Gibberellin antagonizes jasmonate-induced defense against Meloidogyne graminicola in rice
Gibberellin (GA) regulates various plant growth and developmental processes, but its role in pathogen attack, and especially nematode–plant interactions, still remains to be elucidated. An in-depth characterization of the role of GA in nematode infection was conducted using mutant lines of rice, che...
Gespeichert in:
| Veröffentlicht in: | The New phytologist Jg. 218; H. 2; S. 646 - 660 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
New Phytologist Trust
01.04.2018
|
| Schlagworte: | |
| ISSN: | 0028-646X, 1469-8137, 1469-8137 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Gibberellin (GA) regulates various plant growth and developmental processes, but its role in pathogen attack, and especially nematode–plant interactions, still remains to be elucidated.
An in-depth characterization of the role of GA in nematode infection was conducted using mutant lines of rice, chemical inhibitors, and phytohormone measurements.
Our results showed that GA influences rice–Meloidogyne graminicola interactions in a concentration-dependent manner. Foliar spray of plants with a low concentration of gibberellic acid enhanced nematode infection. Biosynthetic and signaling mutants confirmed the importance of gibberellin for rice susceptibility to M. graminicola infection. Our study also demonstrates that GA signaling suppresses jasmonate (JA)-mediated defense against M. graminicola, and likewise the JA-induced defense against M. graminicola requires SLENDER RICE1 (SLR1)-mediated repression of the GA pathway. In contrast to observations from other plant–pathogen interactions, GA plays a dominant role over JA in determining susceptibility to M. graminicola in rice. This GA-induced nematode susceptibility was largely independent of auxin biosynthesis, but relied on auxin transport.
In conclusion, we showed that GA–JA antagonistic crosstalk is at the forefront of the interaction between rice and M. graminicola, and SLR1 plays a central role in the JA-mediated defense response in rice against this nematode. |
|---|---|
| AbstractList | Gibberellin (GA) regulates various plant growth and developmental processes, but its role in pathogen attack, and especially nematode-plant interactions, still remains to be elucidated. An in-depth characterization of the role of GA in nematode infection was conducted using mutant lines of rice, chemical inhibitors, and phytohormone measurements. Our results showed that GA influences rice-Meloidogyne graminicola interactions in a concentration-dependent manner. Foliar spray of plants with a low concentration of gibberellic acid enhanced nematode infection. Biosynthetic and signaling mutants confirmed the importance of gibberellin for rice susceptibility to M. graminicola infection. Our study also demonstrates that GA signaling suppresses jasmonate (JA)-mediated defense against M. graminicola, and likewise the JA-induced defense against M. graminicola requires SLENDER RICE1 (SLR1)-mediated repression of the GA pathway. In contrast to observations from other plant-pathogen interactions, GA plays a dominant role over JA in determining susceptibility to M. graminicola in rice. This GA-induced nematode susceptibility was largely independent of auxin biosynthesis, but relied on auxin transport. In conclusion, we showed that GA-JA antagonistic crosstalk is at the forefront of the interaction between rice and M. graminicola, and SLR1 plays a central role in the JA-mediated defense response in rice against this nematode. Gibberellin (GA) regulates various plant growth and developmental processes, but its role in pathogen attack, and especially nematode–plant interactions, still remains to be elucidated. An in‐depth characterization of the role of GA in nematode infection was conducted using mutant lines of rice, chemical inhibitors, and phytohormone measurements. Our results showed that GA influences rice– Meloidogyne graminicola interactions in a concentration‐dependent manner. Foliar spray of plants with a low concentration of gibberellic acid enhanced nematode infection. Biosynthetic and signaling mutants confirmed the importance of gibberellin for rice susceptibility to M. graminicola infection. Our study also demonstrates that GA signaling suppresses jasmonate (JA)‐mediated defense against M. graminicola , and likewise the JA‐induced defense against M. graminicola requires SLENDER RICE1 (SLR1)‐mediated repression of the GA pathway. In contrast to observations from other plant–pathogen interactions, GA plays a dominant role over JA in determining susceptibility to M. graminicola in rice. This GA‐induced nematode susceptibility was largely independent of auxin biosynthesis, but relied on auxin transport. In conclusion, we showed that GA–JA antagonistic crosstalk is at the forefront of the interaction between rice and M. graminicola , and SLR1 plays a central role in the JA‐mediated defense response in rice against this nematode. Gibberellin (GA) regulates various plant growth and developmental processes, but its role in pathogen attack, and especially nematode–plant interactions, still remains to be elucidated. An in‐depth characterization of the role of GA in nematode infection was conducted using mutant lines of rice, chemical inhibitors, and phytohormone measurements. Our results showed that GA influences rice–Meloidogyne graminicola interactions in a concentration‐dependent manner. Foliar spray of plants with a low concentration of gibberellic acid enhanced nematode infection. Biosynthetic and signaling mutants confirmed the importance of gibberellin for rice susceptibility to M. graminicola infection. Our study also demonstrates that GA signaling suppresses jasmonate (JA)‐mediated defense against M. graminicola, and likewise the JA‐induced defense against M. graminicola requires SLENDER RICE1 (SLR1)‐mediated repression of the GA pathway. In contrast to observations from other plant–pathogen interactions, GA plays a dominant role over JA in determining susceptibility to M. graminicola in rice. This GA‐induced nematode susceptibility was largely independent of auxin biosynthesis, but relied on auxin transport. In conclusion, we showed that GA–JA antagonistic crosstalk is at the forefront of the interaction between rice and M. graminicola, and SLR1 plays a central role in the JA‐mediated defense response in rice against this nematode. Gibberellin (GA) regulates various plant growth and developmental processes, but its role in pathogen attack, and especially nematode-plant interactions, still remains to be elucidated. An in-depth characterization of the role of GA in nematode infection was conducted using mutant lines of rice, chemical inhibitors, and phytohormone measurements. Our results showed that GA influences rice-Meloidogyne graminicola interactions in a concentration-dependent manner. Foliar spray of plants with a low concentration of gibberellic acid enhanced nematode infection. Biosynthetic and signaling mutants confirmed the importance of gibberellin for rice susceptibility to M. graminicola infection. Our study also demonstrates that GA signaling suppresses jasmonate (JA)-mediated defense against M. graminicola, and likewise the JA-induced defense against M. graminicola requires SLENDER RICE1 (SLR1)-mediated repression of the GA pathway. In contrast to observations from other plant-pathogen interactions, GA plays a dominant role over JA in determining susceptibility to M. graminicola in rice. This GA-induced nematode susceptibility was largely independent of auxin biosynthesis, but relied on auxin transport. In conclusion, we showed that GA-JA antagonistic crosstalk is at the forefront of the interaction between rice and M. graminicola, and SLR1 plays a central role in the JA-mediated defense response in rice against this nematode.Gibberellin (GA) regulates various plant growth and developmental processes, but its role in pathogen attack, and especially nematode-plant interactions, still remains to be elucidated. An in-depth characterization of the role of GA in nematode infection was conducted using mutant lines of rice, chemical inhibitors, and phytohormone measurements. Our results showed that GA influences rice-Meloidogyne graminicola interactions in a concentration-dependent manner. Foliar spray of plants with a low concentration of gibberellic acid enhanced nematode infection. Biosynthetic and signaling mutants confirmed the importance of gibberellin for rice susceptibility to M. graminicola infection. Our study also demonstrates that GA signaling suppresses jasmonate (JA)-mediated defense against M. graminicola, and likewise the JA-induced defense against M. graminicola requires SLENDER RICE1 (SLR1)-mediated repression of the GA pathway. In contrast to observations from other plant-pathogen interactions, GA plays a dominant role over JA in determining susceptibility to M. graminicola in rice. This GA-induced nematode susceptibility was largely independent of auxin biosynthesis, but relied on auxin transport. In conclusion, we showed that GA-JA antagonistic crosstalk is at the forefront of the interaction between rice and M. graminicola, and SLR1 plays a central role in the JA-mediated defense response in rice against this nematode. Summary Gibberellin (GA) regulates various plant growth and developmental processes, but its role in pathogen attack, and especially nematode–plant interactions, still remains to be elucidated. An in‐depth characterization of the role of GA in nematode infection was conducted using mutant lines of rice, chemical inhibitors, and phytohormone measurements. Our results showed that GA influences rice–Meloidogyne graminicola interactions in a concentration‐dependent manner. Foliar spray of plants with a low concentration of gibberellic acid enhanced nematode infection. Biosynthetic and signaling mutants confirmed the importance of gibberellin for rice susceptibility to M. graminicola infection. Our study also demonstrates that GA signaling suppresses jasmonate (JA)‐mediated defense against M. graminicola, and likewise the JA‐induced defense against M. graminicola requires SLENDER RICE1 (SLR1)‐mediated repression of the GA pathway. In contrast to observations from other plant–pathogen interactions, GA plays a dominant role over JA in determining susceptibility to M. graminicola in rice. This GA‐induced nematode susceptibility was largely independent of auxin biosynthesis, but relied on auxin transport. In conclusion, we showed that GA–JA antagonistic crosstalk is at the forefront of the interaction between rice and M. graminicola, and SLR1 plays a central role in the JA‐mediated defense response in rice against this nematode. Gibberellin (GA) regulates various plant growth and developmental processes, but its role in pathogen attack, and especially nematode–plant interactions, still remains to be elucidated. An in-depth characterization of the role of GA in nematode infection was conducted using mutant lines of rice, chemical inhibitors, and phytohormone measurements. Our results showed that GA influences rice–Meloidogyne graminicola interactions in a concentration-dependent manner. Foliar spray of plants with a low concentration of gibberellic acid enhanced nematode infection. Biosynthetic and signaling mutants confirmed the importance of gibberellin for rice susceptibility to M. graminicola infection. Our study also demonstrates that GA signaling suppresses jasmonate (JA)-mediated defense against M. graminicola, and likewise the JA-induced defense against M. graminicola requires SLENDER RICE1 (SLR1)-mediated repression of the GA pathway. In contrast to observations from other plant–pathogen interactions, GA plays a dominant role over JA in determining susceptibility to M. graminicola in rice. This GA-induced nematode susceptibility was largely independent of auxin biosynthesis, but relied on auxin transport. In conclusion, we showed that GA–JA antagonistic crosstalk is at the forefront of the interaction between rice and M. graminicola, and SLR1 plays a central role in the JA-mediated defense response in rice against this nematode. |
