in classifying healthy, mild, and severe trochlear dysplasia providing 99%, 97%, and 98% accuracy for each of the three classes, respectively (discriminant analysis accuracy: 85%, 89%, and 77%).ConclusionsFrom a clinical point of view, this paper contributes to support the increasing role of SSM, integrated with deep learning techniques, in diagnostics and therapy definition as quantitative and advanced visualization tools.
Background The quantitative morphological analysis of the trochlear region in the distal femur and the precise staging of the potential dysplastic condition constitute a key point for the use of personalized treatment options for the patella‐femoral joint. In this paper, we integrated statistical shape models (SSM), able to represent the individual morphology of the trochlea by means of a set of parameters and stacked sparse autoencoder (SSPA) networks, which exploit the parameters to discriminate among different levels of abnormalities. Methods Two datasets of distal femur reconstructions were obtained from CT scans, including pathologic and physiologic shapes. Both of them were processed to compute SSM of healthy and dysplastic trochlear regions. The parameters obtained by the 3D‐3D reconstruction of a femur shape were fed into a trained SSPA classifier to automatically establish the membership to one of three clinical conditions, namely, healthy, mild dysplasia, and severe dysplasia of the trochlea. The validation was performed on a subset of the shapes not used in the construction of the SSM, by verifying the occurrence of a correct classification. Results A major finding of the work is that SSM are able to represent anomalies of the trochlear geometry by means of specific eigenmodes of variation and to model the interplay between morphologic features related to dysplasia. Exploiting the patient‐specific morphing parameters of SSM, computed by means of a 3D‐3D reconstruction, SSPA is demonstrated to outperform traditional discriminant analysis in classifying healthy, mild, and severe trochlear dysplasia providing 99%, 97%, and 98% accuracy for each of the three classes, respectively (discriminant analysis accuracy: 85%, 89%, and 77%). Conclusions From a clinical point of view, this paper contributes to support the increasing role of SSM, integrated with deep learning techniques, in diagnostics and therapy definition as quantitative and advanced visualization tools.
Author Cerveri, Pietro
Manzotti, Alfonso
Baroni, Guido
Belfatto, Antonella
Author_xml – sequence: 1
  givenname: Pietro
  orcidid: 0000-0003-3995-8673
  surname: Cerveri
  fullname: Cerveri, Pietro
  email: pietro.cerveri@polimi.it
  organization: Politecnico di Milano University
– sequence: 2
  givenname: Antonella
  surname: Belfatto
  fullname: Belfatto, Antonella
  organization: Politecnico di Milano University
– sequence: 3
  givenname: Guido
  surname: Baroni
  fullname: Baroni, Guido
  organization: Politecnico di Milano University
– sequence: 4
  givenname: Alfonso
  surname: Manzotti
  fullname: Manzotti, Alfonso
  organization: “Luigi Sacco” Hospital, ASST FBF‐Sacco
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30073759$$D View this record in MEDLINE/PubMed
BookMark eNp10V1rFTEQBuAgFfuh4C-QgDfe7DHZ3Wx2L-WgVSgIbQXvwpzspE2bTdYkSzn--ua0tUJprxKY552EmUOy54NHQt5ztuKM1Z-jTis-tPIVOeCt7CsxdL_3Hu-C75PDlK4Ya0XbtW_IfsOYbKQYDsjfswz6GkeaZogJKSw5oNdhxEg95psQrxMFX-oZsk3ZanA0XcKMdCrIJWpCvEtNpa537ML6CxoMHQsv2OC0RJpj0JcOIdJxm2YHycJb8tqAS_ju4Twiv759PV9_r05-Hv9YfzmpdMuFrIzUGwnIGwFi1L2pN7JumoEJ00HNBOcwiB6hYTAw3RU0AOt5h6YbudEld0Q-3fedY_izYMpqskmjc-AxLEnVrG8kL7NihX58Qq_CEn35nap5PbSCi7ov6sODWjYTjmqOdoK4Vf-m-v9FHUNKEc0j4UztFqbKwtRuYYWunlBtd5MOPkew7rlAdR-4sQ63LzZWp-uzO38LZhun4A
CitedBy_id crossref_primary_10_1080_10255842_2019_1592378
crossref_primary_10_1007_s00167_019_05802_x
crossref_primary_10_1016_j_asmr_2025_101269
crossref_primary_10_1002_jeo2_12090
crossref_primary_10_12998_wjcc_v11_i7_1477
crossref_primary_10_1371_journal_pone_0270308
crossref_primary_10_3389_fbioe_2020_00253
crossref_primary_10_3389_fvets_2021_623318
crossref_primary_10_1109_ACCESS_2019_2928363
crossref_primary_10_1007_s00167_023_07612_8
crossref_primary_10_1109_ACCESS_2019_2909756
crossref_primary_10_1109_ACCESS_2020_3034418
crossref_primary_10_1016_j_imed_2024_05_001
Cites_doi 10.1007/s00167-012-2321-y
10.1109/TBME.2007.895736
10.1109/TBME.2010.2056369
10.1007/s11999-009-1156-4
10.1016/j.medengphy.2016.02.003
10.1109/TPAMI.2010.46
10.1177/0363546511433028
10.1016/j.neuroimage.2015.05.018
10.1302/0301-620X.96B12.33964
10.1007/s00167-011-1410-7
10.1080/10255842.2013.843676
10.1007/s10439-010-9965-x
10.1007/s00167-014-3152-9
10.1006/cviu.1995.1004
10.1371/journal.pone.0178992
10.1109/TBME.2016.2631620
10.1007/s00167-013-2573-1
10.1016/j.knee.2013.09.009
10.1016/j.media.2013.05.010
10.1109/TMI.2015.2458702
10.1007/s10439-010-0064-9
10.1007/s00167-009-0824-y
10.1109/TBME.2014.2368362
10.1007/s00167-014-3083-5
10.1016/j.jbiomech.2011.07.006
10.1302/0301-620X.89B6.18514
10.1007/s00167-003-0414-3
10.1007/BF01552649
10.1177/0363546514565768
10.1016/j.knee.2010.07.006
10.1097/01.jsm.0000157315.10756.14
10.1016/j.csm.2014.03.005
10.1016/j.compmedimag.2014.09.001
10.1007/s00167-005-0668-z
10.1088/1361-6560/aa7731
10.1109/TBME.2013.2274672
10.1007/s00167-014-3186-z
10.1016/j.jbiomech.2011.06.025
10.1007/s10278-017-9955-8
10.1016/j.ocl.2008.02.003
10.1016/j.knee.2013.11.016
ContentType Journal Article
Copyright 2018 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2018 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
7TB
8FD
F28
FR3
JQ2
K9.
L7M
L~C
L~D
7X8
DOI 10.1002/rcs.1947
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1478-596X
EndPage n/a
ExternalDocumentID 30073759
10_1002_rcs_1947
RCS1947
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SJN
SUPJJ
SV3
TEORI
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WQJ
WRC
WVDHM
WXI
WXSBR
XG1
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
7TB
8FD
F28
FR3
JQ2
K9.
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c4157-f7cb7ae135a5dc8f2b7233905f6a20511a958ea30a90c65a59a0816ef6d1fce13
IEDL.DBID DRFUL
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000449691300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1478-5951
1478-596X
IngestDate Fri Jul 11 10:19:28 EDT 2025
Sat Nov 29 14:29:12 EST 2025
Mon Jul 21 05:59:15 EDT 2025
Sat Nov 29 02:08:27 EST 2025
Tue Nov 18 22:35:13 EST 2025
Wed Jan 22 16:34:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords sparse autoencoder networks
trochlear morphology
trochlear dysplasia
statistical shape modelling
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
http://onlinelibrary.wiley.com/termsAndConditions#vor
2018 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4157-f7cb7ae135a5dc8f2b7233905f6a20511a958ea30a90c65a59a0816ef6d1fce13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3995-8673
PMID 30073759
PQID 2129451528
PQPubID 1026349
PageCount 12
ParticipantIDs proquest_miscellaneous_2083711470
proquest_journals_2129451528
pubmed_primary_30073759
crossref_primary_10_1002_rcs_1947
crossref_citationtrail_10_1002_rcs_1947
wiley_primary_10_1002_rcs_1947_RCS1947
PublicationCentury 2000
PublicationDate December 2018
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: December 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Hamilton
PublicationTitle The international journal of medical robotics + computer assisted surgery
PublicationTitleAlternate Int J Med Robot
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 62
2017; 64
2010; 32
2010; 38
2010; 57
2013; 22
2008; 39
2016; 124
2007; 89‐B
2007; 54
2011; 19
2016; 38
2014; 61
2011; 18
2014; 22
2016; 35
2014; 21
2013; 18
1995; 61
2017; 30
2013; 17
2015; 62
2014; 96‐B
2017; 13
2004; 12
2015; 43
2017; 12
2014; 38
2016; 21
2011; 44
2017
2005; 15
1994; 2
2012; 22
2014; 33
2009; 468
2012; 40
2009; 17
2005; 14
Biedert (10.1002/rcs.1947-BIB0015|rcs1947-cit-0016) 2011; 18
Zhu (10.1002/rcs.1947-BIB0032|rcs1947-cit-0033) 2011; 44
Lee (10.1002/rcs.1947-BIB0036|rcs1947-cit-0037) 2017; 30
Zhang (10.1002/rcs.1947-BIB0026|rcs1947-cit-0027) 2010; 57
Dornacher (10.1002/rcs.1947-BIB0013|rcs1947-cit-0014) 2014; 22
Buchner (10.1002/rcs.1947-BIB0002|rcs1947-cit-0003) 2005; 15
Escala (10.1002/rcs.1947-BIB0017|rcs1947-cit-0018) 2005; 14
Cerveri (10.1002/rcs.1947-BIB0021|rcs1947-cit-0022) 2014; 38
Dejour (10.1002/rcs.1947-BIB0001|rcs1947-cit-0002) 1994; 2
Myronenko (10.1002/rcs.1947-BIB0042|rcs1947-cit-0043) 2010; 32
Biedert (10.1002/rcs.1947-BIB0014|rcs1947-cit-0015) 2009; 17
Yamada (10.1002/rcs.1947-BIB0018|rcs1947-cit-0019) 2007; 89-B
Xue (10.1002/rcs.1947-BIB0041|rcs1947-cit-0042) 2017; 12
Cerveri (10.1002/rcs.1947-BIB0020|rcs1947-cit-0021) 2010; 38
Cerveri (10.1002/rcs.1947-BIB0033|rcs1947-cit-0034) 2017; 13
Skellesy (10.1002/rcs.1947-BIB0010|rcs1947-cit-0011) 2015; 43
Hasler (10.1002/rcs.1947-BIB0023|rcs1947-cit-0024) 2014; 22
Mofidi (10.1002/rcs.1947-BIB0005|rcs1947-cit-0006) 2014; 21
Le (10.1002/rcs.1947-BIB0040|rcs1947-cit-0041) 2017; 62
Shih (10.1002/rcs.1947-BIB0044|rcs1947-cit-0045) 2004; 12
LaPrade (10.1002/rcs.1947-BIB0003|rcs1947-cit-0004) 2014; 33
Xu (10.1002/rcs.1947-BIB0038|rcs1947-cit-0039) 2016; 35
Kim (10.1002/rcs.1947-BIB0039|rcs1947-cit-0040) 2016; 124
Lippacher (10.1002/rcs.1947-BIB0011|rcs1947-cit-0012) 2012; 40
Iranpour (10.1002/rcs.1947-BIB0007|rcs1947-cit-0008) 2009; 468
Pinskerova (10.1002/rcs.1947-BIB0024|rcs1947-cit-0025) 2014; 22
Albrecht (10.1002/rcs.1947-BIB0034|rcs1947-cit-0035) 2013; 17
Fucentese (10.1002/rcs.1947-BIB0008|rcs1947-cit-0009) 2011; 19
Nelitz (10.1002/rcs.1947-BIB0012|rcs1947-cit-0013) 2012; 22
Longo (10.1002/rcs.1947-BIB0006|rcs1947-cit-0007) 2017
Cerveri (10.1002/rcs.1947-BIB0022|rcs1947-cit-0023) 2016; 21
Gogna (10.1002/rcs.1947-BIB0037|rcs1947-cit-0038) 2017; 64
Tsai (10.1002/rcs.1947-BIB0030|rcs1947-cit-0031) 2013; 18
Mutsvangwa (10.1002/rcs.1947-BIB0027|rcs1947-cit-0028) 2015; 62
Haver (10.1002/rcs.1947-BIB0035|rcs1947-cit-0036) 2014; 21
Li (10.1002/rcs.1947-BIB0019|rcs1947-cit-0020) 2010; 38
Zhang (10.1002/rcs.1947-BIB0028|rcs1947-cit-0029) 2016; 38
Fitzpatrick (10.1002/rcs.1947-BIB0031|rcs1947-cit-0032) 2011; 44
Cerveri (10.1002/rcs.1947-BIB0043|rcs1947-cit-0044) 2014; 61
Cootes (10.1002/rcs.1947-BIB0025|rcs1947-cit-0026) 1995; 61
Haver (10.1002/rcs.1947-BIB0016|rcs1947-cit-0017) 2013; 22
Davidson (10.1002/rcs.1947-BIB0004|rcs1947-cit-0005) 2008; 39
Zheng (10.1002/rcs.1947-BIB0029|rcs1947-cit-0030) 2007; 54
Monk (10.1002/rcs.1947-BIB0009|rcs1947-cit-0010) 2014; 96-B
References_xml – volume: 15
  start-page: 62
  issue: 2
  year: 2005
  end-page: 66
  article-title: Acute traumatic primary patellar dislocation: long‐term results comparing conservative and surgical treatment
  publication-title: Clin J Sport Med
– volume: 22
  start-page: 2342
  issue: 10
  year: 2014
  end-page: 2349
  article-title: Gender differences in the morphology of the trochlea and the distal femur
  publication-title: Knee Surg Sports Traumatol Arthrosc
– volume: 62
  start-page: 6497
  issue: 16
  year: 2017
  end-page: 6514
  article-title: Automated diagnosis of prostate cancer in multi‐parametric MRI based on multimodal convolutional neural networks
  publication-title: Phys Med Biol
– volume: 33
  start-page: 531
  issue: 3
  year: 2014
  end-page: 545
  article-title: Trochlear dysplasia and the role of trochleoplasty
  publication-title: Clin Sports MedClin Sports Med
– volume: 38
  start-page: 664
  issue: 8
  year: 2014
  end-page: 674
  article-title: Automating the design of resection guides specific to patient anatomy in knee replacement surgery by enhanced 3D curvature and surface modeling of distal femur shape models
  publication-title: Comput Med Imaging GraphComputerized Medical Imaging and Graphics
– volume: 2
  start-page: 19
  issue: 1
  year: 1994
  end-page: 26
  article-title: Factors of patellar instability: an anatomic radiographic study
  publication-title: Knee Surgery, Sport Traumatol Arthrosc
– volume: 13
  issue: 4
  year: 2017
  article-title: 2D/3D reconstruction of the distal femur using statistical shape models addressing personalized surgical instruments in knee arthroplasty: a feasibility analysis
  publication-title: Int J MedRobo Comp AssistSurgery
– volume: 22
  start-page: 2372
  issue: 10
  year: 2014
  end-page: 2376
  article-title: Landmarks of the normal adult human trochlea based on axial MRI measurements: a cross‐sectional study
  publication-title: Knee Surgery, Sport Traumatol Arthrosc
– volume: 12
  issue: 6
  year: 2017
  article-title: A preliminary examination of the diagnostic value of deep learning in hip osteoarthritis
  publication-title: Plos One
– volume: 38
  start-page: 450
  issue: 5
  year: 2016
  end-page: 457
  article-title: Predictive statistical models of baseline variations in 3‐D femoral cortex morphology
  publication-title: Med Eng Phys
– volume: 17
  start-page: 959
  issue: 8
  year: 2013
  end-page: 973
  article-title: Posterior shape models
  publication-title: Med Image Anal
– volume: 39
  start-page: 337
  issue: 3
  year: 2008
  end-page: 346
  article-title: Focal anatomic patellofemoral inlay resurfacing: theoretic basis, surgical technique, and case reports
  publication-title: Orthop Clin North Am
– volume: 32
  start-page: 2262
  issue: 12
  year: 2010
  end-page: 2275
  article-title: Point set registration: coherent point drift
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 61
  start-page: 38
  issue: 1
  year: 1995
  end-page: 59
  article-title: Active shape models‐their training and application
  publication-title: Comp Vision Image Understanding
– volume: 96‐B
  start-page: 1623
  issue: 12
  year: 2014
  end-page: 1630
  article-title: The shape of the distal femur
  publication-title: Bone Joint J
– volume: 22
  start-page: 2382
  issue: 10
  year: 2014
  end-page: 2387
  article-title: Measurement of tibial tuberosity‐trochlear groove distance: evaluation of inter‐ and intraobserver correlation dependent on the severity of trochlear dysplasia
  publication-title: Knee Surgery, Sport Traumatol Arthrosc
– volume: 57
  start-page: 2622
  issue: 10
  year: 2010
  end-page: 2626
  article-title: Automatic liver segmentation using a statistical shape model with optimal surface detection
  publication-title: IEEE Trans BiomedicEng
– volume: 54
  start-page: 2109
  issue: 12
  year: 2007
  end-page: 2122
  article-title: Accurate and robust reconstruction of a surface model of the proximal femur from sparse‐point data and a dense‐point distribution model for surgical navigation
  publication-title: IEEE Trans BiomedicEng
– volume: 18
  start-page: 721
  issue: 7
  year: 2013
  end-page: 729
  article-title: Principal component analysis in construction of 3D human knee joint models using a statistical shape model method
  publication-title: Comput Methods Biomech Biomed Engin
– volume: 124
  start-page: 127
  issue: Pt A
  year: 2016
  end-page: 146
  article-title: Deep neural network with weight sparsity control and pre‐training extracts hierarchical features and enhances classification performance: evidence from whole‐brain resting‐state functional connectivity patterns of schizophrenia
  publication-title: Neuroimage
– volume: 22
  start-page: 120
  issue: 1
  year: 2012
  end-page: 127
  article-title: Evaluation of trochlear dysplasia using MRI: correlation between the classification system of Dejour and objective parameters of trochlear dysplasia
  publication-title: Knee Surgery, Sport Traumatol Arthrosc
– volume: 44
  start-page: 2362
  issue: 13
  year: 2011
  end-page: 2368
  article-title: Construction of 3D human distal femoral surface models using a 3D statistical deformable model
  publication-title: J Biomech
– volume: 468
  start-page: 782
  issue: 3
  year: 2009
  end-page: 788
  article-title: The geometry of the trochlear groove
  publication-title: Clin Orthop Relat Res
– volume: 14
  start-page: 264
  issue: 3
  year: 2005
  end-page: 272
  article-title: Objective patellar instability: MR‐based quantitative assessment of potentially associated anatomical features
  publication-title: Knee Surgery, Sport Traumatol Arthrosc
– volume: 17
  start-page: 1225
  issue: 10
  year: 2009
  end-page: 1230
  article-title: Anterior‐posterior trochlear measurements of normal and dysplastic trochlea by axial magnetic resonance imaging
  publication-title: Knee Surgery, Sport Traumatol Arthrosc
– volume: 64
  start-page: 2196
  issue: 9
  year: 2017
  end-page: 2205
  article-title: Semi‐supervised stacked label consistent autoencoder for reconstruction and analysis of biomedical signals
  publication-title: IEEE Trans BiomedicEng
– volume: 89‐B
  start-page: 746
  issue: 6
  year: 2007
  end-page: 751
  article-title: Morphological analysis of the femoral trochlea in patients with recurrent dislocation of the patella using three‐dimensional computer models
  publication-title: J Bone Joint Surg
– year: 2017
  article-title: Trochleoplasty techniques provide good clinical results in patients with trochlear dysplasia
  publication-title: Knee Surgery, Sport Traumatol Arthrosc
– volume: 38
  start-page: 1752
  issue: 5
  year: 2010
  end-page: 1766
  article-title: Automated method for computing the morphological and clinical parameters of the proximal femur using heuristic modeling techniques
  publication-title: Ann Biomed Eng
– volume: 62
  start-page: 1098
  issue: 4
  year: 2015
  end-page: 1107
  article-title: An automated statistical shape model developmental pipeline: application to the human scapula and humerus
  publication-title: IEEE Trans BiomedicEng
– volume: 12
  start-page: 300
  issue: 4
  year: 2004
  end-page: 306
  article-title: The cartilaginous and osseous geometry of the femoral trochlear groove
  publication-title: Knee Surgery, Sport Traumatol Arthrosc
– volume: 21
  start-page: 509
  issue: 2
  year: 2014
  end-page: 513
  article-title: Association and impact of patellofemoral dysplasia on patellofemoral arthropathy and arthroplasty
  publication-title: Knee
– volume: 61
  start-page: 16
  issue: 1
  year: 2014
  end-page: 24
  article-title: Local shape similarity and mean‐shift curvature for deformable surface mapping of anatomical structures
  publication-title: IEEE Trans BiomedicEng
– volume: 22
  start-page: 2698
  issue: 11
  year: 2013
  end-page: 2708
  article-title: Semi‐automated landmark‐based 3D analysis reveals new morphometric characteristics in the trochlear dysplastic femur
  publication-title: Knee Surgery, Sport Traumatol Arthrosc
– volume: 18
  start-page: 340
  issue: 5
  year: 2011
  end-page: 346
  article-title: 3D representation of the surface topography of normal and dysplastic trochlea using MRI
  publication-title: Knee
– volume: 44
  start-page: 2446
  issue: 13
  year: 2011
  end-page: 2452
  article-title: Development of a statistical shape model of the patellofemoral joint for investigating relationships between shape and function
  publication-title: J Biomech
– volume: 30
  start-page: 427
  issue: 4
  year: 2017
  end-page: 441
  article-title: Fully automated deep learning system for bone age assessment
  publication-title: J Digit Imaging
– volume: 38
  start-page: 2928
  issue: 9
  year: 2010
  end-page: 2936
  article-title: Automating analyses of the distal femur articular geometry based on three‐dimensional surface data
  publication-title: Ann Biomed Eng
– volume: 21
  start-page: 518
  issue: 2
  year: 2014
  end-page: 523
  article-title: A statistical shape model of trochlear dysplasia of the knee
  publication-title: Knee
– volume: 43
  start-page: 873
  issue: 4
  year: 2015
  end-page: 878
  article-title: Inter‐ and intraobserver reliability in the MRI measurement of the tibial tubercle‐trochlear groove distance and trochlea dysplasia
  publication-title: Am J Sports Med
– volume: 21
  start-page: 29
  issue: 1
  year: 2016
  end-page: 38
  article-title: Patient‐specific modeling of the trochlear morphologic anomalies by means of hyperbolic paraboloids
  publication-title: CompAssistSurgery
– volume: 40
  start-page: 837
  issue: 4
  year: 2012
  end-page: 843
  article-title: Observer agreement on the Dejour trochlear dysplasia classification
  publication-title: Am J Sports Med
– volume: 19
  start-page: 1655
  issue: 10
  year: 2011
  end-page: 1661
  article-title: Classification of trochlear dysplasia as predictor of clinical outcome after trochleoplasty
  publication-title: Knee Surg Sports Traumatol Arthrosc
– volume: 35
  start-page: 119
  issue: 1
  year: 2016
  end-page: 130
  article-title: Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images
  publication-title: IEEE Trans Med Imaging
– volume: 22
  start-page: 120
  issue: 1
  year: 2012
  ident: 10.1002/rcs.1947-BIB0012|rcs1947-cit-0013
  article-title: Evaluation of trochlear dysplasia using MRI: correlation between the classification system of Dejour and objective parameters of trochlear dysplasia
  publication-title: Knee Surgery, Sport Traumatol Arthrosc
  doi: 10.1007/s00167-012-2321-y
– volume: 54
  start-page: 2109
  issue: 12
  year: 2007
  ident: 10.1002/rcs.1947-BIB0029|rcs1947-cit-0030
  article-title: Accurate and robust reconstruction of a surface model of the proximal femur from sparse-point data and a dense-point distribution model for surgical navigation
  publication-title: IEEE Trans BiomedicEng
  doi: 10.1109/TBME.2007.895736
– volume: 57
  start-page: 2622
  issue: 10
  year: 2010
  ident: 10.1002/rcs.1947-BIB0026|rcs1947-cit-0027
  article-title: Automatic liver segmentation using a statistical shape model with optimal surface detection
  publication-title: IEEE Trans BiomedicEng
  doi: 10.1109/TBME.2010.2056369
– volume: 468
  start-page: 782
  issue: 3
  year: 2009
  ident: 10.1002/rcs.1947-BIB0007|rcs1947-cit-0008
  article-title: The geometry of the trochlear groove
  publication-title: Clin Orthop Relat Res
  doi: 10.1007/s11999-009-1156-4
– volume: 38
  start-page: 450
  issue: 5
  year: 2016
  ident: 10.1002/rcs.1947-BIB0028|rcs1947-cit-0029
  article-title: Predictive statistical models of baseline variations in 3-D femoral cortex morphology
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2016.02.003
– volume: 13
  issue: 4
  year: 2017
  ident: 10.1002/rcs.1947-BIB0033|rcs1947-cit-0034
  article-title: 2D/3D reconstruction of the distal femur using statistical shape models addressing personalized surgical instruments in knee arthroplasty: a feasibility analysis
  publication-title: Int J MedRobo Comp AssistSurgery
– volume: 32
  start-page: 2262
  issue: 12
  year: 2010
  ident: 10.1002/rcs.1947-BIB0042|rcs1947-cit-0043
  article-title: Point set registration: coherent point drift
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.46
– volume: 40
  start-page: 837
  issue: 4
  year: 2012
  ident: 10.1002/rcs.1947-BIB0011|rcs1947-cit-0012
  article-title: Observer agreement on the Dejour trochlear dysplasia classification
  publication-title: Am J Sports Med
  doi: 10.1177/0363546511433028
– volume: 124
  start-page: 127
  issue: Pt A
  year: 2016
  ident: 10.1002/rcs.1947-BIB0039|rcs1947-cit-0040
  article-title: Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.05.018
– volume: 96-B
  start-page: 1623
  issue: 12
  year: 2014
  ident: 10.1002/rcs.1947-BIB0009|rcs1947-cit-0010
  article-title: The shape of the distal femur
  publication-title: Bone Joint J
  doi: 10.1302/0301-620X.96B12.33964
– volume: 19
  start-page: 1655
  issue: 10
  year: 2011
  ident: 10.1002/rcs.1947-BIB0008|rcs1947-cit-0009
  article-title: Classification of trochlear dysplasia as predictor of clinical outcome after trochleoplasty
  publication-title: Knee Surg Sports Traumatol Arthrosc
  doi: 10.1007/s00167-011-1410-7
– volume: 18
  start-page: 721
  issue: 7
  year: 2013
  ident: 10.1002/rcs.1947-BIB0030|rcs1947-cit-0031
  article-title: Principal component analysis in construction of 3D human knee joint models using a statistical shape model method
  publication-title: Comput Methods Biomech Biomed Engin
  doi: 10.1080/10255842.2013.843676
– volume: 38
  start-page: 1752
  issue: 5
  year: 2010
  ident: 10.1002/rcs.1947-BIB0020|rcs1947-cit-0021
  article-title: Automated method for computing the morphological and clinical parameters of the proximal femur using heuristic modeling techniques
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-010-9965-x
– volume: 22
  start-page: 2372
  issue: 10
  year: 2014
  ident: 10.1002/rcs.1947-BIB0023|rcs1947-cit-0024
  article-title: Landmarks of the normal adult human trochlea based on axial MRI measurements: a cross-sectional study
  publication-title: Knee Surgery, Sport Traumatol Arthrosc
  doi: 10.1007/s00167-014-3152-9
– year: 2017
  ident: 10.1002/rcs.1947-BIB0006|rcs1947-cit-0007
  article-title: Trochleoplasty techniques provide good clinical results in patients with trochlear dysplasia
  publication-title: Knee Surgery, Sport Traumatol Arthrosc
– volume: 61
  start-page: 38
  issue: 1
  year: 1995
  ident: 10.1002/rcs.1947-BIB0025|rcs1947-cit-0026
  article-title: Active shape models-their training and application
  publication-title: Comp Vision Image Understanding
  doi: 10.1006/cviu.1995.1004
– volume: 12
  issue: 6
  year: 2017
  ident: 10.1002/rcs.1947-BIB0041|rcs1947-cit-0042
  article-title: A preliminary examination of the diagnostic value of deep learning in hip osteoarthritis
  publication-title: Plos One
  doi: 10.1371/journal.pone.0178992
– volume: 64
  start-page: 2196
  issue: 9
  year: 2017
  ident: 10.1002/rcs.1947-BIB0037|rcs1947-cit-0038
  article-title: Semi-supervised stacked label consistent autoencoder for reconstruction and analysis of biomedical signals
  publication-title: IEEE Trans BiomedicEng
  doi: 10.1109/TBME.2016.2631620
– volume: 22
  start-page: 2698
  issue: 11
  year: 2013
  ident: 10.1002/rcs.1947-BIB0016|rcs1947-cit-0017
  article-title: Semi-automated landmark-based 3D analysis reveals new morphometric characteristics in the trochlear dysplastic femur
  publication-title: Knee Surgery, Sport Traumatol Arthrosc
  doi: 10.1007/s00167-013-2573-1
– volume: 21
  start-page: 509
  issue: 2
  year: 2014
  ident: 10.1002/rcs.1947-BIB0005|rcs1947-cit-0006
  article-title: Association and impact of patellofemoral dysplasia on patellofemoral arthropathy and arthroplasty
  publication-title: Knee
  doi: 10.1016/j.knee.2013.09.009
– volume: 17
  start-page: 959
  issue: 8
  year: 2013
  ident: 10.1002/rcs.1947-BIB0034|rcs1947-cit-0035
  article-title: Posterior shape models
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2013.05.010
– volume: 35
  start-page: 119
  issue: 1
  year: 2016
  ident: 10.1002/rcs.1947-BIB0038|rcs1947-cit-0039
  article-title: Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2015.2458702
– volume: 38
  start-page: 2928
  issue: 9
  year: 2010
  ident: 10.1002/rcs.1947-BIB0019|rcs1947-cit-0020
  article-title: Automating analyses of the distal femur articular geometry based on three-dimensional surface data
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-010-0064-9
– volume: 17
  start-page: 1225
  issue: 10
  year: 2009
  ident: 10.1002/rcs.1947-BIB0014|rcs1947-cit-0015
  article-title: Anterior-posterior trochlear measurements of normal and dysplastic trochlea by axial magnetic resonance imaging
  publication-title: Knee Surgery, Sport Traumatol Arthrosc
  doi: 10.1007/s00167-009-0824-y
– volume: 62
  start-page: 1098
  issue: 4
  year: 2015
  ident: 10.1002/rcs.1947-BIB0027|rcs1947-cit-0028
  article-title: An automated statistical shape model developmental pipeline: application to the human scapula and humerus
  publication-title: IEEE Trans BiomedicEng
  doi: 10.1109/TBME.2014.2368362
– volume: 22
  start-page: 2382
  issue: 10
  year: 2014
  ident: 10.1002/rcs.1947-BIB0013|rcs1947-cit-0014
  article-title: Measurement of tibial tuberosity-trochlear groove distance: evaluation of inter- and intraobserver correlation dependent on the severity of trochlear dysplasia
  publication-title: Knee Surgery, Sport Traumatol Arthrosc
  doi: 10.1007/s00167-014-3083-5
– volume: 44
  start-page: 2362
  issue: 13
  year: 2011
  ident: 10.1002/rcs.1947-BIB0032|rcs1947-cit-0033
  article-title: Construction of 3D human distal femoral surface models using a 3D statistical deformable model
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2011.07.006
– volume: 89-B
  start-page: 746
  issue: 6
  year: 2007
  ident: 10.1002/rcs.1947-BIB0018|rcs1947-cit-0019
  article-title: Morphological analysis of the femoral trochlea in patients with recurrent dislocation of the patella using three-dimensional computer models
  publication-title: J Bone Joint Surg
  doi: 10.1302/0301-620X.89B6.18514
– volume: 12
  start-page: 300
  issue: 4
  year: 2004
  ident: 10.1002/rcs.1947-BIB0044|rcs1947-cit-0045
  article-title: The cartilaginous and osseous geometry of the femoral trochlear groove
  publication-title: Knee Surgery, Sport Traumatol Arthrosc
  doi: 10.1007/s00167-003-0414-3
– volume: 2
  start-page: 19
  issue: 1
  year: 1994
  ident: 10.1002/rcs.1947-BIB0001|rcs1947-cit-0002
  article-title: Factors of patellar instability: an anatomic radiographic study
  publication-title: Knee Surgery, Sport Traumatol Arthrosc
  doi: 10.1007/BF01552649
– volume: 43
  start-page: 873
  issue: 4
  year: 2015
  ident: 10.1002/rcs.1947-BIB0010|rcs1947-cit-0011
  article-title: Inter- and intraobserver reliability in the MRI measurement of the tibial tubercle-trochlear groove distance and trochlea dysplasia
  publication-title: Am J Sports Med
  doi: 10.1177/0363546514565768
– volume: 18
  start-page: 340
  issue: 5
  year: 2011
  ident: 10.1002/rcs.1947-BIB0015|rcs1947-cit-0016
  article-title: 3D representation of the surface topography of normal and dysplastic trochlea using MRI
  publication-title: Knee
  doi: 10.1016/j.knee.2010.07.006
– volume: 15
  start-page: 62
  issue: 2
  year: 2005
  ident: 10.1002/rcs.1947-BIB0002|rcs1947-cit-0003
  article-title: Acute traumatic primary patellar dislocation: long-term results comparing conservative and surgical treatment
  publication-title: Clin J Sport Med
  doi: 10.1097/01.jsm.0000157315.10756.14
– volume: 33
  start-page: 531
  issue: 3
  year: 2014
  ident: 10.1002/rcs.1947-BIB0003|rcs1947-cit-0004
  article-title: Trochlear dysplasia and the role of trochleoplasty
  publication-title: Clin Sports MedClin Sports Med
  doi: 10.1016/j.csm.2014.03.005
– volume: 38
  start-page: 664
  issue: 8
  year: 2014
  ident: 10.1002/rcs.1947-BIB0021|rcs1947-cit-0022
  article-title: Automating the design of resection guides specific to patient anatomy in knee replacement surgery by enhanced 3D curvature and surface modeling of distal femur shape models
  publication-title: Comput Med Imaging GraphComputerized Medical Imaging and Graphics
  doi: 10.1016/j.compmedimag.2014.09.001
– volume: 14
  start-page: 264
  issue: 3
  year: 2005
  ident: 10.1002/rcs.1947-BIB0017|rcs1947-cit-0018
  article-title: Objective patellar instability: MR-based quantitative assessment of potentially associated anatomical features
  publication-title: Knee Surgery, Sport Traumatol Arthrosc
  doi: 10.1007/s00167-005-0668-z
– volume: 21
  start-page: 29
  issue: 1
  year: 2016
  ident: 10.1002/rcs.1947-BIB0022|rcs1947-cit-0023
  article-title: Patient-specific modeling of the trochlear morphologic anomalies by means of hyperbolic paraboloids
  publication-title: CompAssistSurgery
– volume: 62
  start-page: 6497
  issue: 16
  year: 2017
  ident: 10.1002/rcs.1947-BIB0040|rcs1947-cit-0041
  article-title: Automated diagnosis of prostate cancer in multi-parametric MRI based on multimodal convolutional neural networks
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/aa7731
– volume: 61
  start-page: 16
  issue: 1
  year: 2014
  ident: 10.1002/rcs.1947-BIB0043|rcs1947-cit-0044
  article-title: Local shape similarity and mean-shift curvature for deformable surface mapping of anatomical structures
  publication-title: IEEE Trans BiomedicEng
  doi: 10.1109/TBME.2013.2274672
– volume: 22
  start-page: 2342
  issue: 10
  year: 2014
  ident: 10.1002/rcs.1947-BIB0024|rcs1947-cit-0025
  article-title: Gender differences in the morphology of the trochlea and the distal femur
  publication-title: Knee Surg Sports Traumatol Arthrosc
  doi: 10.1007/s00167-014-3186-z
– volume: 44
  start-page: 2446
  issue: 13
  year: 2011
  ident: 10.1002/rcs.1947-BIB0031|rcs1947-cit-0032
  article-title: Development of a statistical shape model of the patellofemoral joint for investigating relationships between shape and function
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2011.06.025
– volume: 30
  start-page: 427
  issue: 4
  year: 2017
  ident: 10.1002/rcs.1947-BIB0036|rcs1947-cit-0037
  article-title: Fully automated deep learning system for bone age assessment
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-017-9955-8
– volume: 39
  start-page: 337
  issue: 3
  year: 2008
  ident: 10.1002/rcs.1947-BIB0004|rcs1947-cit-0005
  article-title: Focal anatomic patellofemoral inlay resurfacing: theoretic basis, surgical technique, and case reports
  publication-title: Orthop Clin North Am
  doi: 10.1016/j.ocl.2008.02.003
– volume: 21
  start-page: 518
  issue: 2
  year: 2014
  ident: 10.1002/rcs.1947-BIB0035|rcs1947-cit-0036
  article-title: A statistical shape model of trochlear dysplasia of the knee
  publication-title: Knee
  doi: 10.1016/j.knee.2013.11.016
SSID ssj0045464
Score 2.2408009
Snippet Background The quantitative morphological analysis of the trochlear region in the distal femur and the precise staging of the potential dysplastic condition...
The quantitative morphological analysis of the trochlear region in the distal femur and the precise staging of the potential dysplastic condition constitute a...
BackgroundThe quantitative morphological analysis of the trochlear region in the distal femur and the precise staging of the potential dysplastic condition...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1947
SubjectTerms Abnormalities
Accuracy
Aged
Bone Diseases - diagnostic imaging
Bone Diseases - surgery
Cadaver
Classification
Computed tomography
Databases, Factual
Discriminant analysis
Femur
Femur - diagnostic imaging
Femur - surgery
Humans
Image Processing, Computer-Assisted
Imaging, Three-Dimensional
Joint Instability
Knee
Knee Joint - diagnostic imaging
Knee Joint - surgery
Machine learning
Mathematical models
Mathematical morphology
Middle Aged
Models, Statistical
Morphing
Parameters
Retrospective Studies
Set theory
sparse autoencoder networks
statistical shape modelling
Tomography, X-Ray Computed
trochlear dysplasia
trochlear morphology
Title Stacked sparse autoencoder networks and statistical shape models for automatic staging of distal femur trochlear dysplasia
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frcs.1947
https://www.ncbi.nlm.nih.gov/pubmed/30073759
https://www.proquest.com/docview/2129451528
https://www.proquest.com/docview/2083711470
Volume 14
WOSCitedRecordID wos000449691300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1478-596X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045464
  issn: 1478-5951
  databaseCode: DRFUL
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3RLQc4UL5ZKJUrITiFJo4dx0fUdsWhqlBp0d6iiWOLQ8mu4l0k-PWMnWRpVSoh9ZSDx3LkmfE8e-w3AO-sldo4jUlZ8yIR1hQJUqBJBNYFbeQIQsfs-bcTdXpazuf6y3CrMryF6fkhNgduwTPieh0cHGt_8Jc0tDP-I-3A1RZsczJbMYHto7PZxcm4DgspInlUJmifJAlIjNSzKT8Y-14PRjcQ5nXAGiPObOcu__oYHg04k33qDeMJ3LPtU3h4hX3wGfwmoEk-3DBaVDpvGa5Xi0Br2diOtf3tcM-wpfaQrvfx0Jv577i0LNbP8YwAb-wVaV-DWKh4xBaONQGVXjJnf6w7tgpVuUJ1Ctb88sv4bPM5XMyOzw8_J0MphsRQhFeJU6ZWaLNcomxM6XiteJ7rVLoCOfl1hlqWFvMUdWoKEtIYKnpYVzSZM9TvBUzaRWtfAZOGp46AnUNUQjhV6swI3TQYaGWkKafwYdRJZQae8lAu47LqGZZ5RbNZhdmcwv5Gctlzc_xDZndUazV4p68oXGtBQI7TYPubZvKrkCzB1i7WJEPYVNFmUaVTeNmbw2aQPOQ3ldRTeB-1fuvo1dnh1_B9_b-Cb-ABIbKyvy-zC5NVt7Zv4b75SWru9mBLzcu9wc7_ADqiAqc
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VLRJw4E1ZKOBKCE5p87DjWJxQYVXEskKlRb1Fs44tDm12lewiwa9nxkkWKkBC4pSDx3LkmfF89tjfADx3ThnrDUbFPM0j6WweIQWaSOI8p40cQeiQPf881bNZcXZmPm7Bq-EtTMcPsTlwY88I6zU7OB9IH_xkDW1su09bcH0FtiVZkRrB9pvjyel0WIilkoE9KpG0UVKEJAbu2Tg9GPpejka_QczLiDWEnMmt__rZ23CzR5ridWcad2DL1Xfhxi_8g_fgO0FN8uJK0LLStE7gerVgYsvKNaLu7oe3Amtq54R9G469RfsFl06ECjqtIMgbegXiVxbjmkdi4UXFuPRceHexbsSK63JxfQpRfWuX4eHmfTidvD05PIr6YgyRpRivI6_tXKNLMoWqsoVP5zrNMhMrn2NKnp2gUYXDLEYT25yEDHJND-fzKvGW-j2AUb2o3UMQyqaxJ2jnEbWUXhcmsdJUFTKxjLLFGF4OSiltz1TOBTPOy45jOS1pNkuezTHsbSSXHTvHH2R2B72WvX-2JQVsIwnKpTTY3qaZPIvTJVi7xZpkCJ1q2i7qeAw7nT1sBsk4w6mVGcOLoPa_jl4eH37i76N_FXwG145OPkzL6bvZ-8dwnfBZ0d2e2YXRqlm7J3DVfiWVN097c_8BkHAFrw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dTxQxEJ8gGAMP4hd6iFoSo08r-9Fut_GJABeNlwtBMbxt5voRHmDvsntHon890-7uKQETEp_2odN00-l0ftNpfwPw3lqhtFMYFZM0j7jVeYTkaCKOk5wCOYLQIXv-cyTH4-LsTB2vwOf-LUzLD7E8cPOWEfZrb-B2ZtzeH9bQWjefKASXD2CNC5WTVa4dngxPR_1GzAUP7FEJp0BJEJLouWfjdK_ve9Mb3YKYNxFrcDnDzf_62SfwuEOabL9dGk9hxVbPYOMv_sHn8JugJlmxYbSt1I1luJhPPbGlsTWr2vvhDcOK2n3CvgnH3qw5x5lloYJOwwjyhl6B-NWL-ZpHbOqY8bj0gjl7uajZ3Nfl8vUpmPnVzMLDzRdwOjz6cfAl6ooxRJp8vIyc1BOJNskECqMLl05kmmUqFi7HlCw7QSUKi1mMKtY5CSn0NT2sy03iNPXbgtVqWtlXwIROY0fQziFKzp0sVKK5MgY9sYzQxQA-9kopdcdU7gtmXJQtx3Ja0myWfjYHsLuUnLXsHHfI7PR6LTv7bEpy2IoTlEtpsN1lM1mWT5dgZacLkiF0KilclPEAXrbrYTlI5jOcUqgBfAhq_-fo5cnBd__dvq_gO3h0fDgsR1_H317DOsGzor08swOr83ph38BDfUUar992q_0aFQkFKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stacked+sparse+autoencoder+networks+and+statistical+shape+models+for+automatic+staging+of+distal+femur+trochlear+dysplasia&rft.jtitle=The+international+journal+of+medical+robotics+%2B+computer+assisted+surgery&rft.au=Cerveri%2C+Pietro&rft.au=Belfatto%2C+Antonella&rft.au=Baroni%2C+Guido&rft.au=Manzotti%2C+Alfonso&rft.date=2018-12-01&rft.eissn=1478-596X&rft.volume=14&rft.issue=6&rft.spage=e1947&rft_id=info:doi/10.1002%2Frcs.1947&rft_id=info%3Apmid%2F30073759&rft.externalDocID=30073759
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1478-5951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1478-5951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1478-5951&client=summon