Gibberellin antagonizes jasmonate-induced defense against Meloidogyne graminicola in rice

Gibberellin (GA) regulates various plant growth and developmental processes, but its role in pathogen attack, and especially nematode–plant interactions, still remains to be elucidated. An in-depth characterization of the role of GA in nematode infection was conducted using mutant lines of rice, che...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist Jg. 218; H. 2; S. 646 - 660
Hauptverfasser: Yimer, Henok Zemene, Nahar, Kamrun, Kyndt, Tina, Haeck, Ashley, Van Meulebroek, Lieven, Vanhaecke, Lynn, Demeestere, Kristof, Höfte, Monica, Gheysen, Godelieve
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England New Phytologist Trust 01.04.2018
Schlagworte:
ISSN:0028-646X, 1469-8137, 1469-8137
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Gibberellin (GA) regulates various plant growth and developmental processes, but its role in pathogen attack, and especially nematode–plant interactions, still remains to be elucidated. An in-depth characterization of the role of GA in nematode infection was conducted using mutant lines of rice, chemical inhibitors, and phytohormone measurements. Our results showed that GA influences rice–Meloidogyne graminicola interactions in a concentration-dependent manner. Foliar spray of plants with a low concentration of gibberellic acid enhanced nematode infection. Biosynthetic and signaling mutants confirmed the importance of gibberellin for rice susceptibility to M. graminicola infection. Our study also demonstrates that GA signaling suppresses jasmonate (JA)-mediated defense against M. graminicola, and likewise the JA-induced defense against M. graminicola requires SLENDER RICE1 (SLR1)-mediated repression of the GA pathway. In contrast to observations from other plant–pathogen interactions, GA plays a dominant role over JA in determining susceptibility to M. graminicola in rice. This GA-induced nematode susceptibility was largely independent of auxin biosynthesis, but relied on auxin transport. In conclusion, we showed that GA–JA antagonistic crosstalk is at the forefront of the interaction between rice and M. graminicola, and SLR1 plays a central role in the JA-mediated defense response in rice against this nematode.
AbstractList Gibberellin (GA) regulates various plant growth and developmental processes, but its role in pathogen attack, and especially nematode-plant interactions, still remains to be elucidated. An in-depth characterization of the role of GA in nematode infection was conducted using mutant lines of rice, chemical inhibitors, and phytohormone measurements. Our results showed that GA influences rice-Meloidogyne graminicola interactions in a concentration-dependent manner. Foliar spray of plants with a low concentration of gibberellic acid enhanced nematode infection. Biosynthetic and signaling mutants confirmed the importance of gibberellin for rice susceptibility to M. graminicola infection. Our study also demonstrates that GA signaling suppresses jasmonate (JA)-mediated defense against M. graminicola, and likewise the JA-induced defense against M. graminicola requires SLENDER RICE1 (SLR1)-mediated repression of the GA pathway. In contrast to observations from other plant-pathogen interactions, GA plays a dominant role over JA in determining susceptibility to M. graminicola in rice. This GA-induced nematode susceptibility was largely independent of auxin biosynthesis, but relied on auxin transport. In conclusion, we showed that GA-JA antagonistic crosstalk is at the forefront of the interaction between rice and M. graminicola, and SLR1 plays a central role in the JA-mediated defense response in rice against this nematode.
Gibberellin (GA) regulates various plant growth and developmental processes, but its role in pathogen attack, and especially nematode–plant interactions, still remains to be elucidated. An in‐depth characterization of the role of GA in nematode infection was conducted using mutant lines of rice, chemical inhibitors, and phytohormone measurements. Our results showed that GA influences rice– Meloidogyne graminicola interactions in a concentration‐dependent manner. Foliar spray of plants with a low concentration of gibberellic acid enhanced nematode infection. Biosynthetic and signaling mutants confirmed the importance of gibberellin for rice susceptibility to M. graminicola infection. Our study also demonstrates that GA signaling suppresses jasmonate (JA)‐mediated defense against M. graminicola , and likewise the JA‐induced defense against M. graminicola requires SLENDER RICE1 (SLR1)‐mediated repression of the GA pathway. In contrast to observations from other plant–pathogen interactions, GA plays a dominant role over JA in determining susceptibility to M. graminicola in rice. This GA‐induced nematode susceptibility was largely independent of auxin biosynthesis, but relied on auxin transport. In conclusion, we showed that GA–JA antagonistic crosstalk is at the forefront of the interaction between rice and M. graminicola , and SLR1 plays a central role in the JA‐mediated defense response in rice against this nematode.
Gibberellin (GA) regulates various plant growth and developmental processes, but its role in pathogen attack, and especially nematode–plant interactions, still remains to be elucidated. An in‐depth characterization of the role of GA in nematode infection was conducted using mutant lines of rice, chemical inhibitors, and phytohormone measurements. Our results showed that GA influences rice–Meloidogyne graminicola interactions in a concentration‐dependent manner. Foliar spray of plants with a low concentration of gibberellic acid enhanced nematode infection. Biosynthetic and signaling mutants confirmed the importance of gibberellin for rice susceptibility to M. graminicola infection. Our study also demonstrates that GA signaling suppresses jasmonate (JA)‐mediated defense against M. graminicola, and likewise the JA‐induced defense against M. graminicola requires SLENDER RICE1 (SLR1)‐mediated repression of the GA pathway. In contrast to observations from other plant–pathogen interactions, GA plays a dominant role over JA in determining susceptibility to M. graminicola in rice. This GA‐induced nematode susceptibility was largely independent of auxin biosynthesis, but relied on auxin transport. In conclusion, we showed that GA–JA antagonistic crosstalk is at the forefront of the interaction between rice and M. graminicola, and SLR1 plays a central role in the JA‐mediated defense response in rice against this nematode.