| Author | Lieven Van Meulebroek Tina Kyndt Kamrun Nahar Lynn Vanhaecke Monica Höfte Henok Zemene Yimer Ashley Haeck Godelieve Gheysen Kristof Demeestere |
| Author_xml | – sequence: 1 givenname: Henok Zemene surname: Yimer fullname: Yimer, Henok Zemene organization: Ghent University – sequence: 2 givenname: Kamrun surname: Nahar fullname: Nahar, Kamrun organization: Ghent University – sequence: 3 givenname: Tina orcidid: 0000-0002-5267-5013 surname: Kyndt fullname: Kyndt, Tina organization: Ghent University – sequence: 4 givenname: Ashley surname: Haeck fullname: Haeck, Ashley organization: Ghent University – sequence: 5 givenname: Lieven surname: Van Meulebroek fullname: Van Meulebroek, Lieven organization: Ghent University – sequence: 6 givenname: Lynn surname: Vanhaecke fullname: Vanhaecke, Lynn organization: Ghent University – sequence: 7 givenname: Kristof surname: Demeestere fullname: Demeestere, Kristof organization: Ghent University – sequence: 8 givenname: Monica orcidid: 0000-0002-0850-3249 surname: Höfte fullname: Höfte, Monica organization: Ghent University – sequence: 9 givenname: Godelieve orcidid: 0000-0003-1929-5059 surname: Gheysen fullname: Gheysen, Godelieve email: Godelieve.Gheysen@ugent.be organization: Ghent University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29464725$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU9P3DAQxS1EBQvl0A9QlCM9BGzHseNjhShUon8OrVRO0diebL1K7K2dFdp--rpd4FCpqKOR5vJ7T5r3jsh-iAEJecXoOStzEdbfz1lLhdwjCyakrjvWqH2yoJR3tRTy2yE5ynlFKdWt5AfkkGshheLtgtxde2Mw4Tj6UEGYYRmD_4m5WkGeYoAZax_cxqKrHA4YMlawBB_yXH3AMXoXl9uA1TLB5IO3cYSqGCVv8SV5McCY8eThHpOv766-XN7Ut5-u31--va2tYK2swWpQ1nXSUNF2IJlVWpe11pmBsQEYWNYJqZxynWmY0WzowBhOVeOk1s0xOdv5rlP8scE895PPtjwEAeMm95xKxTXnqvkPlCrGRNPKgp4-oBszoevXyU-Qtv1jcgV4swNsijknHJ4QRvvfrfSllf5PK4W9-Iu1fobZxzAn8ONzins_4vbf1v3HzzePitc7xSrPMT0pNKWshKSbX098p9I |
| CitedBy_id | crossref_primary_10_1016_j_jia_2022_08_002 crossref_primary_10_1111_pbi_13709 crossref_primary_10_1007_s00344_024_11412_w crossref_primary_10_3390_horticulturae8030241 crossref_primary_10_1021_acs_jafc_5c05092 crossref_primary_10_1016_j_plantsci_2020_110627 crossref_primary_10_1016_j_tplants_2025_05_015 crossref_primary_10_1016_j_plantsci_2025_112407 crossref_primary_10_1093_pcp_pcaa104 crossref_primary_10_1016_j_plantsci_2024_112046 crossref_primary_10_3389_fmicb_2022_1025727 crossref_primary_10_1073_pnas_2304612120 crossref_primary_10_1111_jipb_13608 crossref_primary_10_1111_jph_12856 crossref_primary_10_1111_nph_20220 crossref_primary_10_2478_jofnem_2023_0012 crossref_primary_10_1016_j_mib_2018_09_004 crossref_primary_10_3390_ijms26115315 crossref_primary_10_1111_nph_15953 crossref_primary_10_1093_plphys_kiab368 crossref_primary_10_3389_fpls_2019_01515 crossref_primary_10_3389_fpls_2020_602079 crossref_primary_10_1038_s41467_022_34649_z crossref_primary_10_1111_mpp_13111 crossref_primary_10_1093_plphys_kiad174 crossref_primary_10_1080_17429145_2021_2018060 crossref_primary_10_1007_s10725_023_01096_9 crossref_primary_10_3390_plants13213065 crossref_primary_10_3390_antiox14060679 crossref_primary_10_1016_j_pmpp_2023_101964 crossref_primary_10_3390_ijms222313172 crossref_primary_10_1002_2211_5463_12737 crossref_primary_10_1007_s44297_025_00056_1 crossref_primary_10_1094_MPMI_35_2 crossref_primary_10_3389_fpls_2024_1385477 crossref_primary_10_3389_fpls_2019_01141 crossref_primary_10_1094_MPMI_09_21_0221_CR crossref_primary_10_3389_fmicb_2022_942302 crossref_primary_10_1163_15685411_00003198 crossref_primary_10_3390_plants11060720 crossref_primary_10_1016_j_meegid_2021_105008 crossref_primary_10_3390_plants12061243 crossref_primary_10_1007_s00344_023_11030_y crossref_primary_10_3390_life12071003 crossref_primary_10_1016_j_fcr_2023_108965 crossref_primary_10_1111_nph_17559 crossref_primary_10_3390_ijms23073945 crossref_primary_10_1007_s43538_024_00294_x crossref_primary_10_3389_fpls_2021_668548 |
| Cites_doi | 10.1111/mpp.12394 10.1093/mp/ssu050 10.1104/pp.104.900192 10.1371/journal.ppat.1000266 10.1126/science.1081077 10.1007/978-3-319-25979-6_16 10.1111/j.1365-3040.2005.01441.x 10.1007/s00425-014-2063-9 10.1007/978-94-011-0473-9_2 10.1094/MPMI-20-5-0510 10.1105/tpc.106.043729 10.1105/tpc.010476 10.1016/j.talanta.2013.03.068 10.1007/s00344-015-9546-1 10.1042/bse0580049 10.1016/j.tplants.2011.04.003 10.1146/annurev.phyto.43.040204.135923 10.1016/j.jplph.2010.12.002 10.1186/1939-8433-6-17 10.3389/fpls.2016.01565 10.1007/978-94-007-0434-3 10.1111/j.1364-3703.2004.00230.x 10.3390/plants4030606 10.1016/j.chom.2008.05.009 10.1105/tpc.13.5.999 10.1163/156854199508027 10.1016/j.cub.2008.03.060 10.1007/s00438-008-0406-6 10.1007/s11103-008-9435-0 10.1146/annurev.arplant.58.032806.103830 10.1007/s00425-008-0830-1 10.1016/S1360-1385(00)01790-8 10.1016/j.pbi.2011.03.012 10.1126/science.1173771 10.1146/annurev-phyto-102313-050111 10.1038/nplants.2015.73 10.3389/fpls.2014.00611 10.1023/B:PLAN.0000038261.21060.47 10.1073/pnas.1201616109 10.1111/j.1469-8137.2012.04311.x 10.1094/MPMI-05-12-0108-FI 10.1016/j.tplants.2007.03.006 10.1042/BJ20120245 10.1007/s10265-015-0710-2 10.1094/MPMI.2000.13.10.1121 10.1093/jxb/erw230 10.1271/nogeikagaku1924.14.12_1526 10.1104/pp.103.033696 10.1105/tpc.108.061648 10.1098/rstb.2007.2030 10.1038/nature04028 10.1094/MPMI-05-12-0138-R 10.1007/s10886-005-6070-y 10.1016/j.cropro.2006.09.004 10.1093/mp/ssn021 10.1094/MPMI-22-2-0201 10.1111/nph.13395 10.1007/BF00634486 10.1093/pcp/41.3.251 10.1104/pp.110.163774 10.1104/pp.112.200956 10.1111/j.1469-8137.2012.04310.x 10.1073/pnas.96.18.10284 10.1007/PL00007027 10.1104/pp.110.167197 10.1111/j.1365-313X.2004.02287.x 10.1093/jxb/ert219 10.1038/nature01387 10.1104/pp.111.177576 10.1104/pp.15.01515 10.1146/annurev.phyto.45.062806.094438 10.1093/aob/mct067 10.1016/j.tplants.2013.07.002 10.1016/j.devcel.2010.10.024 10.1163/15685411-00003049 10.1079/9781845930561.0059 10.1079/9780851997278.0087 10.1073/pnas.141239398 10.1094/MPMI-18-1247 10.1104/pp.112.193672 10.1080/15592324.2015.1110661 10.1016/j.chroma.2012.08.047 |
| ContentType | Journal Article |
| Copyright | Copyright © 2018 New Phytologist Trust 2018 The Authors. New Phytologist © 2018 New Phytologist Trust 2018 The Authors. New Phytologist © 2018 New Phytologist Trust. |
| Copyright_xml | – notice: Copyright © 2018 New Phytologist Trust – notice: 2018 The Authors. New Phytologist © 2018 New Phytologist Trust – notice: 2018 The Authors. New Phytologist © 2018 New Phytologist Trust. |
| DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
| DOI | 10.1111/nph.15046 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | PubMed CrossRef AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Botany |
| EISSN | 1469-8137 |
| EndPage | 660 |
| ExternalDocumentID | 29464725 10_1111_nph_15046 NPH15046 90019939 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Special Research Fund of Ghent University funderid: BOF13/GOA/030 – fundername: Hercules Foundation of the Flemish Government funderid: AUGE/11/016 |
| GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABSQW ABTLG ABVKB ABXSQ ACAHQ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGUYK AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 31~ AASVR ABEFU ABEML ABGDZ ACQPF ADXHL AS~ CAG COF FIJ GTFYD HF~ HGD HQ2 HTVGU LPU MVM NEJ RCA WHG YXE ZCG AAYXX ABUFD CITATION O8X 24P AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE DOOOF ESX IPNFZ JSODD NPM PKN WRC XOL 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c4156-ac9a7cd86b0458a61c799799ccdbf11fa1ac18467d7d8b31b91f8abb2073d6993 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 52 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000428070100024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0028-646X 1469-8137 |
| IngestDate | Fri Sep 05 17:16:29 EDT 2025 Wed Oct 01 14:00:18 EDT 2025 Wed Feb 19 02:33:50 EST 2025 Tue Nov 18 21:22:59 EST 2025 Sat Nov 29 04:38:28 EST 2025 Sun Sep 21 06:22:24 EDT 2025 Thu Jul 03 22:18:15 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | gibberellin (GA) auxin jasmonate (JA) rice DELLA SLR1 Meloidogyne graminicola |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2018 The Authors. New Phytologist © 2018 New Phytologist Trust. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4156-ac9a7cd86b0458a61c799799ccdbf11fa1ac18467d7d8b31b91f8abb2073d6993 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-5267-5013 0000-0003-1929-5059 0000-0002-0850-3249 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.15046 |
| PMID | 29464725 |
| PQID | 2007114356 |
| PQPubID | 23479 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_2067292273 proquest_miscellaneous_2007114356 pubmed_primary_29464725 crossref_primary_10_1111_nph_15046 crossref_citationtrail_10_1111_nph_15046 wiley_primary_10_1111_nph_15046_NPH15046 jstor_primary_90019939 |
| PublicationCentury | 2000 |
| PublicationDate | 20180401 April 2018 2018-04-00 |
| PublicationDateYYYYMMDD | 2018-04-01 |
| PublicationDate_xml | – month: 4 year: 2018 text: 20180401 day: 1 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | The New phytologist |
| PublicationTitleAlternate | New Phytol |
| PublicationYear | 2018 |
| Publisher | New Phytologist Trust |
| Publisher_xml | – name: New Phytologist Trust |
| References | 2015; 34 2002; 14 2011; 157 2013; 26 2000; 5 2010; 19 2009; 281 2013; 64 2000; 41 2012; 160 2008; 229 2004; 5 2008; 3 2011; 14 2012; 444 2008; 1 2011; 16 2013; 6 2011; 155 2004; 134 2013; 18 1938; 14 2011; 168 1998; 17 2014; 5 2000; 13 2013; 112 2013; 111 2005; 31 2006; 29 1999; 96 1988; 174 2008; 20 2007; 20 2014; 52 2014; 7 2001; 13 2014; 240 2012; 1260 2009; 324 2007; 26 2001; 98 2009; 22 2015; 1 2009; 69 2015; 58 2015; 4 2012 2011 2008; 18 2007; 362 2005; 437 2009 2005; 41 1995 2005; 43 2006 2005 2015; 207 1926; 16 2015; 128 1999; 1 2003; 299 2007; 12 2012; 109 2016; 11 2004; 54 2012; 196 2016; 7 2007a; 19 2006; 141 2016 2017; 19 2017; 18 2009; 5 2012; 158 2016; 170 2007b; 58 2003; 421 2007; 45 2005; 18 2016; 67 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Kurosawa E (e_1_2_7_48_1) 1926; 16 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_84_1 Vleesschauwer D (e_1_2_7_12_1) 2016; 170 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_86_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 |
| References_xml | – year: 2011 – volume: 52 start-page: 135 year: 2014 end-page: 153 article-title: Plant–parasitic nematode infections in rice: molecular and cellular insights publication-title: Annual Review of Phytopathology – volume: 26 start-page: 971 year: 2007 end-page: 977 article-title: Biological control potential and modes of action of against on rice publication-title: Crop Protection – year: 2009 – volume: 19 start-page: 2140 year: 2007a end-page: 2155 article-title: Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin publication-title: Plant Cell – volume: 109 start-page: E1192 year: 2012 end-page: E1200 article-title: Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade publication-title: Proceedings of the National Academy of Sciences, USA – volume: 26 start-page: 106 year: 2013 end-page: 115 article-title: Brassinosteroids suppress rice defense against root‐knot nematodes through antagonism with the jasmonate pathway publication-title: Molecular Plant–Microbe Interactions – volume: 437 start-page: 693 year: 2005 end-page: 698 article-title: GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin publication-title: Nature – volume: 14 start-page: 1526 year: 1938 article-title: On the crystal of gibberellin, a substance to promote plant growth publication-title: Journal of the Agricultural Chemical Society of Japan – volume: 1 start-page: 209 year: 1999 end-page: 212 article-title: Use of a mixture of sand and water‐absorbent synthetic polymer as substrate for the xenic culturing of plant‐parasitic nematodes in the laboratory publication-title: Nematology – volume: 17 start-page: 141 year: 1998 end-page: 146 article-title: Effects of auxin transport inhibitors on gibberellins in pea publication-title: Journal of Plant Growth Regulation – volume: 96 start-page: 10284 year: 1999 end-page: 10289 article-title: Rice gibberellin‐insensitive dwarf mutant gene Dwarf 1 encodes the α‐subunit of GTP‐binding protein publication-title: Proceedings of the National Academy of Sciences, USA – volume: 69 start-page: 473 year: 2009 end-page: 488 article-title: Role of plant hormones in plant defence responses publication-title: Plant Molecular Biology – volume: 196 start-page: 887 year: 2012 end-page: 900 article-title: Transcriptional reprogramming by root knot and migratory nematode infection in rice publication-title: New Phytologist – volume: 1 start-page: 528 year: 2008 end-page: 537 article-title: Altered disease development in the eui mutants and overexpressors indicates that gibberellins negatively regulate rice basal disease resistance publication-title: Molecular Plant – volume: 444 start-page: 11 year: 2012 end-page: 25 article-title: Gibberellin biosynthesis and its regulation publication-title: Biochemical Journal – volume: 174 start-page: 551 year: 1988 end-page: 560 article-title: Hormonal regulation of gene expression in barley aleurone layers publication-title: Planta – volume: 18 start-page: 555 year: 2013 end-page: 565 article-title: Hormone defense networking in rice: tales from a different world publication-title: Trends in Plant Science – volume: 54 start-page: 533 year: 2004 end-page: 547 article-title: A rice semi‐dwarf gene, Tan‐Ginbozu ( ), encodes the gibberellin biosynthesis enzyme, ent‐kaurene oxidase publication-title: Plant Molecular Biology – volume: 19 start-page: 884 year: 2010 end-page: 894 article-title: DELLAs modulate jasmonate signaling via competitive binding to JAZs publication-title: Developmental Cell – start-page: 87 year: 2005 – volume: 421 start-page: 740 year: 2003 end-page: 743 article-title: Auxin promotes Arabidopsis root growth by modulating gibberellin response publication-title: Nature – volume: 34 start-page: 740 year: 2015 end-page: 760 article-title: A century of gibberellin research publication-title: Journal of Plant Growth Regulation – volume: 98 start-page: 8909 year: 2001 end-page: 8914 article-title: Cloning and functional analysis of two gibberellin 3β‐hydroxylase genes that are differently expressed during the growth of rice publication-title: Proceedings of the National Academy of Sciences, USA – volume: 362 start-page: 1009 year: 2007 end-page: 1021 article-title: Rice functional genomics research in China publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – volume: 5 start-page: 343 year: 2004 end-page: 346 article-title: Feeding cell development by cyst and root‐knot nematodes involves a similar early, local and transient activation of a specific auxin‐inducible promoter element publication-title: Molecular Plant Pathology – volume: 18 start-page: 650 year: 2008 end-page: 655 article-title: DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling publication-title: Current Biology – volume: 157 start-page: 305 year: 2011 end-page: 316 article-title: The jasmonate pathway is a key player in systemically induced defense against root‐knot nematodes in rice publication-title: Plant Physiology – volume: 31 start-page: 1953 year: 2005 end-page: 1967 article-title: Effects of jasmonate‐induced defenses on root‐knot nematode infection of resistant and susceptible tomato cultivars publication-title: Journal of Chemical Ecology – volume: 18 start-page: 3 year: 2017 end-page: 15 article-title: : a major threat to rice agriculture publication-title: Molecular Plant Pathology – volume: 134 start-page: 1642 year: 2004 end-page: 1653 article-title: An overview of gibberellin metabolism enzyme genes and their related mutants in rice publication-title: Plant Physiology – volume: 20 start-page: 510 year: 2007 end-page: 525 article-title: Developmental transcript profiling of cyst nematode feeding cells in soybean roots publication-title: Molecular Plant–Microbe Interactions – start-page: 59 year: 2006 end-page: 90 – volume: 299 start-page: 1896 year: 2003 end-page: 1898 article-title: Accumulation of phosphorylated repressor for gibberellin signaling in an F‐box mutant publication-title: Science – volume: 26 start-page: 227 year: 2013 end-page: 239 article-title: Gibberellin 20‐oxidase gene regulates plant stature and disease development in rice publication-title: Molecular Plant–Microbe Interactions – start-page: 405 year: 2016 end-page: 426 – start-page: 13 year: 1995 end-page: 38 – volume: 14 start-page: S61 issue: suppl 1 year: 2002 end-page: S80 article-title: Gibberellin signaling biosynthesis, catabolism, and response pathways publication-title: Plant Cell – volume: 281 start-page: 223 year: 2009 end-page: 231 article-title: Isolation and characterization of dominant dwarf mutants, , in rice publication-title: Molecular Genetics and Genomics – volume: 207 start-page: 778 year: 2015 end-page: 789 article-title: Role of stress‐related hormones in plant defence during early infection of the cyst nematode in Arabidopsis publication-title: New Phytologist – volume: 67 start-page: 4559 year: 2016 end-page: 4570 article-title: Redirection of auxin flow in roots after infection by root‐knot nematodes publication-title: Journal of Experimental Botany – volume: 58 start-page: 183 year: 2007b end-page: 198 article-title: Gibberellin receptor and its role in gibberellin signaling in plants publication-title: Annual Review of Plant Biology – volume: 5 start-page: 523 year: 2000 end-page: 530 article-title: Gibberellin metabolism: new insights revealed by the genes publication-title: Trends in Plant Science – volume: 7 start-page: 1565 year: 2016 article-title: OPDA has key role in regulating plant susceptibility to the root‐knot nematode in Arabidopsis publication-title: Frontiers in Plant Science – volume: 18 start-page: 1247 year: 2005 end-page: 1257 article-title: Nematode‐induced changes of transporter gene expression in Arabidopsis roots publication-title: Molecular Plant‐Microbe Interactions – volume: 14 start-page: 415 year: 2011 end-page: 421 article-title: How nematodes manipulate plant development pathways for infection publication-title: Current Opinion in Plant Biology – volume: 155 start-page: 589 year: 2011 end-page: 602 article-title: Manipulating broad‐spectrum disease resistance by suppressing pathogen‐induced auxin accumulation in rice publication-title: Plant Physiology – volume: 229 start-page: 1 year: 2008 end-page: 13 article-title: Gibberellin signaling publication-title: Planta – volume: 141 start-page: 524 year: 2006 end-page: 526 article-title: Gibberellin metabolism enzymes in rice publication-title: Plant Physiology – volume: 128 start-page: 679 year: 2015 end-page: 686 article-title: Identification of NRT1/PTR FAMILY (NPF) proteins capable of transporting plant hormones publication-title: Journal of Plant Research – volume: 22 start-page: 201 year: 2009 end-page: 210 article-title: Constitutive expression of reduces auxin content and enhances defense response and resistance to a fungal pathogen in rice publication-title: Molecular Plant‐Microbe Interactions – volume: 158 start-page: 1833 year: 2012 end-page: 1846 article-title: Brassinosteroids antagonize gibberellin‐ and salicylate‐mediated root immunity in rice publication-title: Plant Physiology – volume: 155 start-page: 866 year: 2011 end-page: 880 article-title: The novel cyst nematode effector protein 19C07 interacts with the Arabidopsis auxin influx transporter LAX3 to control feeding site development publication-title: Plant Physiology – volume: 168 start-page: 1084 year: 2011 end-page: 1097 article-title: Expression profile of jasmonic acid‐induced genes and the induced resistance against the root‐knot nematode ( ) in tomato plants ( ) after foliar treatment with methyl jasmonate publication-title: Journal of Plant Physiology – volume: 160 start-page: 83 year: 2012 end-page: 92 article-title: Gibberellin signaling: a theme and variations on DELLA repression publication-title: Plant Physiology – volume: 1 start-page: 15073 year: 2015 article-title: The gibberellin precursor GA acts as a long‐distance growth signal in Arabidopsis publication-title: Nature Plants – volume: 5 start-page: e1000266 year: 2009 article-title: Parasitic nematodes modulate PIN‐mediated auxin transport to facilitate infection publication-title: PLoS Pathogens – volume: 12 start-page: 160 year: 2007 end-page: 168 article-title: Molecular and cellular aspects of auxin‐transport‐mediated development publication-title: Trends in Plant Science – volume: 111 start-page: 1021 year: 2013 end-page: 1058 article-title: Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany publication-title: Annals of Botany – volume: 7 start-page: 943 year: 2014 end-page: 959 article-title: Connecting growth and defense: the emerging roles of brassinosteroids and gibberellins in plant innate immunity publication-title: Molecular Plant – volume: 29 start-page: 619 year: 2006 end-page: 631 article-title: Gid1, a gibberellin‐insensitive dwarf mutant, shows altered regulation of probenazole‐inducible protein (PBZ1) in response to cold stress and pathogen attack publication-title: Plant, Cell & Environment – volume: 13 start-page: 999 year: 2001 end-page: 1010 article-title: rice, a constitutive gibberellin response mutant, is caused by a null mutation of the gene, an ortholog of the height‐regulating gene publication-title: Plant Cell – volume: 3 start-page: 348 year: 2008 end-page: 351 article-title: Making sense of hormone crosstalk during plant immune responses publication-title: Cell Host & Microbe – volume: 41 start-page: 251 year: 2000 end-page: 257 article-title: Gibberellin biosynthesis: its regulation by endogenous and environmental signals publication-title: Plant and Cell Physiology – volume: 240 start-page: 55 year: 2014 end-page: 76 article-title: plant hormone analysis? publication-title: Planta – year: 2012 – volume: 43 start-page: 205 year: 2005 end-page: 227 article-title: Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens publication-title: Annual Review of Phytopathology – volume: 5 start-page: 611 year: 2014 article-title: Making sense of hormone‐mediated defense networking: from rice to Arabidopsis publication-title: Frontiers in Plant Science – volume: 45 start-page: 457 year: 2007 end-page: 485 article-title: Challenges in tropical plant nematology publication-title: Annual Review of Phytopathology – volume: 11 start-page: e1110661 year: 2016 article-title: Long‐distance transport of endogenous gibberellins in Arabidopsis publication-title: Plant Signaling & Behavior – volume: 170 start-page: 1831 year: 2016 end-page: 1847 article-title: The DELLA protein SLR1 integrates and amplifies salicylic acid‐and jasmonic acid‐dependent innate immunity in rice publication-title: Plant Physiology – volume: 324 start-page: 750 year: 2009 end-page: 752 article-title: Hormone (dis) harmony moulds plant health and disease publication-title: Science – volume: 16 start-page: 213 year: 1926 end-page: 227 article-title: Experimental studies on the nature of the substance secreted by the “bakanae” fungus publication-title: Natural History Society of Formosa – volume: 112 start-page: 85 year: 2013 end-page: 94 article-title: Analysis of gibberellins as free acids by ultra performance liquid chromatography–tandem mass spectrometry publication-title: Talanta – volume: 13 start-page: 1121 year: 2000 end-page: 1129 article-title: Both induction and morphogenesis of cyst nematode feeding cells are mediated by auxin publication-title: Molecular Plant–Microbe Interactions – volume: 1260 start-page: 67 year: 2012 end-page: 80 article-title: Ultra‐high performance liquid chromatography coupled to high resolution Orbitrap mass spectrometry for metabolomic profiling of the endogenous phytohormonal status of the tomato plant publication-title: Journal of Chromatography A – volume: 4 start-page: 606 year: 2015 end-page: 643 article-title: The control of auxin transport in parasitic and symbiotic root–microbe interactions publication-title: Plants – volume: 41 start-page: 231 year: 2005 end-page: 242 article-title: The auxin ( ) allele of and auxin transport inhibitors affect the gibberellin status of Arabidopsis publication-title: Plant Journal – volume: 19 start-page: 293 year: 2017 end-page: 304 article-title: Exogenous application of methyl jasmonate induces defence against in soybean publication-title: Nematology – volume: 20 start-page: 2437 year: 2008 end-page: 2446 article-title: Release of the repressive activity of rice DELLA protein SLR1 by gibberellin does not require SLR1 degradation in the mutant publication-title: Plant Cell – volume: 16 start-page: 451 year: 2011 end-page: 459 article-title: Innate immunity in rice publication-title: Trends in Plant Science – volume: 58 start-page: 49 year: 2015 end-page: 60 article-title: GA signalling and cross‐talk with other signalling pathways publication-title: Essays in Biochemistry – volume: 196 start-page: 901 year: 2012 end-page: 913 article-title: Abscisic acid interacts antagonistically with classical defense pathways in rice‐migratory nematode interaction publication-title: New Phytologist – volume: 6 start-page: 17 year: 2013 article-title: Exploring the response of rice ( ) leaf to gibberellins: a proteomic strategy publication-title: Rice – volume: 64 start-page: 3885 year: 2013 end-page: 3898 article-title: Transcriptional analysis through RNA sequencing of giant cells induced by in rice roots publication-title: Journal of Experimental Botany – ident: e_1_2_7_54_1 doi: 10.1111/mpp.12394 – ident: e_1_2_7_10_1 doi: 10.1093/mp/ssu050 – ident: e_1_2_7_27_1 doi: 10.1104/pp.104.900192 – ident: e_1_2_7_28_1 doi: 10.1371/journal.ppat.1000266 – ident: e_1_2_7_69_1 doi: 10.1126/science.1081077 – ident: e_1_2_7_36_1 doi: 10.1007/978-3-319-25979-6_16 – ident: e_1_2_7_71_1 doi: 10.1111/j.1365-3040.2005.01441.x – ident: e_1_2_7_72_1 doi: 10.1007/s00425-014-2063-9 – ident: e_1_2_7_9_1 doi: 10.1007/978-94-011-0473-9_2 – ident: e_1_2_7_40_1 doi: 10.1094/MPMI-20-5-0510 – ident: e_1_2_7_75_1 doi: 10.1105/tpc.106.043729 – ident: e_1_2_7_61_1 doi: 10.1105/tpc.010476 – ident: e_1_2_7_77_1 doi: 10.1016/j.talanta.2013.03.068 – ident: e_1_2_7_34_1 doi: 10.1007/s00344-015-9546-1 – ident: e_1_2_7_53_1 doi: 10.1042/bse0580049 – ident: e_1_2_7_6_1 doi: 10.1016/j.tplants.2011.04.003 – ident: e_1_2_7_23_1 doi: 10.1146/annurev.phyto.43.040204.135923 – ident: e_1_2_7_21_1 doi: 10.1016/j.jplph.2010.12.002 – ident: e_1_2_7_80_1 doi: 10.1186/1939-8433-6-17 – ident: e_1_2_7_24_1 doi: 10.3389/fpls.2016.01565 – ident: e_1_2_7_44_1 doi: 10.1007/978-94-007-0434-3 – volume: 16 start-page: 213 year: 1926 ident: e_1_2_7_48_1 article-title: Experimental studies on the nature of the substance secreted by the “bakanae” fungus publication-title: Natural History Society of Formosa – ident: e_1_2_7_46_1 doi: 10.1111/j.1364-3703.2004.00230.x – ident: e_1_2_7_59_1 doi: 10.3390/plants4030606 – ident: e_1_2_7_70_1 doi: 10.1016/j.chom.2008.05.009 – ident: e_1_2_7_39_1 doi: 10.1105/tpc.13.5.999 – ident: e_1_2_7_66_1 doi: 10.1163/156854199508027 – ident: e_1_2_7_58_1 doi: 10.1016/j.cub.2008.03.060 – ident: e_1_2_7_2_1 doi: 10.1007/s00438-008-0406-6 – ident: e_1_2_7_4_1 doi: 10.1007/s11103-008-9435-0 – ident: e_1_2_7_76_1 doi: 10.1146/annurev.arplant.58.032806.103830 – ident: e_1_2_7_31_1 doi: 10.1007/s00425-008-0830-1 – ident: e_1_2_7_33_1 doi: 10.1016/S1360-1385(00)01790-8 – ident: e_1_2_7_22_1 doi: 10.1016/j.pbi.2011.03.012 – ident: e_1_2_7_26_1 doi: 10.1126/science.1173771 – ident: e_1_2_7_50_1 doi: 10.1146/annurev-phyto-102313-050111 – ident: e_1_2_7_65_1 doi: 10.1038/nplants.2015.73 – ident: e_1_2_7_14_1 doi: 10.3389/fpls.2014.00611 – ident: e_1_2_7_41_1 doi: 10.1023/B:PLAN.0000038261.21060.47 – ident: e_1_2_7_86_1 doi: 10.1073/pnas.1201616109 – ident: e_1_2_7_49_1 doi: 10.1111/j.1469-8137.2012.04311.x – ident: e_1_2_7_57_1 doi: 10.1094/MPMI-05-12-0108-FI – ident: e_1_2_7_79_1 doi: 10.1016/j.tplants.2007.03.006 – ident: e_1_2_7_84_1 – ident: e_1_2_7_35_1 doi: 10.1042/BJ20120245 – ident: e_1_2_7_7_1 doi: 10.1007/s10265-015-0710-2 – ident: e_1_2_7_25_1 doi: 10.1094/MPMI.2000.13.10.1121 – ident: e_1_2_7_51_1 doi: 10.1093/jxb/erw230 – ident: e_1_2_7_82_1 doi: 10.1271/nogeikagaku1924.14.12_1526 – ident: e_1_2_7_68_1 doi: 10.1104/pp.103.033696 – ident: e_1_2_7_74_1 doi: 10.1105/tpc.108.061648 – ident: e_1_2_7_30_1 doi: 10.1098/rstb.2007.2030 – ident: e_1_2_7_73_1 doi: 10.1038/nature04028 – ident: e_1_2_7_63_1 doi: 10.1094/MPMI-05-12-0138-R – ident: e_1_2_7_8_1 doi: 10.1007/s10886-005-6070-y – ident: e_1_2_7_62_1 doi: 10.1016/j.cropro.2006.09.004 – ident: e_1_2_7_85_1 doi: 10.1093/mp/ssn021 – ident: e_1_2_7_17_1 doi: 10.1094/MPMI-22-2-0201 – ident: e_1_2_7_45_1 doi: 10.1111/nph.13395 – ident: e_1_2_7_60_1 doi: 10.1007/BF00634486 – ident: e_1_2_7_83_1 doi: 10.1093/pcp/41.3.251 – ident: e_1_2_7_20_1 doi: 10.1104/pp.110.163774 – ident: e_1_2_7_32_1 doi: 10.1104/pp.112.200956 – ident: e_1_2_7_56_1 doi: 10.1111/j.1469-8137.2012.04310.x – ident: e_1_2_7_3_1 doi: 10.1073/pnas.96.18.10284 – ident: e_1_2_7_67_1 doi: 10.1007/PL00007027 – ident: e_1_2_7_52_1 doi: 10.1104/pp.110.167197 – ident: e_1_2_7_16_1 doi: 10.1111/j.1365-313X.2004.02287.x – ident: e_1_2_7_43_1 doi: 10.1093/jxb/ert219 – ident: e_1_2_7_19_1 doi: 10.1038/nature01387 – ident: e_1_2_7_55_1 doi: 10.1104/pp.111.177576 – volume: 170 start-page: 1831 year: 2016 ident: e_1_2_7_12_1 article-title: The DELLA protein SLR1 integrates and amplifies salicylic acid‐and jasmonic acid‐dependent innate immunity in rice publication-title: Plant Physiology doi: 10.1104/pp.15.01515 – ident: e_1_2_7_15_1 doi: 10.1146/annurev.phyto.45.062806.094438 – ident: e_1_2_7_81_1 doi: 10.1093/aob/mct067 – ident: e_1_2_7_11_1 doi: 10.1016/j.tplants.2013.07.002 – ident: e_1_2_7_37_1 doi: 10.1016/j.devcel.2010.10.024 – ident: e_1_2_7_18_1 – ident: e_1_2_7_38_1 doi: 10.1163/15685411-00003049 – ident: e_1_2_7_47_1 doi: 10.1079/9781845930561.0059 – ident: e_1_2_7_5_1 doi: 10.1079/9780851997278.0087 – ident: e_1_2_7_42_1 doi: 10.1073/pnas.141239398 – ident: e_1_2_7_29_1 doi: 10.1094/MPMI-18-1247 – ident: e_1_2_7_13_1 doi: 10.1104/pp.112.193672 – ident: e_1_2_7_64_1 doi: 10.1080/15592324.2015.1110661 – ident: e_1_2_7_78_1 doi: 10.1016/j.chroma.2012.08.047 |
| SSID | ssj0009562 |
| Score | 2.4942343 |
| Snippet | Gibberellin (GA) regulates various plant growth and developmental processes, but its role in pathogen attack, and especially nematode–plant interactions, still... Summary Gibberellin (GA) regulates various plant growth and developmental processes, but its role in pathogen attack, and especially nematode–plant... Gibberellin (GA) regulates various plant growth and developmental processes, but its role in pathogen attack, and especially nematode-plant interactions, still... |
| SourceID | proquest pubmed crossref wiley jstor |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 646 |
| SubjectTerms | auxin auxins biosynthesis chemical inhibitors DELLA foliar spraying gibberellic acid gibberellin (GA) jasmonate (JA) jasmonic acid Meloidogyne graminicola mutants nematode infections pathogens plant growth rice SLR1 |
| Title | Gibberellin antagonizes jasmonate-induced defense against Meloidogyne graminicola in rice |
| URI | https://www.jstor.org/stable/90019939 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.15046 https://www.ncbi.nlm.nih.gov/pubmed/29464725 https://www.proquest.com/docview/2007114356 https://www.proquest.com/docview/2067292273 |
| Volume | 218 |
| WOSCitedRecordID | wos000428070100024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1469-8137 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0009562 issn: 0028-646X databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1469-8137 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009562 issn: 0028-646X databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxRBEK4gcPACoiILummNBy9j6KG3pzuc8LFiohtiJG7iYdLPdQnMkB0ggZM_wd_IL7FqZmcCCRoTb3OoeVV1dX9fP74CeImkJ_UIRZOI5CARzg4SLYVPzHbw3nilnXB1sYlsNFLjsT5YgN32LEyjD9FNuFFm1P01Jbix1Y0kL05_vEY0I0humwtO1Qu-fRzdENyVaavALIUcz1WFaBdPd-etsajZjngX0LyNW-uBZ7j6X5_8AFbmeJPtNQ1kDRZC8RCW35SICS8fwfcPU2vDjEQ5C4Y-NhNM8atQsSNTndC8erj--QtZO8bfMx8ict7AzMRMEVSyz-G4nPpyclkERnu86IglEmWGjyKlosdwOHz_9e1-Mi-3kDhicYlx2mTOK2lp8dRI7jJNi37OeRs5j4Ybxwmu-Mwru8Ot5lEZa1PsJbxEnLMOi0VZhA1gzok0RjOwJrUi27ZK2TSL2oQ4sEiweA9etY7P3VyLnEpiHOctJ0FX5bWrevCiMz1tBDjuMlqvo9dZaIKuekf34HkbzhzzhhZDTBHK84rKb2acwKL8m41E7pEiwuvBk6YtdG9ItSDl_QH-Sh3yP39cPjrYry82_910C-4jMlPNFqGnsHg2Ow_PYNldnE2rWR_uZWPVh6V3X4aHn_p1u_8NE_UElg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4BRaKX0haWbunDrThwCcLB68QSF1qVLipEHKhYiUPk57IVTdAuVKKn_oT-Rn4JM8kmAglQpd5ymLzsGfv77PE3AGtIemKHUDQKSA4iYU0vUlK4SG9657RLlRW2KjaRZFk6GKjDGdhuzsLU-hDtghtFRjVeU4DTgvStKC_OTzcQzgg5C08EAg0q3HC8l92S3JVxo8EshRxMdYUoj6e99c5sVCck3gc17yLXaurZXfy_j34Oz6aQk-3UPvICZnzxEuY_lQgLr5bg5OvIGD8mXc6CYTPrIUb5bz9hP_TkJy2t--s_f5G4ows45nxA2uuZHuoR4kp24M_KkSuHV4VnlOZFpyyRKzN8FIkVLcP33S9Hn_vRtOJCZInIRdoqnViXSkP7p1pymyja97PWmcB50FxbTojFJS41W9woHlJtTIwDhZMIdTowV5SFfwXMWhGHoHtGx0YkmyZNTZwEpX3oGeRYvAvrTcvndipHTlUxzvKGlmBT5VVTdeFja3pea3DcZ9Spuq-1UIRe1ZbqwoemP3MMHdoP0YUvLydUgTPhhBflYzYS6UeMIK8LK7UztG-IlSDx_R7-StXnD39cnh32q4vX_276Hhb6Rwf7-f5e9m0VniJQS-uMoTcwdzG-9G9h3v66GE3G7yq3vwH8bgYs |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxRBEK7gQgwXFBVYfNAaD17G0ENvz3TiBcQVI242RpJNPEz6uS6Bmc0ukMCJn-Bv9JdYNa9AgsbE2xxqXtVV3d_Xj68AXiPpiR1C0SggOYiENb1ISeEive2d0y5VVtiy2EQyGKSjkRouwLvmLEylD9FOuFFmlP01JbifunAjy_Ppj7cIZ4S8B4uCish0YHH_a__o8IborowbFWYp5KhWFqKdPO3Nt8ajakviXWDzNnYtB5_-g__77IewUoNOtltFySos-PwRLO0VCAwvH8P3jxNj_IyUOXOGjtZjzPMrP2fHen5Kk-v-1_VPpO4YBI45H5D4eqbHeoLIkn3xJ8XEFePL3DPa6EXnLJEtM3wUyRU9gaP-h2_vD6K65kJkicpF2iqdWJdKQyuoWnKbKFr5s9aZwHnQXFtOmMUlLjU73CgeUm1MjF2Fkwh21qCTF7nfAGatiEPQPaNjI5Jtk6YmToLSPvQMsizehTeN5zNbC5JTXYyTrCEm6KqsdFUXXrWm00qF4y6jtbL5WgtF-FXtqC68bNozw-ShFRGd--J8TjU4E06IUf7NRiIBiRHmdWG9Cob2DbESJL_fw18p2_zPH5cNhgflxea_m27B_eF-Pzv8NPj8FJYRqaXVlqFn0DmbnfvnsGQvzibz2Ys67n8DpRwG1Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gibberellin+antagonizes+jasmonate-induced+defense+against+Meloidogyne+graminicola+in+rice&rft.jtitle=The+New+phytologist&rft.au=Yimer%2C+Henok+Zemene&rft.au=Nahar%2C+Kamrun&rft.au=Kyndt%2C+Tina&rft.au=Haeck%2C+Ashley&rft.date=2018-04-01&rft.issn=1469-8137&rft.eissn=1469-8137&rft.volume=218&rft.issue=2&rft.spage=646&rft_id=info:doi/10.1111%2Fnph.15046&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |