Quantitative analysis of ToF‐SIMS data of a two organic compound mixture using an autoencoder and simple artificial neural networks

Rationale Matrix effects cause a nonlinear relationship between ion intensities and concentrations in mass spectrometry, including time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS). Here, two artificial neural network (ANN)‐based methods, autoencoder‐based and simple ANN methods, were employ...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Rapid communications in mass spectrometry Ročník 37; číslo 4; s. e9445 - n/a
Hlavní autoři: Aoyagi, Satoka, Matsuda, Kazuhiro
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Wiley Subscription Services, Inc 28.02.2023
Témata:
ISSN:0951-4198, 1097-0231, 1097-0231
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Rationale Matrix effects cause a nonlinear relationship between ion intensities and concentrations in mass spectrometry, including time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS). Here, two artificial neural network (ANN)‐based methods, autoencoder‐based and simple ANN methods, were employed for the quantitative and qualitative analyses of a two organic compound mixture via ToF‐SIMS. Methods The multilayer model sample contained a mixture of Irganox 1010 and Fmoc‐pentafluoro‐L‐phenylalanine (Fmoc‐PFLPA). The sample's positive and negative ion depth profiles were collected through ToF‐SIMS. ToF‐SIMS‐derived cross‐sectional image datasets were analyzed using three unsupervised methods, namely principal component analysis (PCA), multivariate curve resolution (MCR), and use of a sparse autoencoder (SAE). The supervised simple ANN method was optimized based on the spectra and validated by predicting the test dataset ratios of Irganox 1010. Results The results obtained using the SAE demonstrated linear calibration curves and appropriate material distribution images. The Irganox 1010 and Fmoc‐PFLPA positive and negative ion datasets exhibited >0.97 correlation coefficients. The PCA and MCR results demonstrated lower linearity than that of SAE. Moreover, SAE weights indicated the ions important for each organic compound. The simple ANN method accurately predicted the ratios in the test dataset and indicated the important ions. Conclusions Both the supervised and unsupervised methods based on ANN, which were employed in regulating nonlinear relationships, were effective in the quantitative and qualitative analyses of the ToF‐SIMS data of the two organic compound mixtures. Regarding qualitative analysis, both ANN‐based methods indicated specific ions from the molecules in the sample.
AbstractList Matrix effects cause a nonlinear relationship between ion intensities and concentrations in mass spectrometry, including time-of-flight secondary ion mass spectrometry (ToF-SIMS). Here, two artificial neural network (ANN)-based methods, autoencoder-based and simple ANN methods, were employed for the quantitative and qualitative analyses of a two organic compound mixture via ToF-SIMS.RATIONALEMatrix effects cause a nonlinear relationship between ion intensities and concentrations in mass spectrometry, including time-of-flight secondary ion mass spectrometry (ToF-SIMS). Here, two artificial neural network (ANN)-based methods, autoencoder-based and simple ANN methods, were employed for the quantitative and qualitative analyses of a two organic compound mixture via ToF-SIMS.The multilayer model sample contained a mixture of Irganox 1010 and Fmoc-pentafluoro-L-phenylalanine (Fmoc-PFLPA). The sample's positive and negative ion depth profiles were collected through ToF-SIMS. ToF-SIMS-derived cross-sectional image datasets were analyzed using three unsupervised methods, namely principal component analysis (PCA), multivariate curve resolution (MCR), and use of a sparse autoencoder (SAE). The supervised simple ANN method was optimized based on the spectra and validated by predicting the test dataset ratios of Irganox 1010.METHODSThe multilayer model sample contained a mixture of Irganox 1010 and Fmoc-pentafluoro-L-phenylalanine (Fmoc-PFLPA). The sample's positive and negative ion depth profiles were collected through ToF-SIMS. ToF-SIMS-derived cross-sectional image datasets were analyzed using three unsupervised methods, namely principal component analysis (PCA), multivariate curve resolution (MCR), and use of a sparse autoencoder (SAE). The supervised simple ANN method was optimized based on the spectra and validated by predicting the test dataset ratios of Irganox 1010.The results obtained using the SAE demonstrated linear calibration curves and appropriate material distribution images. The Irganox 1010 and Fmoc-PFLPA positive and negative ion datasets exhibited >0.97 correlation coefficients. The PCA and MCR results demonstrated lower linearity than that of SAE. Moreover, SAE weights indicated the ions important for each organic compound. The simple ANN method accurately predicted the ratios in the test dataset and indicated the important ions.RESULTSThe results obtained using the SAE demonstrated linear calibration curves and appropriate material distribution images. The Irganox 1010 and Fmoc-PFLPA positive and negative ion datasets exhibited >0.97 correlation coefficients. The PCA and MCR results demonstrated lower linearity than that of SAE. Moreover, SAE weights indicated the ions important for each organic compound. The simple ANN method accurately predicted the ratios in the test dataset and indicated the important ions.Both the supervised and unsupervised methods based on ANN, which were employed in regulating nonlinear relationships, were effective in the quantitative and qualitative analyses of the ToF-SIMS data of the two organic compound mixtures. Regarding qualitative analysis, both ANN-based methods indicated specific ions from the molecules in the sample.CONCLUSIONSBoth the supervised and unsupervised methods based on ANN, which were employed in regulating nonlinear relationships, were effective in the quantitative and qualitative analyses of the ToF-SIMS data of the two organic compound mixtures. Regarding qualitative analysis, both ANN-based methods indicated specific ions from the molecules in the sample.
Rationale Matrix effects cause a nonlinear relationship between ion intensities and concentrations in mass spectrometry, including time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS). Here, two artificial neural network (ANN)‐based methods, autoencoder‐based and simple ANN methods, were employed for the quantitative and qualitative analyses of a two organic compound mixture via ToF‐SIMS. Methods The multilayer model sample contained a mixture of Irganox 1010 and Fmoc‐pentafluoro‐L‐phenylalanine (Fmoc‐PFLPA). The sample's positive and negative ion depth profiles were collected through ToF‐SIMS. ToF‐SIMS‐derived cross‐sectional image datasets were analyzed using three unsupervised methods, namely principal component analysis (PCA), multivariate curve resolution (MCR), and use of a sparse autoencoder (SAE). The supervised simple ANN method was optimized based on the spectra and validated by predicting the test dataset ratios of Irganox 1010. Results The results obtained using the SAE demonstrated linear calibration curves and appropriate material distribution images. The Irganox 1010 and Fmoc‐PFLPA positive and negative ion datasets exhibited >0.97 correlation coefficients. The PCA and MCR results demonstrated lower linearity than that of SAE. Moreover, SAE weights indicated the ions important for each organic compound. The simple ANN method accurately predicted the ratios in the test dataset and indicated the important ions. Conclusions Both the supervised and unsupervised methods based on ANN, which were employed in regulating nonlinear relationships, were effective in the quantitative and qualitative analyses of the ToF‐SIMS data of the two organic compound mixtures. Regarding qualitative analysis, both ANN‐based methods indicated specific ions from the molecules in the sample.
RationaleMatrix effects cause a nonlinear relationship between ion intensities and concentrations in mass spectrometry, including time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS). Here, two artificial neural network (ANN)‐based methods, autoencoder‐based and simple ANN methods, were employed for the quantitative and qualitative analyses of a two organic compound mixture via ToF‐SIMS.MethodsThe multilayer model sample contained a mixture of Irganox 1010 and Fmoc‐pentafluoro‐L‐phenylalanine (Fmoc‐PFLPA). The sample's positive and negative ion depth profiles were collected through ToF‐SIMS. ToF‐SIMS‐derived cross‐sectional image datasets were analyzed using three unsupervised methods, namely principal component analysis (PCA), multivariate curve resolution (MCR), and use of a sparse autoencoder (SAE). The supervised simple ANN method was optimized based on the spectra and validated by predicting the test dataset ratios of Irganox 1010.ResultsThe results obtained using the SAE demonstrated linear calibration curves and appropriate material distribution images. The Irganox 1010 and Fmoc‐PFLPA positive and negative ion datasets exhibited >0.97 correlation coefficients. The PCA and MCR results demonstrated lower linearity than that of SAE. Moreover, SAE weights indicated the ions important for each organic compound. The simple ANN method accurately predicted the ratios in the test dataset and indicated the important ions.ConclusionsBoth the supervised and unsupervised methods based on ANN, which were employed in regulating nonlinear relationships, were effective in the quantitative and qualitative analyses of the ToF‐SIMS data of the two organic compound mixtures. Regarding qualitative analysis, both ANN‐based methods indicated specific ions from the molecules in the sample.
Matrix effects cause a nonlinear relationship between ion intensities and concentrations in mass spectrometry, including time-of-flight secondary ion mass spectrometry (ToF-SIMS). Here, two artificial neural network (ANN)-based methods, autoencoder-based and simple ANN methods, were employed for the quantitative and qualitative analyses of a two organic compound mixture via ToF-SIMS. The multilayer model sample contained a mixture of Irganox 1010 and Fmoc-pentafluoro-L-phenylalanine (Fmoc-PFLPA). The sample's positive and negative ion depth profiles were collected through ToF-SIMS. ToF-SIMS-derived cross-sectional image datasets were analyzed using three unsupervised methods, namely principal component analysis (PCA), multivariate curve resolution (MCR), and use of a sparse autoencoder (SAE). The supervised simple ANN method was optimized based on the spectra and validated by predicting the test dataset ratios of Irganox 1010. The results obtained using the SAE demonstrated linear calibration curves and appropriate material distribution images. The Irganox 1010 and Fmoc-PFLPA positive and negative ion datasets exhibited >0.97 correlation coefficients. The PCA and MCR results demonstrated lower linearity than that of SAE. Moreover, SAE weights indicated the ions important for each organic compound. The simple ANN method accurately predicted the ratios in the test dataset and indicated the important ions. Both the supervised and unsupervised methods based on ANN, which were employed in regulating nonlinear relationships, were effective in the quantitative and qualitative analyses of the ToF-SIMS data of the two organic compound mixtures. Regarding qualitative analysis, both ANN-based methods indicated specific ions from the molecules in the sample.
Author Aoyagi, Satoka
Matsuda, Kazuhiro
Author_xml – sequence: 1
  givenname: Satoka
  orcidid: 0000-0001-7100-7179
  surname: Aoyagi
  fullname: Aoyagi, Satoka
  email: aoyagi@st.seikei.ac.jp
  organization: Seikei University
– sequence: 2
  givenname: Kazuhiro
  surname: Matsuda
  fullname: Matsuda, Kazuhiro
  organization: Surface Science Laboratories, Toray Research Center, Inc
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36457202$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1rFEEQhhuJmE0i-AukwUsus3b1dM_HURajgQTRxPPQ21MdOs50r_1hsjcv3v2N_hJnNlEhmFNRxVNPQb0HZM95h4S8ALYExvjroMdlK4R8QhbA2rpgvIQ9smCthEJA2-yTgxivGQOQnD0j-2UlZM0ZX5AfH7NyySaV7DekyqlhG22k3tBLf_Lr-8-L0_ML2quk5pGi6cZTH66Us5pqP258dj0d7W3KAWmO1l1NDqpy8ui07zFMbU-jHTfDZA_JGqutGqjDHHZlEoYv8Yg8NWqI-Py-HpLPJ28vV--Lsw_vTldvzgotQMoCTN9wQIOsUpoh12iUbECC4rVGlGuJTWt6Uxpo-7XgzDSgWblGzaq6Vqw8JMd33k3wXzPG1I02ahwG5dDn2PFaVGXL6raa0FcP0Gufw_SfmapEI6CEWfjynsrrEftuE-yowrb78-B_F3XwMQY0fxFg3ZxdN2XXzdlN6PIBqne5eJeCssP_Foq7hRs74PZRcfdpdb7jfwMBAqxl
CitedBy_id crossref_primary_10_1021_jasms_4c00318
crossref_primary_10_3390_ijms25147969
crossref_primary_10_1038_s43586_024_00311_9
crossref_primary_10_1116_6_0002858
crossref_primary_10_1021_jasms_4c00324
crossref_primary_10_1021_jasms_4c00310
Cites_doi 10.1002/rcm.4944
10.1002/sia.3070
10.1002/sia.2713
10.1016/j.apsusc.2019.05.123
10.1116/1.5013219
10.1021/acs.analchem.0c00349
10.1021/acs.analchem.9b03322
10.1002/sia.6214
10.1016/0020‐7381(83)85106‐7
10.1007/s00216‐021‐03744‐3
10.1016/j.jasms.2007.05.014
10.1116/6.0000044
10.1021/acs.analchem.0c04577
10.1038/s41598‐017‐03780‐z
10.1021/acs.analchem.8b01951
10.1016/j.apsusc.2019.01.242
10.1021/acs.jpcb.5b05625
10.1002/sia.7042
10.1002/sia.5731
10.1021/acs.analchem.1c05453
10.1016/j.ijms.2014.06.027
10.1002/sia.7047
10.1109/SSCI.2016.7849863
10.1021/jp904911n
10.1116/6.0000017
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
2023 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
– notice: 2023 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
7X8
DOI 10.1002/rcm.9445
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
ProQuest Computer Science Collection
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1097-0231
EndPage n/a
ExternalDocumentID 36457202
10_1002_rcm_9445
RCM9445
Genre article
Journal Article
GrantInformation_xml – fundername: Japan Society for the Promotion of Science (JSPS) KAKENHI, grant no
  funderid: 17 K05908
– fundername: Japan Society for the Promotion of Science (JSPS) KAKENHI, grant no
  grantid: 17 K05908
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WRJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
7X8
ID FETCH-LOGICAL-c4155-1fd821efe06ac0e2cefa58151a27cee5b5e89fdf3f19db420f81c03bec0677a03
IEDL.DBID DRFUL
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000901396100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0951-4198
1097-0231
IngestDate Fri Jul 11 08:06:32 EDT 2025
Fri Jul 25 10:18:41 EDT 2025
Mon Jul 21 05:48:27 EDT 2025
Sat Nov 29 07:06:32 EST 2025
Tue Nov 18 22:11:21 EST 2025
Wed Jan 22 16:20:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License 2022 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4155-1fd821efe06ac0e2cefa58151a27cee5b5e89fdf3f19db420f81c03bec0677a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7100-7179
PMID 36457202
PQID 2764841310
PQPubID 1016428
PageCount 6
ParticipantIDs proquest_miscellaneous_2746390796
proquest_journals_2764841310
pubmed_primary_36457202
crossref_primary_10_1002_rcm_9445
crossref_citationtrail_10_1002_rcm_9445
wiley_primary_10_1002_rcm_9445_RCM9445
PublicationCentury 2000
PublicationDate 28 February 2023
PublicationDateYYYYMMDD 2023-02-28
PublicationDate_xml – month: 02
  year: 2023
  text: 28 February 2023
  day: 28
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Bognor Regis
PublicationSubtitle RCM
PublicationTitle Rapid communications in mass spectrometry
PublicationTitleAlternate Rapid Commun Mass Spectrom
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 18
2017; 7
2019; 91
2015; 47
2021; 54
2009; 41
2022; 94
2015; 377
2017; 49
2020; 92
1983; 53
2019; 478
2019; 487
2018; 90
2020; 15
2009; 113
2015; 119
2022; 54
2011; 25
2008; 40
2021; 93
2022; 414
2018; 13
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 18
  start-page: 1559
  issue: 8
  year: 2007
  end-page: 1567
  article-title: Suppression and enhancement of secondary ion formation due to the chemical environment in static‐secondary ion mass spectrometry
  publication-title: J Am Soc Mass Spectrom
– volume: 25
  start-page: 925
  issue: 7
  year: 2011
  end-page: 932
  article-title: Three‐dimensional mass spectral imaging of HeLa‐M cells–sample preparation, data interpretation and visualisation
  publication-title: Rapid Commun Mass Spectrom
– volume: 93
  start-page: 4191
  issue: 9
  year: 2021
  end-page: 4197
  article-title: Evaluation of time‐of‐flight secondary ion mass spectrometry spectra of peptides by random Forest with amino acid labels: Results from a Versailles project on advanced materials and standards interlaboratory study
  publication-title: Anal Chem
– volume: 15
  issue: 3
  year: 2020
  article-title: Examination of beauty ingredient distribution in the human skin by time‐of‐flight secondary ion mass spectrometry
  publication-title: Biointerphases
– volume: 54
  start-page: 363
  issue: 4
  year: 2022
  end-page: 373
  article-title: A two‐point calibration method for quantifying organic binary mixtures using secondary ion mass spectrometry in the presence of matrix effects
  publication-title: Surf Interface Anal
– volume: 13
  issue: 3
  year: 2018
  article-title: Evaluation of matrix effects on TOF‐SIMS data of leu‐enkephalin and 1,2‐dioleoyl‐sn‐glycero‐3‐phosphocholine mixed samples
  publication-title: Biointerphases
– volume: 54
  start-page: 356
  issue: 4
  year: 2021
  end-page: 362
  article-title: Interpretation of TOF‐SIMS data based on information entropy of spectra
  publication-title: Surf Interface Anal
– volume: 414
  start-page: 1177
  issue: 2
  year: 2022
  end-page: 1186
  article-title: Sparse autoencoder‐based feature extraction from TOF‐SIMS image data of human skin structures
  publication-title: Anal Bioanal Chem
– volume: 7
  issue: 1
  year: 2017
  article-title: Image based machine learning for identification of macrophage subsets
  publication-title: Sci Rep
– volume: 49
  start-page: 721
  issue: 8
  year: 2017
  end-page: 727
  article-title: TOF‐SIMS matrix effects in mixed organic layers in Ar cluster ion depth profiles
  publication-title: Surf Interface Anal
– volume: 47
  start-page: 439
  issue: 4
  year: 2015
  end-page: 446
  article-title: Extraction of hidden information of ToF‐SIMS data using different multivariate analyses
  publication-title: Surf Interface Anal
– volume: 94
  start-page: 7804
  issue: 22
  year: 2022
  end-page: 7813
  article-title: Two‐dimensional and three‐dimensional time‐of‐flight secondary ion mass spectrometry image feature extraction using a spatially aware convolutional autoencoder
  publication-title: Anal Chem
– volume: 53
  start-page: 111
  year: 1983
  end-page: 124
  article-title: Matrix effects, internal energies and MS/MS spectra of molecular ions sputtered from surfaces
  publication-title: Int J Mass Spectrom Ion Phys
– volume: 40
  start-page: 1
  issue: 1
  year: 2008
  end-page: 14
  article-title: Quantification and methodology issues in multivariate analysis of ToF‐SIMS data for mixed organic systems
  publication-title: Surf Interface Anal
– volume: 15
  issue: 2
  year: 2020
  article-title: Time‐of‐flight secondary ion mass spectrometry analysis of hair samples using unsupervised artificial neural network
  publication-title: Biointerphases
– volume: 487
  start-page: 773
  year: 2019
  end-page: 783
  article-title: Optimal machine learning models for robust materials classification using ToF‐SIMS data
  publication-title: Appl Surf Sci
– volume: 91
  start-page: 13855
  issue: 21
  year: 2019
  end-page: 13865
  article-title: Visualizing ToF‐SIMS hyperspectral imaging data using color‐tagged toroidal self‐organizing maps
  publication-title: Anal Chem
– volume: 92
  start-page: 6587
  issue: 9
  year: 2020
  end-page: 6597
  article-title: ToF‐SIMS and machine learning for single‐pixel molecular discrimination of an acrylate polymer microarray
  publication-title: Anal Chem
– volume: 119
  start-page: 10784
  issue: 33
  year: 2015
  end-page: 10797
  article-title: Measuring compositions in organic depth profiling: Results from a VAMAS interlaboratory study
  publication-title: J Phys Chem B
– volume: 90
  start-page: 12475
  issue: 21
  year: 2018
  end-page: 12484
  article-title: Distinguishing chemically similar polyamide materials with ToF‐SIMS using self‐organizing maps and a universal data matrix
  publication-title: Anal Chem
– volume: 113
  start-page: 11574
  issue: 34
  year: 2009
  end-page: 11582
  article-title: Organic depth profiling of a binary system: The compositional effect on secondary ion yield and a model for charge transfer during secondary ion emission
  publication-title: J Phys Chem B
– volume: 41
  start-page: 653
  issue: 8
  year: 2009
  end-page: 665
  article-title: Multivariate image analysis strategies for ToF‐SIMS images with topography
  publication-title: Surf Interface Anal
– volume: 478
  start-page: 465
  year: 2019
  end-page: 477
  article-title: Effect of mass segment size on polymer ToF‐SIMS multivariate analysis using a universal data matrix
  publication-title: Appl Surf Sci
– volume: 377
  start-page: 599
  year: 2015
  end-page: 609
  article-title: The matrix effect in organic secondary ion mass spectrometry
  publication-title: Int J Mass Spectrom
– ident: e_1_2_7_5_1
  doi: 10.1002/rcm.4944
– ident: e_1_2_7_13_1
  doi: 10.1002/sia.3070
– ident: e_1_2_7_12_1
  doi: 10.1002/sia.2713
– ident: e_1_2_7_17_1
  doi: 10.1016/j.apsusc.2019.05.123
– ident: e_1_2_7_9_1
  doi: 10.1116/1.5013219
– ident: e_1_2_7_23_1
  doi: 10.1021/acs.analchem.0c00349
– ident: e_1_2_7_20_1
  doi: 10.1021/acs.analchem.9b03322
– ident: e_1_2_7_8_1
  doi: 10.1002/sia.6214
– ident: e_1_2_7_2_1
  doi: 10.1016/0020‐7381(83)85106‐7
– ident: e_1_2_7_25_1
  doi: 10.1007/s00216‐021‐03744‐3
– ident: e_1_2_7_3_1
  doi: 10.1016/j.jasms.2007.05.014
– ident: e_1_2_7_22_1
  doi: 10.1116/6.0000044
– ident: e_1_2_7_24_1
  doi: 10.1021/acs.analchem.0c04577
– ident: e_1_2_7_16_1
  doi: 10.1038/s41598‐017‐03780‐z
– ident: e_1_2_7_18_1
  doi: 10.1021/acs.analchem.8b01951
– ident: e_1_2_7_19_1
  doi: 10.1016/j.apsusc.2019.01.242
– ident: e_1_2_7_7_1
  doi: 10.1021/acs.jpcb.5b05625
– ident: e_1_2_7_11_1
  doi: 10.1002/sia.7042
– ident: e_1_2_7_14_1
  doi: 10.1002/sia.5731
– ident: e_1_2_7_26_1
  doi: 10.1021/acs.analchem.1c05453
– ident: e_1_2_7_6_1
  doi: 10.1016/j.ijms.2014.06.027
– ident: e_1_2_7_10_1
  doi: 10.1002/sia.7047
– ident: e_1_2_7_15_1
  doi: 10.1109/SSCI.2016.7849863
– ident: e_1_2_7_4_1
  doi: 10.1021/jp904911n
– ident: e_1_2_7_21_1
  doi: 10.1116/6.0000017
SSID ssj0011520
Score 2.4368255
Snippet Rationale Matrix effects cause a nonlinear relationship between ion intensities and concentrations in mass spectrometry, including time‐of‐flight secondary ion...
Matrix effects cause a nonlinear relationship between ion intensities and concentrations in mass spectrometry, including time-of-flight secondary ion mass...
RationaleMatrix effects cause a nonlinear relationship between ion intensities and concentrations in mass spectrometry, including time‐of‐flight secondary ion...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e9445
SubjectTerms Artificial neural networks
Butylated Hydroxytoluene
Correlation coefficients
Datasets
Depth profiling
Ions
Linearity
Mass spectrometry
Mixtures
Multilayers
Negative ions
Neural networks
Neural Networks, Computer
Organic Chemicals
Organic compounds
Phenylalanine
Principal components analysis
Qualitative analysis
Quantitative analysis
Scientific imaging
Secondary ion mass spectrometry
Spectrometry, Mass, Secondary Ion - methods
Spectroscopy
Title Quantitative analysis of ToF‐SIMS data of a two organic compound mixture using an autoencoder and simple artificial neural networks
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frcm.9445
https://www.ncbi.nlm.nih.gov/pubmed/36457202
https://www.proquest.com/docview/2764841310
https://www.proquest.com/docview/2746390796
Volume 37
WOSCitedRecordID wos000901396100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0231
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011520
  issn: 0951-4198
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6a3UJ6adM8mm03QYHQnJzIsmzLx7Lt0kAT8oS9GUmWwkJih_Vu22Mvvfc39pdU41cITSCQk7A9koxmpBl7Zr4B2KVah4HE7PZAMo9nnHqiSvBhqD4zxUNmq2IT8fGxmEySkyaqEnNhanyI7ocb7ozqvMYNLlV5cAcaOtM3-wnn4RL0mRNb3oP-57Px5bfOh-A0E20LyXP3bd1Cz1J20Pa9r4z-szDvG6yVxhm_ec67rsDrxs4kn2rBeAsvTL4Ky6O2vNsa_D5dyLzKMHPnHZENNgkpLLkoxn9__Tk_PDonGD-KtySZ_yhIXQFKEwxDx2pM5Gb6Ex0QBIPnr9wYRC7mBSJjZmbmLjNSThF8mKB41kgVBPEzq6aKPi_X4XL85WL01WtqMngaTQ_Pt5lgvrGGRlJTw7SxMhSOrZLFTt-GKjQisZkNrJ84TjNqha9p4CQFoeokDTaglxe52QTCRZIZP1TKRJpL5SvXhUfKCm3jiKpgAHstc1LdAJZj3YzrtIZaZqlb1hSXdQA7HeVtDdLxAM2w5W_abNMyZXHEhVPjPnVDdI8dI9BrInNTLJCGOyuOxkk0gHe1XHSToA83ZpQN4GPF_kdnT89GR9i-fyrhB3iFhe3r5Pkh9OazhdmCl_r7fFrOtmEpnojtRuD_AbU3Bk0
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RpRJceLQFlkdxJdSeAo7jJI56QgsrELsrHovELXIcG60ECdpHy7GX3vsb-0vqyatCUKkSpyjJ2I48Y8_EM_MNwB5VyvckZrd7kjk85dQRRYIPQ_WZJtxnpig2EQ4G4uYmOp-Dr3UuTIkP0Ry44coo9mtc4HggffAXNXSs7vcjzv03MM-tFPktmD-67F73GieCVU20riTP7c91jT1L2UHd9qk2emZiPrVYC5XTXX7Vx67AUmVpksNSNFZhTmfvYKFTF3h7Dz8vZjIrcszsjkdkhU5CckOGeff3j19Xp_0rghGk-EiS6feclDWgFMFAdKzHRO5Hj-iCIBg-f2v7IHI2zREbM9Vje5uSyQjhhwkKaIlVQRBBs7gU8eeTD3DdPR52TpyqKoOj0PhwXJMK5mqjaSAV1UxpI31hGStZaDWun_haRCY1nnEjy2tGjXAV9aysIFidpN4atLI80xtAuIhS7fpJogPFZeImtgkPEiOUCQOaeG34UnMnVhVkOVbOuItLsGUW22mNcVrb8KmhfChhOl6g2a4ZHFcLdRKzMODCKnKX2i6a15YR6DeRmc5nSGPlK6JhFLRhvRSMZhD04oaMsjZ8Lvj_z9Hjy04fr5v_S7gLCyfDfi_unQ7OtmARy9yXqfTb0JqOZ3oH3qpv09Fk_LGS-z8n1QlV
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4tS0W5tJRS2JZSV6raU1jHcRJHPVVLIxCwojwkbpHj2GglSNA-Wo5cuPMb-SV48qoQrYTEyUoytiPPjGcSz3wD8IUq5XsSs9s9yRyeceqIMsGHofnMUu4zUxabCIdDcXoaHXTge5MLU-FDtD_cUDPK_RoVXF9mpv8XNXSsLjYjzv05mOd-FFitnN86jE_22kMEa5poU0me24_rBnuWsn7T96E1euRiPvRYS5MTv37Wyy7Bq9rTJD8q0XgDHZ0vw8tBU-DtLdz8msm8zDGzOx6RNToJKQw5LuK769ujnf0jghGkeEuS6Z-CVDWgFMFAdKzHRC5GV3gEQTB8_syOQeRsWiA2ZqbH9jIjkxHCDxMU0AqrgiCCZtmU8eeTFTiJfx4Ptp26KoOj0PlwXJMJ5mqjaSAV1UxpI31hGStZaC2un_paRCYznnEjy2tGjXAV9aysIFidpN476OZFrteAcBFl2vXTVAeKy9RNbRcepEYoEwY09XrwreFOomrIcqyccZ5UYMssscua4LL24HNLeVnBdPyDZr1hcFIr6iRhYcCFNeQutUO0jy0j8NxE5rqYIQ23fhwNo6AHq5VgtJPgKW7IKOvB15L__509ORzsY_v-qYSfYOFgK072doa7H2ARq9xXmfTr0J2OZ_ojvFC_p6PJeKMW-3unTAjQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+analysis+of+ToF%E2%80%90SIMS+data+of+a+two+organic+compound+mixture+using+an+autoencoder+and+simple+artificial+neural+networks&rft.jtitle=Rapid+communications+in+mass+spectrometry&rft.au=Aoyagi%2C+Satoka&rft.au=Matsuda%2C+Kazuhiro&rft.date=2023-02-28&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0951-4198&rft.eissn=1097-0231&rft.volume=37&rft.issue=4&rft_id=info:doi/10.1002%2Frcm.9445&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-4198&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-4198&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-4198&client=summon