Gibberellin (GA) regulates various plant growth and developmental processes, but its role in pathogen attack, and especially nematode-plant interactions, still remains to be elucidated. An in-depth characterization of the role of GA in nematode infection was conducted using mutant lines of rice, chemical inhibitors, and phytohormone measurements. Our results showed that GA influences rice-Meloidogyne graminicola interactions in a concentration-dependent manner. Foliar spray of plants with a low concentration of gibberellic acid enhanced nematode infection. Biosynthetic and signaling mutants confirmed the importance of gibberellin for rice susceptibility to M. graminicola infection. Our study also demonstrates that GA signaling suppresses jasmonate (JA)-mediated defense against M. graminicola, and likewise the JA-induced defense against M. graminicola requires SLENDER RICE1 (SLR1)-mediated repression of the GA pathway. In contrast to observations from other plant-pathogen interactions, GA plays a dominant role over JA in determining susceptibility to M. graminicola in rice. This GA-induced nematode susceptibility was largely independent of auxin biosynthesis, but relied on auxin transport. In conclusion, we showed that GA-JA antagonistic crosstalk is at the forefront of the interaction between rice and M. graminicola, and SLR1 plays a central role in the JA-mediated defense response in rice against this nematode.Gibberellin (GA) regulates various plant growth and developmental processes, but its role in pathogen attack, and especially nematode-plant interactions, still remains to be elucidated. An in-depth characterization of the role of GA in nematode infection was conducted using mutant lines of rice, chemical inhibitors, and phytohormone measurements. Our results showed that GA influences rice-Meloidogyne graminicola interactions in a concentration-dependent manner. Foliar spray of plants with a low concentration of gibberellic acid enhanced nematode infection. Biosynthetic and signaling mutants confirmed the importance of gibberellin for rice susceptibility to M. graminicola infection. Our study also demonstrates that GA signaling suppresses jasmonate (JA)-mediated defense against M. graminicola, and likewise the JA-induced defense against M. graminicola requires SLENDER RICE1 (SLR1)-mediated repression of the GA pathway. In contrast to observations from other plant-pathogen interactions, GA plays a dominant role over JA in determining susceptibility to M. graminicola in rice. This GA-induced nematode susceptibility was largely independent of auxin biosynthesis, but relied on auxin transport. In conclusion, we showed that GA-JA antagonistic crosstalk is at the forefront of the interaction between rice and M. graminicola, and SLR1 plays a central role in the JA-mediated defense response in rice against this nematode.
Summary Gibberellin (GA) regulates various plant growth and developmental processes, but its role in pathogen attack, and especially nematode–plant interactions, still remains to be elucidated. An in‐depth characterization of the role of GA in nematode infection was conducted using mutant lines of rice, chemical inhibitors, and phytohormone measurements. Our results showed that GA influences rice–Meloidogyne graminicola interactions in a concentration‐dependent manner. Foliar spray of plants with a low concentration of gibberellic acid enhanced nematode infection. Biosynthetic and signaling mutants confirmed the importance of gibberellin for rice susceptibility to M. graminicola infection. Our study also demonstrates that GA signaling suppresses jasmonate (JA)‐mediated defense against M. graminicola, and likewise the JA‐induced defense against M. graminicola requires SLENDER RICE1 (SLR1)‐mediated repression of the GA pathway. In contrast to observations from other plant–pathogen interactions, GA plays a dominant role over JA in determining susceptibility to M. graminicola in rice. This GA‐induced nematode susceptibility was largely independent of auxin biosynthesis, but relied on auxin transport. In conclusion, we showed that GA–JA antagonistic crosstalk is at the forefront of the interaction between rice and M. graminicola, and SLR1 plays a central role in the JA‐mediated defense response in rice against this nematode.
Gibberellin (GA) regulates various plant growth and developmental processes, but its role in pathogen attack, and especially nematode–plant interactions, still remains to be elucidated. An in-depth characterization of the role of GA in nematode infection was conducted using mutant lines of rice, chemical inhibitors, and phytohormone measurements. Our results showed that GA influences rice–Meloidogyne graminicola interactions in a concentration-dependent manner. Foliar spray of plants with a low concentration of gibberellic acid enhanced nematode infection. Biosynthetic and signaling mutants confirmed the importance of gibberellin for rice susceptibility to M. graminicola infection. Our study also demonstrates that GA signaling suppresses jasmonate (JA)-mediated defense against M. graminicola, and likewise the JA-induced defense against M. graminicola requires SLENDER RICE1 (SLR1)-mediated repression of the GA pathway. In contrast to observations from other plant–pathogen interactions, GA plays a dominant role over JA in determining susceptibility to M. graminicola in rice. This GA-induced nematode susceptibility was largely independent of auxin biosynthesis, but relied on auxin transport. In conclusion, we showed that GA–JA antagonistic crosstalk is at the forefront of the interaction between rice and M. graminicola, and SLR1 plays a central role in the JA-mediated defense response in rice against this nematode.
Author Lieven Van Meulebroek
Tina Kyndt
Kamrun Nahar
Lynn Vanhaecke
Monica Höfte
Henok Zemene Yimer
Ashley Haeck
Godelieve Gheysen
Kristof Demeestere
Author_xml – sequence: 1
  givenname: Henok Zemene
  surname: Yimer
  fullname: Yimer, Henok Zemene
  organization: Ghent University
– sequence: 2
  givenname: Kamrun
  surname: Nahar
  fullname: Nahar, Kamrun
  organization: Ghent University
– sequence: 3
  givenname: Tina
  orcidid: 0000-0002-5267-5013
  surname: Kyndt
  fullname: Kyndt, Tina
  organization: Ghent University
– sequence: 4
  givenname: Ashley
  surname: Haeck
  fullname: Haeck, Ashley
  organization: Ghent University
– sequence: 5
  givenname: Lieven
  surname: Van Meulebroek
  fullname: Van Meulebroek, Lieven
  organization: Ghent University
– sequence: 6
  givenname: Lynn
  surname: Vanhaecke
  fullname: Vanhaecke, Lynn
  organization: Ghent University
– sequence: 7
  givenname: Kristof
  surname: Demeestere
  fullname: Demeestere, Kristof
  organization: Ghent University
– sequence: 8
  givenname: Monica
  orcidid: 0000-0002-0850-3249
  surname: Höfte
  fullname: Höfte, Monica
  organization: Ghent University
– sequence: 9
  givenname: Godelieve
  orcidid: 0000-0003-1929-5059
  surname: Gheysen
  fullname: Gheysen, Godelieve
  email: Godelieve.Gheysen@ugent.be
  organization: Ghent University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29464725$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9P3DAQxS1EBQvl0A9QlCM9BGzHseNjhShUon8OrVRO0diebL1K7K2dFdp--rpd4FCpqKOR5vJ7T5r3jsh-iAEJecXoOStzEdbfz1lLhdwjCyakrjvWqH2yoJR3tRTy2yE5ynlFKdWt5AfkkGshheLtgtxde2Mw4Tj6UEGYYRmD_4m5WkGeYoAZax_cxqKrHA4YMlawBB_yXH3AMXoXl9uA1TLB5IO3cYSqGCVv8SV5McCY8eThHpOv766-XN7Ut5-u31--va2tYK2swWpQ1nXSUNF2IJlVWpe11pmBsQEYWNYJqZxynWmY0WzowBhOVeOk1s0xOdv5rlP8scE895PPtjwEAeMm95xKxTXnqvkPlCrGRNPKgp4-oBszoevXyU-Qtv1jcgV4swNsijknHJ4QRvvfrfSllf5PK4W9-Iu1fobZxzAn8ONzins_4vbf1v3HzzePitc7xSrPMT0pNKWshKSbX098p9I
CitedBy_id crossref_primary_10_1016_j_jia_2022_08_002
crossref_primary_10_1111_pbi_13709
crossref_primary_10_1007_s00344_024_11412_w
crossref_primary_10_3390_horticulturae8030241
crossref_primary_10_1021_acs_jafc_5c05092
crossref_primary_10_1016_j_plantsci_2020_110627
crossref_primary_10_1016_j_tplants_2025_05_015
crossref_primary_10_1016_j_plantsci_2025_112407
crossref_primary_10_1093_pcp_pcaa104
crossref_primary_10_1016_j_plantsci_2024_112046
crossref_primary_10_3389_fmicb_2022_1025727
crossref_primary_10_1073_pnas_2304612120
crossref_primary_10_1111_jipb_13608
crossref_primary_10_1111_jph_12856
crossref_primary_10_1111_nph_20220
crossref_primary_10_2478_jofnem_2023_0012
crossref_primary_10_1016_j_mib_2018_09_004
crossref_primary_10_3390_ijms26115315
crossref_primary_10_1111_nph_15953
crossref_primary_10_1093_plphys_kiab368
crossref_primary_10_3389_fpls_2019_01515
crossref_primary_10_3389_fpls_2020_602079
crossref_primary_10_1038_s41467_022_34649_z
crossref_primary_10_1111_mpp_13111
crossref_primary_10_1093_plphys_kiad174
crossref_primary_10_1080_17429145_2021_2018060
crossref_primary_10_1007_s10725_023_01096_9
crossref_primary_10_3390_plants13213065
crossref_primary_10_3390_antiox14060679
crossref_primary_10_1016_j_pmpp_2023_101964
crossref_primary_10_3390_ijms222313172
crossref_primary_10_1002_2211_5463_12737
crossref_primary_10_1007_s44297_025_00056_1
crossref_primary_10_1094_MPMI_35_2
crossref_primary_10_3389_fpls_2024_1385477
crossref_primary_10_3389_fpls_2019_01141
crossref_primary_10_1094_MPMI_09_21_0221_CR
crossref_primary_10_3389_fmicb_2022_942302
crossref_primary_10_1163_15685411_00003198
crossref_primary_10_3390_plants11060720
crossref_primary_10_1016_j_meegid_2021_105008
crossref_primary_10_3390_plants12061243
crossref_primary_10_1007_s00344_023_11030_y
crossref_primary_10_3390_life12071003
crossref_primary_10_1016_j_fcr_2023_108965
crossref_primary_10_1111_nph_17559
crossref_primary_10_3390_ijms23073945
crossref_primary_10_1007_s43538_024_00294_x
crossref_primary_10_3389_fpls_2021_668548
Cites_doi 10.1111/mpp.12394
10.1093/mp/ssu050
10.1104/pp.104.900192
10.1371/journal.ppat.1000266
10.1126/science.1081077
10.1007/978-3-319-25979-6_16
10.1111/j.1365-3040.2005.01441.x
10.1007/s00425-014-2063-9
10.1007/978-94-011-0473-9_2
10.1094/MPMI-20-5-0510
10.1105/tpc.106.043729
10.1105/tpc.010476
10.1016/j.talanta.2013.03.068
10.1007/s00344-015-9546-1
10.1042/bse0580049
10.1016/j.tplants.2011.04.003
10.1146/annurev.phyto.43.040204.135923
10.1016/j.jplph.2010.12.002
10.1186/1939-8433-6-17
10.3389/fpls.2016.01565
10.1007/978-94-007-0434-3
10.1111/j.1364-3703.2004.00230.x
10.3390/plants4030606
10.1016/j.chom.2008.05.009
10.1105/tpc.13.5.999
10.1163/156854199508027
10.1016/j.cub.2008.03.060
10.1007/s00438-008-0406-6
10.1007/s11103-008-9435-0
10.1146/annurev.arplant.58.032806.103830
10.1007/s00425-008-0830-1
10.1016/S1360-1385(00)01790-8
10.1016/j.pbi.2011.03.012
10.1126/science.1173771
10.1146/annurev-phyto-102313-050111
10.1038/nplants.2015.73
10.3389/fpls.2014.00611
10.1023/B:PLAN.0000038261.21060.47
10.1073/pnas.1201616109
10.1111/j.1469-8137.2012.04311.x
10.1094/MPMI-05-12-0108-FI
10.1016/j.tplants.2007.03.006
10.1042/BJ20120245
10.1007/s10265-015-0710-2
10.1094/MPMI.2000.13.10.1121
10.1093/jxb/erw230
10.1271/nogeikagaku1924.14.12_1526
10.1104/pp.103.033696
10.1105/tpc.108.061648
10.1098/rstb.2007.2030
10.1038/nature04028
10.1094/MPMI-05-12-0138-R
10.1007/s10886-005-6070-y
10.1016/j.cropro.2006.09.004
10.1093/mp/ssn021
10.1094/MPMI-22-2-0201
10.1111/nph.13395
10.1007/BF00634486
10.1093/pcp/41.3.251
10.1104/pp.110.163774
10.1104/pp.112.200956
10.1111/j.1469-8137.2012.04310.x
10.1073/pnas.96.18.10284
10.1007/PL00007027
10.1104/pp.110.167197
10.1111/j.1365-313X.2004.02287.x
10.1093/jxb/ert219
10.1038/nature01387
10.1104/pp.111.177576
10.1104/pp.15.01515
10.1146/annurev.phyto.45.062806.094438
10.1093/aob/mct067
10.1016/j.tplants.2013.07.002
10.1016/j.devcel.2010.10.024
10.1163/15685411-00003049
10.1079/9781845930561.0059
10.1079/9780851997278.0087
10.1073/pnas.141239398
10.1094/MPMI-18-1247
10.1104/pp.112.193672
10.1080/15592324.2015.1110661
10.1016/j.chroma.2012.08.047
ContentType Journal Article
Copyright Copyright © 2018 New Phytologist Trust
2018 The Authors. New Phytologist © 2018 New Phytologist Trust
2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Copyright_xml – notice: Copyright © 2018 New Phytologist Trust
– notice: 2018 The Authors. New Phytologist © 2018 New Phytologist Trust
– notice: 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1111/nph.15046
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
CrossRef
AGRICOLA
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 660
ExternalDocumentID 29464725
10_1111_nph_15046
NPH15046
90019939
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Special Research Fund of Ghent University
  funderid: BOF13/GOA/030
– fundername: Hercules Foundation of the Flemish Government
  funderid: AUGE/11/016
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
31~
AASVR
ABEFU
ABEML
ABGDZ
ACQPF
ADXHL
AS~
CAG
COF
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
LPU
MVM
NEJ
RCA
WHG
YXE
ZCG
AAYXX
ABUFD
CITATION
O8X
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
DOOOF
ESX
IPNFZ
JSODD
NPM
PKN
WRC
XOL
7X8
7S9
L.6
ID FETCH-LOGICAL-c4156-ac9a7cd86b0458a61c799799ccdbf11fa1ac18467d7d8b31b91f8abb2073d6993
IEDL.DBID WIN
ISICitedReferencesCount 52
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000428070100024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0028-646X
1469-8137
IngestDate Fri Sep 05 17:16:29 EDT 2025
Wed Oct 01 14:00:18 EDT 2025
Wed Feb 19 02:33:50 EST 2025
Tue Nov 18 21:22:59 EST 2025
Sat Nov 29 04:38:28 EST 2025
Sun Sep 21 06:22:24 EDT 2025
Thu Jul 03 22:18:15 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords gibberellin (GA)
auxin
jasmonate (JA)
rice
DELLA
SLR1
Meloidogyne graminicola
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4156-ac9a7cd86b0458a61c799799ccdbf11fa1ac18467d7d8b31b91f8abb2073d6993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5267-5013
0000-0003-1929-5059
0000-0002-0850-3249
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.15046
PMID 29464725
PQID 2007114356
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_2067292273
proquest_miscellaneous_2007114356
pubmed_primary_29464725
crossref_primary_10_1111_nph_15046
crossref_citationtrail_10_1111_nph_15046
wiley_primary_10_1111_nph_15046_NPH15046
jstor_primary_90019939
PublicationCentury 2000
PublicationDate 20180401
April 2018
2018-04-00
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 4
  year: 2018
  text: 20180401
  day: 1
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2018
Publisher New Phytologist Trust
Publisher_xml – name: New Phytologist Trust
References 2015; 34
2002; 14
2011; 157
2013; 26
2000; 5
2010; 19
2009; 281
2013; 64
2000; 41
2012; 160
2008; 229
2004; 5
2008; 3
2011; 14
2012; 444
2008; 1
2011; 16
2013; 6
2011; 155
2004; 134
2013; 18
1938; 14
2011; 168
1998; 17
2014; 5
2000; 13
2013; 112
2013; 111
2005; 31
2006; 29
1999; 96
1988; 174
2008; 20
2007; 20
2014; 52
2014; 7
2001; 13
2014; 240
2012; 1260
2009; 324
2007; 26
2001; 98
2009; 22
2015; 1
2009; 69
2015; 58
2015; 4
2012
2011
2008; 18
2007; 362
2005; 437
2009
2005; 41
1995
2005; 43
2006
2005
2015; 207
1926; 16
2015; 128
1999; 1
2003; 299
2007; 12
2012; 109
2016; 11
2004; 54
2012; 196
2016; 7
2007a; 19
2006; 141
2016
2017; 19
2017; 18
2009; 5
2012; 158
2016; 170
2007b; 58
2003; 421
2007; 45
2005; 18
2016; 67
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Kurosawa E (e_1_2_7_48_1) 1926; 16
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_84_1
Vleesschauwer D (e_1_2_7_12_1) 2016; 170
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_86_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
References_xml – year: 2011
– volume: 52
  start-page: 135
  year: 2014
  end-page: 153
  article-title: Plant–parasitic nematode infections in rice: molecular and cellular insights
  publication-title: Annual Review of Phytopathology
– volume: 26
  start-page: 971
  year: 2007
  end-page: 977
  article-title: Biological control potential and modes of action of against on rice
  publication-title: Crop Protection
– year: 2009
– volume: 19
  start-page: 2140
  year: 2007a
  end-page: 2155
  article-title: Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin
  publication-title: Plant Cell
– volume: 109
  start-page: E1192
  year: 2012
  end-page: E1200
  article-title: Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 26
  start-page: 106
  year: 2013
  end-page: 115
  article-title: Brassinosteroids suppress rice defense against root‐knot nematodes through antagonism with the jasmonate pathway
  publication-title: Molecular Plant–Microbe Interactions
– volume: 437
  start-page: 693
  year: 2005
  end-page: 698
  article-title: GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin
  publication-title: Nature
– volume: 14
  start-page: 1526
  year: 1938
  article-title: On the crystal of gibberellin, a substance to promote plant growth
  publication-title: Journal of the Agricultural Chemical Society of Japan
– volume: 1
  start-page: 209
  year: 1999
  end-page: 212
  article-title: Use of a mixture of sand and water‐absorbent synthetic polymer as substrate for the xenic culturing of plant‐parasitic nematodes in the laboratory
  publication-title: Nematology
– volume: 17
  start-page: 141
  year: 1998
  end-page: 146
  article-title: Effects of auxin transport inhibitors on gibberellins in pea
  publication-title: Journal of Plant Growth Regulation
– volume: 96
  start-page: 10284
  year: 1999
  end-page: 10289
  article-title: Rice gibberellin‐insensitive dwarf mutant gene Dwarf 1 encodes the α‐subunit of GTP‐binding protein
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 69
  start-page: 473
  year: 2009
  end-page: 488
  article-title: Role of plant hormones in plant defence responses
  publication-title: Plant Molecular Biology
– volume: 196
  start-page: 887
  year: 2012
  end-page: 900
  article-title: Transcriptional reprogramming by root knot and migratory nematode infection in rice
  publication-title: New Phytologist
– volume: 1
  start-page: 528
  year: 2008
  end-page: 537
  article-title: Altered disease development in the eui mutants and overexpressors indicates that gibberellins negatively regulate rice basal disease resistance
  publication-title: Molecular Plant
– volume: 444
  start-page: 11
  year: 2012
  end-page: 25
  article-title: Gibberellin biosynthesis and its regulation
  publication-title: Biochemical Journal
– volume: 174
  start-page: 551
  year: 1988
  end-page: 560
  article-title: Hormonal regulation of gene expression in barley aleurone layers
  publication-title: Planta
– volume: 18
  start-page: 555
  year: 2013
  end-page: 565
  article-title: Hormone defense networking in rice: tales from a different world
  publication-title: Trends in Plant Science
– volume: 54
  start-page: 533
  year: 2004
  end-page: 547
  article-title: A rice semi‐dwarf gene, Tan‐Ginbozu ( ), encodes the gibberellin biosynthesis enzyme, ent‐kaurene oxidase
  publication-title: Plant Molecular Biology
– volume: 19
  start-page: 884
  year: 2010
  end-page: 894
  article-title: DELLAs modulate jasmonate signaling via competitive binding to JAZs
  publication-title: Developmental Cell
– start-page: 87
  year: 2005
– volume: 421
  start-page: 740
  year: 2003
  end-page: 743
  article-title: Auxin promotes Arabidopsis root growth by modulating gibberellin response
  publication-title: Nature
– volume: 34
  start-page: 740
  year: 2015
  end-page: 760
  article-title: A century of gibberellin research
  publication-title: Journal of Plant Growth Regulation
– volume: 98
  start-page: 8909
  year: 2001
  end-page: 8914
  article-title: Cloning and functional analysis of two gibberellin 3β‐hydroxylase genes that are differently expressed during the growth of rice
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 362
  start-page: 1009
  year: 2007
  end-page: 1021
  article-title: Rice functional genomics research in China
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– volume: 5
  start-page: 343
  year: 2004
  end-page: 346
  article-title: Feeding cell development by cyst and root‐knot nematodes involves a similar early, local and transient activation of a specific auxin‐inducible promoter element
  publication-title: Molecular Plant Pathology
– volume: 18
  start-page: 650
  year: 2008
  end-page: 655
  article-title: DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling
  publication-title: Current Biology
– volume: 157
  start-page: 305
  year: 2011
  end-page: 316
  article-title: The jasmonate pathway is a key player in systemically induced defense against root‐knot nematodes in rice
  publication-title: Plant Physiology
– volume: 31
  start-page: 1953
  year: 2005
  end-page: 1967
  article-title: Effects of jasmonate‐induced defenses on root‐knot nematode infection of resistant and susceptible tomato cultivars
  publication-title: Journal of Chemical Ecology
– volume: 18
  start-page: 3
  year: 2017
  end-page: 15
  article-title: : a major threat to rice agriculture
  publication-title: Molecular Plant Pathology
– volume: 134
  start-page: 1642
  year: 2004
  end-page: 1653
  article-title: An overview of gibberellin metabolism enzyme genes and their related mutants in rice
  publication-title: Plant Physiology
– volume: 20
  start-page: 510
  year: 2007
  end-page: 525
  article-title: Developmental transcript profiling of cyst nematode feeding cells in soybean roots
  publication-title: Molecular Plant–Microbe Interactions
– start-page: 59
  year: 2006
  end-page: 90
– volume: 299
  start-page: 1896
  year: 2003
  end-page: 1898
  article-title: Accumulation of phosphorylated repressor for gibberellin signaling in an F‐box mutant
  publication-title: Science
– volume: 26
  start-page: 227
  year: 2013
  end-page: 239
  article-title: Gibberellin 20‐oxidase gene regulates plant stature and disease development in rice
  publication-title: Molecular Plant–Microbe Interactions
– start-page: 405
  year: 2016
  end-page: 426
– start-page: 13
  year: 1995
  end-page: 38
– volume: 14
  start-page: S61
  issue: suppl 1
  year: 2002
  end-page: S80
  article-title: Gibberellin signaling biosynthesis, catabolism, and response pathways
  publication-title: Plant Cell
– volume: 281
  start-page: 223
  year: 2009
  end-page: 231
  article-title: Isolation and characterization of dominant dwarf mutants, , in rice
  publication-title: Molecular Genetics and Genomics
– volume: 207
  start-page: 778
  year: 2015
  end-page: 789
  article-title: Role of stress‐related hormones in plant defence during early infection of the cyst nematode in Arabidopsis
  publication-title: New Phytologist
– volume: 67
  start-page: 4559
  year: 2016
  end-page: 4570
  article-title: Redirection of auxin flow in roots after infection by root‐knot nematodes
  publication-title: Journal of Experimental Botany
– volume: 58
  start-page: 183
  year: 2007b
  end-page: 198
  article-title: Gibberellin receptor and its role in gibberellin signaling in plants
  publication-title: Annual Review of Plant Biology
– volume: 5
  start-page: 523
  year: 2000
  end-page: 530
  article-title: Gibberellin metabolism: new insights revealed by the genes
  publication-title: Trends in Plant Science
– volume: 7
  start-page: 1565
  year: 2016
  article-title: OPDA has key role in regulating plant susceptibility to the root‐knot nematode in Arabidopsis
  publication-title: Frontiers in Plant Science
– volume: 18
  start-page: 1247
  year: 2005
  end-page: 1257
  article-title: Nematode‐induced changes of transporter gene expression in Arabidopsis roots
  publication-title: Molecular Plant‐Microbe Interactions
– volume: 14
  start-page: 415
  year: 2011
  end-page: 421
  article-title: How nematodes manipulate plant development pathways for infection
  publication-title: Current Opinion in Plant Biology
– volume: 155
  start-page: 589
  year: 2011
  end-page: 602
  article-title: Manipulating broad‐spectrum disease resistance by suppressing pathogen‐induced auxin accumulation in rice
  publication-title: Plant Physiology
– volume: 229
  start-page: 1
  year: 2008
  end-page: 13
  article-title: Gibberellin signaling
  publication-title: Planta
– volume: 141
  start-page: 524
  year: 2006
  end-page: 526
  article-title: Gibberellin metabolism enzymes in rice
  publication-title: Plant Physiology
– volume: 128
  start-page: 679
  year: 2015
  end-page: 686
  article-title: Identification of NRT1/PTR FAMILY (NPF) proteins capable of transporting plant hormones
  publication-title: Journal of Plant Research
– volume: 22
  start-page: 201
  year: 2009
  end-page: 210
  article-title: Constitutive expression of reduces auxin content and enhances defense response and resistance to a fungal pathogen in rice
  publication-title: Molecular Plant‐Microbe Interactions
– volume: 158
  start-page: 1833
  year: 2012
  end-page: 1846
  article-title: Brassinosteroids antagonize gibberellin‐ and salicylate‐mediated root immunity in rice
  publication-title: Plant Physiology
– volume: 155
  start-page: 866
  year: 2011
  end-page: 880
  article-title: The novel cyst nematode effector protein 19C07 interacts with the Arabidopsis auxin influx transporter LAX3 to control feeding site development
  publication-title: Plant Physiology
– volume: 168
  start-page: 1084
  year: 2011
  end-page: 1097
  article-title: Expression profile of jasmonic acid‐induced genes and the induced resistance against the root‐knot nematode ( ) in tomato plants ( ) after foliar treatment with methyl jasmonate
  publication-title: Journal of Plant Physiology
– volume: 160
  start-page: 83
  year: 2012
  end-page: 92
  article-title: Gibberellin signaling: a theme and variations on DELLA repression
  publication-title: Plant Physiology
– volume: 1
  start-page: 15073
  year: 2015
  article-title: The gibberellin precursor GA acts as a long‐distance growth signal in Arabidopsis
  publication-title: Nature Plants
– volume: 5
  start-page: e1000266
  year: 2009
  article-title: Parasitic nematodes modulate PIN‐mediated auxin transport to facilitate infection
  publication-title: PLoS Pathogens
– volume: 12
  start-page: 160
  year: 2007
  end-page: 168
  article-title: Molecular and cellular aspects of auxin‐transport‐mediated development
  publication-title: Trends in Plant Science
– volume: 111
  start-page: 1021
  year: 2013
  end-page: 1058
  article-title: Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany
  publication-title: Annals of Botany
– volume: 7
  start-page: 943
  year: 2014
  end-page: 959
  article-title: Connecting growth and defense: the emerging roles of brassinosteroids and gibberellins in plant innate immunity
  publication-title: Molecular Plant
– volume: 29
  start-page: 619
  year: 2006
  end-page: 631
  article-title: Gid1, a gibberellin‐insensitive dwarf mutant, shows altered regulation of probenazole‐inducible protein (PBZ1) in response to cold stress and pathogen attack
  publication-title: Plant, Cell & Environment
– volume: 13
  start-page: 999
  year: 2001
  end-page: 1010
  article-title: rice, a constitutive gibberellin response mutant, is caused by a null mutation of the gene, an ortholog of the height‐regulating gene
  publication-title: Plant Cell
– volume: 3
  start-page: 348
  year: 2008
  end-page: 351
  article-title: Making sense of hormone crosstalk during plant immune responses
  publication-title: Cell Host & Microbe
– volume: 41
  start-page: 251
  year: 2000
  end-page: 257
  article-title: Gibberellin biosynthesis: its regulation by endogenous and environmental signals
  publication-title: Plant and Cell Physiology
– volume: 240
  start-page: 55
  year: 2014
  end-page: 76
  article-title: plant hormone analysis?
  publication-title: Planta
– year: 2012
– volume: 43
  start-page: 205
  year: 2005
  end-page: 227
  article-title: Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens
  publication-title: Annual Review of Phytopathology
– volume: 5
  start-page: 611
  year: 2014
  article-title: Making sense of hormone‐mediated defense networking: from rice to Arabidopsis
  publication-title: Frontiers in Plant Science
– volume: 45
  start-page: 457
  year: 2007
  end-page: 485
  article-title: Challenges in tropical plant nematology
  publication-title: Annual Review of Phytopathology
– volume: 11
  start-page: e1110661
  year: 2016
  article-title: Long‐distance transport of endogenous gibberellins in Arabidopsis
  publication-title: Plant Signaling & Behavior
– volume: 170
  start-page: 1831
  year: 2016
  end-page: 1847
  article-title: The DELLA protein SLR1 integrates and amplifies salicylic acid‐and jasmonic acid‐dependent innate immunity in rice
  publication-title: Plant Physiology
– volume: 324
  start-page: 750
  year: 2009
  end-page: 752
  article-title: Hormone (dis) harmony moulds plant health and disease
  publication-title: Science
– volume: 16
  start-page: 213
  year: 1926
  end-page: 227
  article-title: Experimental studies on the nature of the substance secreted by the “bakanae” fungus
  publication-title: Natural History Society of Formosa
– volume: 112
  start-page: 85
  year: 2013
  end-page: 94
  article-title: Analysis of gibberellins as free acids by ultra performance liquid chromatography–tandem mass spectrometry
  publication-title: Talanta
– volume: 13
  start-page: 1121
  year: 2000
  end-page: 1129
  article-title: Both induction and morphogenesis of cyst nematode feeding cells are mediated by auxin
  publication-title: Molecular Plant–Microbe Interactions
– volume: 1260
  start-page: 67
  year: 2012
  end-page: 80
  article-title: Ultra‐high performance liquid chromatography coupled to high resolution Orbitrap mass spectrometry for metabolomic profiling of the endogenous phytohormonal status of the tomato plant
  publication-title: Journal of Chromatography A
– volume: 4
  start-page: 606
  year: 2015
  end-page: 643
  article-title: The control of auxin transport in parasitic and symbiotic root–microbe interactions
  publication-title: Plants
– volume: 41
  start-page: 231
  year: 2005
  end-page: 242
  article-title: The auxin ( ) allele of and auxin transport inhibitors affect the gibberellin status of Arabidopsis
  publication-title: Plant Journal
– volume: 19
  start-page: 293
  year: 2017
  end-page: 304
  article-title: Exogenous application of methyl jasmonate induces defence against in soybean
  publication-title: Nematology
– volume: 20
  start-page: 2437
  year: 2008
  end-page: 2446
  article-title: Release of the repressive activity of rice DELLA protein SLR1 by gibberellin does not require SLR1 degradation in the mutant
  publication-title: Plant Cell
– volume: 16
  start-page: 451
  year: 2011
  end-page: 459
  article-title: Innate immunity in rice
  publication-title: Trends in Plant Science
– volume: 58
  start-page: 49
  year: 2015
  end-page: 60
  article-title: GA signalling and cross‐talk with other signalling pathways
  publication-title: Essays in Biochemistry
– volume: 196
  start-page: 901
  year: 2012
  end-page: 913
  article-title: Abscisic acid interacts antagonistically with classical defense pathways in rice‐migratory nematode interaction
  publication-title: New Phytologist
– volume: 6
  start-page: 17
  year: 2013
  article-title: Exploring the response of rice ( ) leaf to gibberellins: a proteomic strategy
  publication-title: Rice
– volume: 64
  start-page: 3885
  year: 2013
  end-page: 3898
  article-title: Transcriptional analysis through RNA sequencing of giant cells induced by in rice roots
  publication-title: Journal of Experimental Botany
– ident: e_1_2_7_54_1
  doi: 10.1111/mpp.12394
– ident: e_1_2_7_10_1
  doi: 10.1093/mp/ssu050
– ident: e_1_2_7_27_1
  doi: 10.1104/pp.104.900192
– ident: e_1_2_7_28_1
  doi: 10.1371/journal.ppat.1000266
– ident: e_1_2_7_69_1
  doi: 10.1126/science.1081077
– ident: e_1_2_7_36_1
  doi: 10.1007/978-3-319-25979-6_16
– ident: e_1_2_7_71_1
  doi: 10.1111/j.1365-3040.2005.01441.x
– ident: e_1_2_7_72_1
  doi: 10.1007/s00425-014-2063-9
– ident: e_1_2_7_9_1
  doi: 10.1007/978-94-011-0473-9_2
– ident: e_1_2_7_40_1
  doi: 10.1094/MPMI-20-5-0510
– ident: e_1_2_7_75_1
  doi: 10.1105/tpc.106.043729
– ident: e_1_2_7_61_1
  doi: 10.1105/tpc.010476
– ident: e_1_2_7_77_1
  doi: 10.1016/j.talanta.2013.03.068
– ident: e_1_2_7_34_1
  doi: 10.1007/s00344-015-9546-1
– ident: e_1_2_7_53_1
  doi: 10.1042/bse0580049
– ident: e_1_2_7_6_1
  doi: 10.1016/j.tplants.2011.04.003
– ident: e_1_2_7_23_1
  doi: 10.1146/annurev.phyto.43.040204.135923
– ident: e_1_2_7_21_1
  doi: 10.1016/j.jplph.2010.12.002
– ident: e_1_2_7_80_1
  doi: 10.1186/1939-8433-6-17
– ident: e_1_2_7_24_1
  doi: 10.3389/fpls.2016.01565
– ident: e_1_2_7_44_1
  doi: 10.1007/978-94-007-0434-3
– volume: 16
  start-page: 213
  year: 1926
  ident: e_1_2_7_48_1
  article-title: Experimental studies on the nature of the substance secreted by the “bakanae” fungus
  publication-title: Natural History Society of Formosa
– ident: e_1_2_7_46_1
  doi: 10.1111/j.1364-3703.2004.00230.x
– ident: e_1_2_7_59_1
  doi: 10.3390/plants4030606
– ident: e_1_2_7_70_1
  doi: 10.1016/j.chom.2008.05.009
– ident: e_1_2_7_39_1
  doi: 10.1105/tpc.13.5.999
– ident: e_1_2_7_66_1
  doi: 10.1163/156854199508027
– ident: e_1_2_7_58_1
  doi: 10.1016/j.cub.2008.03.060
– ident: e_1_2_7_2_1
  doi: 10.1007/s00438-008-0406-6
– ident: e_1_2_7_4_1
  doi: 10.1007/s11103-008-9435-0
– ident: e_1_2_7_76_1
  doi: 10.1146/annurev.arplant.58.032806.103830
– ident: e_1_2_7_31_1
  doi: 10.1007/s00425-008-0830-1
– ident: e_1_2_7_33_1
  doi: 10.1016/S1360-1385(00)01790-8
– ident: e_1_2_7_22_1
  doi: 10.1016/j.pbi.2011.03.012
– ident: e_1_2_7_26_1
  doi: 10.1126/science.1173771
– ident: e_1_2_7_50_1
  doi: 10.1146/annurev-phyto-102313-050111
– ident: e_1_2_7_65_1
  doi: 10.1038/nplants.2015.73
– ident: e_1_2_7_14_1
  doi: 10.3389/fpls.2014.00611
– ident: e_1_2_7_41_1
  doi: 10.1023/B:PLAN.0000038261.21060.47
– ident: e_1_2_7_86_1
  doi: 10.1073/pnas.1201616109
– ident: e_1_2_7_49_1
  doi: 10.1111/j.1469-8137.2012.04311.x
– ident: e_1_2_7_57_1
  doi: 10.1094/MPMI-05-12-0108-FI
– ident: e_1_2_7_79_1
  doi: 10.1016/j.tplants.2007.03.006
– ident: e_1_2_7_84_1
– ident: e_1_2_7_35_1
  doi: 10.1042/BJ20120245
– ident: e_1_2_7_7_1
  doi: 10.1007/s10265-015-0710-2
– ident: e_1_2_7_25_1
  doi: 10.1094/MPMI.2000.13.10.1121
– ident: e_1_2_7_51_1
  doi: 10.1093/jxb/erw230
– ident: e_1_2_7_82_1
  doi: 10.1271/nogeikagaku1924.14.12_1526
– ident: e_1_2_7_68_1
  doi: 10.1104/pp.103.033696
– ident: e_1_2_7_74_1
  doi: 10.1105/tpc.108.061648
– ident: e_1_2_7_30_1
  doi: 10.1098/rstb.2007.2030
– ident: e_1_2_7_73_1
  doi: 10.1038/nature04028
– ident: e_1_2_7_63_1
  doi: 10.1094/MPMI-05-12-0138-R
– ident: e_1_2_7_8_1
  doi: 10.1007/s10886-005-6070-y
– ident: e_1_2_7_62_1
  doi: 10.1016/j.cropro.2006.09.004
– ident: e_1_2_7_85_1
  doi: 10.1093/mp/ssn021
– ident: e_1_2_7_17_1
  doi: 10.1094/MPMI-22-2-0201
– ident: e_1_2_7_45_1
  doi: 10.1111/nph.13395
– ident: e_1_2_7_60_1
  doi: 10.1007/BF00634486
– ident: e_1_2_7_83_1
  doi: 10.1093/pcp/41.3.251
– ident: e_1_2_7_20_1
  doi: 10.1104/pp.110.163774
– ident: e_1_2_7_32_1
  doi: 10.1104/pp.112.200956
– ident: e_1_2_7_56_1
  doi: 10.1111/j.1469-8137.2012.04310.x
– ident: e_1_2_7_3_1
  doi: 10.1073/pnas.96.18.10284
– ident: e_1_2_7_67_1
  doi: 10.1007/PL00007027
– ident: e_1_2_7_52_1
  doi: 10.1104/pp.110.167197
– ident: e_1_2_7_16_1
  doi: 10.1111/j.1365-313X.2004.02287.x
– ident: e_1_2_7_43_1
  doi: 10.1093/jxb/ert219
– ident: e_1_2_7_19_1
  doi: 10.1038/nature01387
– ident: e_1_2_7_55_1
  doi: 10.1104/pp.111.177576
– volume: 170
  start-page: 1831
  year: 2016
  ident: e_1_2_7_12_1
  article-title: The DELLA protein SLR1 integrates and amplifies salicylic acid‐and jasmonic acid‐dependent innate immunity in rice
  publication-title: Plant Physiology
  doi: 10.1104/pp.15.01515
– ident: e_1_2_7_15_1
  doi: 10.1146/annurev.phyto.45.062806.094438
– ident: e_1_2_7_81_1
  doi: 10.1093/aob/mct067
– ident: e_1_2_7_11_1
  doi: 10.1016/j.tplants.2013.07.002
– ident: e_1_2_7_37_1
  doi: 10.1016/j.devcel.2010.10.024
– ident: e_1_2_7_18_1
– ident: e_1_2_7_38_1
  doi: 10.1163/15685411-00003049
– ident: e_1_2_7_47_1
  doi: 10.1079/9781845930561.0059
– ident: e_1_2_7_5_1
  doi: 10.1079/9780851997278.0087
– ident: e_1_2_7_42_1
  doi: 10.1073/pnas.141239398
– ident: e_1_2_7_29_1
  doi: 10.1094/MPMI-18-1247
– ident: e_1_2_7_13_1
  doi: 10.1104/pp.112.193672
– ident: e_1_2_7_64_1
  doi: 10.1080/15592324.2015.1110661
– ident: e_1_2_7_78_1
  doi: 10.1016/j.chroma.2012.08.047
SSID ssj0009562
Score 2.4942343
Snippet Gibberellin (GA) regulates various plant growth and developmental processes, but its role in pathogen attack, and especially nematode–plant interactions, still...
Summary Gibberellin (GA) regulates various plant growth and developmental processes, but its role in pathogen attack, and especially nematode–plant...
Gibberellin (GA) regulates various plant growth and developmental processes, but its role in pathogen attack, and especially nematode-plant interactions, still...
SourceID proquest
pubmed
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 646
SubjectTerms auxin
auxins
biosynthesis
chemical inhibitors
DELLA
foliar spraying
gibberellic acid
gibberellin (GA)
jasmonate (JA)
jasmonic acid
Meloidogyne graminicola
mutants
nematode infections
pathogens
plant growth
rice
SLR1
Title Gibberellin antagonizes jasmonate-induced defense against Meloidogyne graminicola in rice
URI https://www.jstor.org/stable/90019939
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.15046
https://www.ncbi.nlm.nih.gov/pubmed/29464725
https://www.proquest.com/docview/2007114356
https://www.proquest.com/docview/2067292273
Volume 218
WOSCitedRecordID wos000428070100024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1469-8137
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009562
  issn: 0028-646X
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1469-8137
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009562
  issn: 0028-646X
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxRBEK4gcPACoiILummNBy9j6KG3pzuc8LFiohtiJG7iYdLPdQnMkB0ggZM_wd_IL7FqZmcCCRoTb3OoeVV1dX9fP74CeImkJ_UIRZOI5CARzg4SLYVPzHbw3nilnXB1sYlsNFLjsT5YgN32LEyjD9FNuFFm1P01Jbix1Y0kL05_vEY0I0humwtO1Qu-fRzdENyVaavALIUcz1WFaBdPd-etsajZjngX0LyNW-uBZ7j6X5_8AFbmeJPtNQ1kDRZC8RCW35SICS8fwfcPU2vDjEQ5C4Y-NhNM8atQsSNTndC8erj--QtZO8bfMx8ict7AzMRMEVSyz-G4nPpyclkERnu86IglEmWGjyKlosdwOHz_9e1-Mi-3kDhicYlx2mTOK2lp8dRI7jJNi37OeRs5j4Ybxwmu-Mwru8Ot5lEZa1PsJbxEnLMOi0VZhA1gzok0RjOwJrUi27ZK2TSL2oQ4sEiweA9etY7P3VyLnEpiHOctJ0FX5bWrevCiMz1tBDjuMlqvo9dZaIKuekf34HkbzhzzhhZDTBHK84rKb2acwKL8m41E7pEiwuvBk6YtdG9ItSDl_QH-Sh3yP39cPjrYry82_910C-4jMlPNFqGnsHg2Ow_PYNldnE2rWR_uZWPVh6V3X4aHn_p1u_8NE_UElg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4BRaKX0haWbunDrThwCcLB68QSF1qVLipEHKhYiUPk57IVTdAuVKKn_oT-Rn4JM8kmAglQpd5ymLzsGfv77PE3AGtIemKHUDQKSA4iYU0vUlK4SG9657RLlRW2KjaRZFk6GKjDGdhuzsLU-hDtghtFRjVeU4DTgvStKC_OTzcQzgg5C08EAg0q3HC8l92S3JVxo8EshRxMdYUoj6e99c5sVCck3gc17yLXaurZXfy_j34Oz6aQk-3UPvICZnzxEuY_lQgLr5bg5OvIGD8mXc6CYTPrIUb5bz9hP_TkJy2t--s_f5G4ows45nxA2uuZHuoR4kp24M_KkSuHV4VnlOZFpyyRKzN8FIkVLcP33S9Hn_vRtOJCZInIRdoqnViXSkP7p1pymyja97PWmcB50FxbTojFJS41W9woHlJtTIwDhZMIdTowV5SFfwXMWhGHoHtGx0YkmyZNTZwEpX3oGeRYvAvrTcvndipHTlUxzvKGlmBT5VVTdeFja3pea3DcZ9Spuq-1UIRe1ZbqwoemP3MMHdoP0YUvLydUgTPhhBflYzYS6UeMIK8LK7UztG-IlSDx_R7-StXnD39cnh32q4vX_276Hhb6Rwf7-f5e9m0VniJQS-uMoTcwdzG-9G9h3v66GE3G7yq3vwH8bgYs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxRBEK7gQgwXFBVYfNAaD17G0ENvz3TiBcQVI242RpJNPEz6uS6Bmc0ukMCJn-Bv9JdYNa9AgsbE2xxqXtVV3d_Xj68AXiPpiR1C0SggOYiENb1ISeEive2d0y5VVtiy2EQyGKSjkRouwLvmLEylD9FOuFFmlP01JbifunAjy_Ppj7cIZ4S8B4uCish0YHH_a__o8IborowbFWYp5KhWFqKdPO3Nt8ajakviXWDzNnYtB5_-g__77IewUoNOtltFySos-PwRLO0VCAwvH8P3jxNj_IyUOXOGjtZjzPMrP2fHen5Kk-v-1_VPpO4YBI45H5D4eqbHeoLIkn3xJ8XEFePL3DPa6EXnLJEtM3wUyRU9gaP-h2_vD6K65kJkicpF2iqdWJdKQyuoWnKbKFr5s9aZwHnQXFtOmMUlLjU73CgeUm1MjF2Fkwh21qCTF7nfAGatiEPQPaNjI5Jtk6YmToLSPvQMsizehTeN5zNbC5JTXYyTrCEm6KqsdFUXXrWm00qF4y6jtbL5WgtF-FXtqC68bNozw-ShFRGd--J8TjU4E06IUf7NRiIBiRHmdWG9Cob2DbESJL_fw18p2_zPH5cNhgflxea_m27B_eF-Pzv8NPj8FJYRqaXVlqFn0DmbnfvnsGQvzibz2Ys67n8DpRwG1Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gibberellin+antagonizes+jasmonate-induced+defense+against+Meloidogyne+graminicola+in+rice&rft.jtitle=The+New+phytologist&rft.au=Yimer%2C+Henok+Zemene&rft.au=Nahar%2C+Kamrun&rft.au=Kyndt%2C+Tina&rft.au=Haeck%2C+Ashley&rft.date=2018-04-01&rft.issn=1469-8137&rft.eissn=1469-8137&rft.volume=218&rft.issue=2&rft.spage=646&rft_id=info:doi/10.1111%2Fnph.15046&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon