A proximity‐based image‐processing algorithm for colloid assignment in segmented multiphase flow datasets

Summary Colloidal transport and deposition are of both environmental and engineering importance. Easier access to x‐ray microtomography (XMT) coupled with improved imaging resolution has made XMT a unique and viable tool for visualizing and quantifying these processes. Currently, there is scant info...

Full description

Saved in:
Bibliographic Details
Published in:Journal of microscopy (Oxford) Vol. 277; no. 2; pp. 118 - 129
Main Authors: BRUECK, C.L., WILDENSCHILD, D.
Format: Journal Article
Language:English
Published: England Wiley Subscription Services, Inc 01.02.2020
Wiley-Blackwell
Subjects:
ISSN:0022-2720, 1365-2818, 1365-2818
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Summary Colloidal transport and deposition are of both environmental and engineering importance. Easier access to x‐ray microtomography (XMT) coupled with improved imaging resolution has made XMT a unique and viable tool for visualizing and quantifying these processes. Currently, there is scant information in the literature addressing colloid segmentation and analysis in saturated and unsaturated porous media, in particular related to spatial partitioning of colloids. To support this need, an approach to assign segmented colloidal particles and aggregates to different partitioning classes based on their proximity to different phases is presented here. The method uses different markers for each attachment site (e.g. wetting‐nonwetting phase interfaces). An example XMT dataset from a drainage experiment is used to demonstrate the efficacy of the image processing algorithms. Flow conditions, and fluid and colloid properties, can thus be compared to the behaviour of colloids within the porous medium. This algorithm can help elucidate colloidal deposition mechanisms and the importance of different attachment sites, explore the importance of fluid properties, as well as the arrangement and shape of the colloids. Lay Summary Chemical or biological contaminants (pollutants, bacteria etc.) may attach to soil particles, or colloids, and move throughout the environment. This leads to contamination of surface water and groundwater. Our approach to study the fate of these colloids is to use an imaging technique called x‐ray microtomography (XMT), which allows us to look inside otherwise opaque materials. Thus, we can directly observe how particles move when in the presence of multiple phases (e.g. water, air, soil) with varying chemical properties and surface characteristics. After the microtomography 3D scans are collected, a challenge that remains is how to process the data to glean meaningful quantitative results. This research provides an approach for how to design an XMT study to answer colloid transport‐related questions, how to process the raw data into a quantifiable format, and lastly provides an algorithm that groups colloids together based on where they are located in the porous medium. With this toolset, scientists can investigate the innerworkings of a flow experiment and directly observe and quantify attachment and detachment of colloids under varied experimental conditions. These analyses will complement traditional column transport studies, providing a deeper understanding of the fundamental transport behaviour, and ultimately providing insight in how best to protect our water resources.
AbstractList Colloidal transport and deposition are of both environmental and engineering importance. Easier access to x-ray microtomography (XMT) coupled with improved imaging resolution has made XMT a unique and viable tool for visualizing and quantifying these processes. Currently, there is scant information in the literature addressing colloid segmentation and analysis in saturated and unsaturated porous media, in particular related to spatial partitioning of colloids. To support this need, an approach to assign segmented colloidal particles and aggregates to different partitioning classes based on their proximity to different phases is presented here. The method uses different markers for each attachment site (e.g. wetting-nonwetting phase interfaces). An example XMT dataset from a drainage experiment is used to demonstrate the efficacy of the image processing algorithms. Flow conditions, and fluid and colloid properties, can thus be compared to the behaviour of colloids within the porous medium. This algorithm can help elucidate colloidal deposition mechanisms and the importance of different attachment sites, explore the importance of fluid properties, as well as the arrangement and shape of the colloids.Colloidal transport and deposition are of both environmental and engineering importance. Easier access to x-ray microtomography (XMT) coupled with improved imaging resolution has made XMT a unique and viable tool for visualizing and quantifying these processes. Currently, there is scant information in the literature addressing colloid segmentation and analysis in saturated and unsaturated porous media, in particular related to spatial partitioning of colloids. To support this need, an approach to assign segmented colloidal particles and aggregates to different partitioning classes based on their proximity to different phases is presented here. The method uses different markers for each attachment site (e.g. wetting-nonwetting phase interfaces). An example XMT dataset from a drainage experiment is used to demonstrate the efficacy of the image processing algorithms. Flow conditions, and fluid and colloid properties, can thus be compared to the behaviour of colloids within the porous medium. This algorithm can help elucidate colloidal deposition mechanisms and the importance of different attachment sites, explore the importance of fluid properties, as well as the arrangement and shape of the colloids.
Summary Colloidal transport and deposition are of both environmental and engineering importance. Easier access to x‐ray microtomography (XMT) coupled with improved imaging resolution has made XMT a unique and viable tool for visualizing and quantifying these processes. Currently, there is scant information in the literature addressing colloid segmentation and analysis in saturated and unsaturated porous media, in particular related to spatial partitioning of colloids. To support this need, an approach to assign segmented colloidal particles and aggregates to different partitioning classes based on their proximity to different phases is presented here. The method uses different markers for each attachment site (e.g. wetting‐nonwetting phase interfaces). An example XMT dataset from a drainage experiment is used to demonstrate the efficacy of the image processing algorithms. Flow conditions, and fluid and colloid properties, can thus be compared to the behaviour of colloids within the porous medium. This algorithm can help elucidate colloidal deposition mechanisms and the importance of different attachment sites, explore the importance of fluid properties, as well as the arrangement and shape of the colloids.
Summary Colloidal transport and deposition are of both environmental and engineering importance. Easier access to x‐ray microtomography (XMT) coupled with improved imaging resolution has made XMT a unique and viable tool for visualizing and quantifying these processes. Currently, there is scant information in the literature addressing colloid segmentation and analysis in saturated and unsaturated porous media, in particular related to spatial partitioning of colloids. To support this need, an approach to assign segmented colloidal particles and aggregates to different partitioning classes based on their proximity to different phases is presented here. The method uses different markers for each attachment site (e.g. wetting‐nonwetting phase interfaces). An example XMT dataset from a drainage experiment is used to demonstrate the efficacy of the image processing algorithms. Flow conditions, and fluid and colloid properties, can thus be compared to the behaviour of colloids within the porous medium. This algorithm can help elucidate colloidal deposition mechanisms and the importance of different attachment sites, explore the importance of fluid properties, as well as the arrangement and shape of the colloids. Lay Summary Chemical or biological contaminants (pollutants, bacteria etc.) may attach to soil particles, or colloids, and move throughout the environment. This leads to contamination of surface water and groundwater. Our approach to study the fate of these colloids is to use an imaging technique called x‐ray microtomography (XMT), which allows us to look inside otherwise opaque materials. Thus, we can directly observe how particles move when in the presence of multiple phases (e.g. water, air, soil) with varying chemical properties and surface characteristics. After the microtomography 3D scans are collected, a challenge that remains is how to process the data to glean meaningful quantitative results. This research provides an approach for how to design an XMT study to answer colloid transport‐related questions, how to process the raw data into a quantifiable format, and lastly provides an algorithm that groups colloids together based on where they are located in the porous medium. With this toolset, scientists can investigate the innerworkings of a flow experiment and directly observe and quantify attachment and detachment of colloids under varied experimental conditions. These analyses will complement traditional column transport studies, providing a deeper understanding of the fundamental transport behaviour, and ultimately providing insight in how best to protect our water resources.
Colloidal transport and deposition are of both environmental and engineering importance. Easier access to x-ray microtomography (XMT) coupled with improved imaging resolution has made XMT a unique and viable tool for visualizing and quantifying these processes. Currently, there is scant information in the literature addressing colloid segmentation and analysis in saturated and unsaturated porous media, in particular related to spatial partitioning of colloids. To support this need, an approach to assign segmented colloidal particles and aggregates to different partitioning classes based on their proximity to different phases is presented here. The method uses different markers for each attachment site (e.g. wetting-nonwetting phase interfaces). An example XMT dataset from a drainage experiment is used to demonstrate the efficacy of the image processing algorithms. Flow conditions, and fluid and colloid properties, can thus be compared to the behaviour of colloids within the porous medium. This algorithm can help elucidate colloidal deposition mechanisms and the importance of different attachment sites, explore the importance of fluid properties, as well as the arrangement and shape of the colloids.
Colloidal transport and deposition are of both environmental and engineering importance. Easier access to x‐ray microtomography (XMT) coupled with improved imaging resolution has made XMT a unique and viable tool for visualizing and quantifying these processes. Currently, there is scant information in the literature addressing colloid segmentation and analysis in saturated and unsaturated porous media, in particular related to spatial partitioning of colloids. To support this need, an approach to assign segmented colloidal particles and aggregates to different partitioning classes based on their proximity to different phases is presented here. The method uses different markers for each attachment site (e.g. wetting‐nonwetting phase interfaces). An example XMT dataset from a drainage experiment is used to demonstrate the efficacy of the image processing algorithms. Flow conditions, and fluid and colloid properties, can thus be compared to the behaviour of colloids within the porous medium. This algorithm can help elucidate colloidal deposition mechanisms and the importance of different attachment sites, explore the importance of fluid properties, as well as the arrangement and shape of the colloids. Chemical or biological contaminants (pollutants, bacteria etc.) may attach to soil particles, or colloids, and move throughout the environment. This leads to contamination of surface water and groundwater. Our approach to study the fate of these colloids is to use an imaging technique called x‐ray microtomography (XMT), which allows us to look inside otherwise opaque materials. Thus, we can directly observe how particles move when in the presence of multiple phases (e.g. water, air, soil) with varying chemical properties and surface characteristics. After the microtomography 3D scans are collected, a challenge that remains is how to process the data to glean meaningful quantitative results. This research provides an approach for how to design an XMT study to answer colloid transport‐related questions, how to process the raw data into a quantifiable format, and lastly provides an algorithm that groups colloids together based on where they are located in the porous medium. With this toolset, scientists can investigate the innerworkings of a flow experiment and directly observe and quantify attachment and detachment of colloids under varied experimental conditions. These analyses will complement traditional column transport studies, providing a deeper understanding of the fundamental transport behaviour, and ultimately providing insight in how best to protect our water resources.
Author BRUECK, C.L.
WILDENSCHILD, D.
Author_xml – sequence: 1
  givenname: C.L.
  orcidid: 0000-0003-2310-1114
  surname: BRUECK
  fullname: BRUECK, C.L.
  organization: Johns Hopkins University
– sequence: 2
  givenname: D.
  orcidid: 0000-0002-6504-7817
  surname: WILDENSCHILD
  fullname: WILDENSCHILD, D.
  email: Dorthe.Wildenschild@oregonstate.edu
  organization: Oregon State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32017091$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1599971$$D View this record in Osti.gov
BookMark eNp1kU1uFDEQhS0URCaBBRdAFmxg0Yntdv8to4ifoERsYG257eoej9z20HYrzI4jcEZOQiUz2UTEG5dVXz351TshRyEGIOQ1Z2ccz_lmcmdctI18Rla8rKtCtLw9IivGhChEI9gxOUlpwxhrq5a9IMelYLxhHV-R6YJu5_jLTS7v_v7-0-sElrpJj4Av7BhIyYWRaj_G2eX1RIc4UxO9j85Sjc0xTBAydYEmGO9KFJgWn912jWJ08PGWWp2xzukleT5on-DV4T4lPz59_H75pbj-9vnq8uK6MJJXsuikFUb3VgyytgYNaAs1SGNEaypdN6CF7aXoJSvLppLSiJqVrNcgpbW6rMtT8navG1N2KhmXwaxNDAFMVrzquq7hCL3fQ2jz5wIpq8klA97rAHFJSpQV61CXSUTfPUI3cZkDWkCqLjvedffUmwO19BNYtZ1xkfNOPWwbgfM9YOaY0gyDwp_p7GLIs3Zecabu8lSYp7rPEyc-PJp4EP0fe1C_dR52T4Pq683VfuIf7mqxlw
CitedBy_id crossref_primary_10_3389_fenvs_2022_1051392
crossref_primary_10_1016_j_powtec_2021_117062
crossref_primary_10_1039_D2EN00224H
Cites_doi 10.1007/s11242-015-0553-2
10.2136/vzj2004.0444
10.1021/acs.est.6b04882
10.1007/s11242-016-0634-x
10.1029/2006WR004961
10.1029/2008WR007252
10.1002/2015WR017318
10.1073/pnas.1221373110
10.1016/j.ces.2017.09.054
10.1007/s11242-014-0378-4
10.1007/s11104-007-9257-x
10.1016/j.advwatres.2012.07.018
10.2136/vzj2017.05.0090
10.2136/vzj2004.0338
10.2136/sssaj2004.0081
10.1063/1.3463356
10.1021/es501797y
10.1364/OE.17.017669
10.1029/2007GL030514
10.1021/es052501w
10.1038/nphoton.2010.267
10.1029/93WR02403
10.1016/j.geoderma.2018.02.036
10.1016/0168-9002(88)90731-0
10.1021/es403381s
10.1016/j.ces.2012.04.034
10.1029/2006WR004929
10.1029/2005WR004233
10.1029/2009WR009018
10.1029/2007GL033077
10.1002/2017WR020597
10.1016/j.earscirev.2013.04.003
10.1023/A:1007958904918
10.1016/j.watres.2015.10.022
10.2136/vzj2011.0003
10.1007/s10040-016-1465-0
ContentType Journal Article
Copyright 2020 The Authors Journal of Microscopy © 2020 Royal Microscopical Society
2020 The Authors Journal of Microscopy © 2020 Royal Microscopical Society.
Journal compilation © 2020 Royal Microscopical Society
Copyright_xml – notice: 2020 The Authors Journal of Microscopy © 2020 Royal Microscopical Society
– notice: 2020 The Authors Journal of Microscopy © 2020 Royal Microscopical Society.
– notice: Journal compilation © 2020 Royal Microscopical Society
DBID AAYXX
CITATION
NPM
7U5
8FD
L7M
7X8
OTOTI
DOI 10.1111/jmi.12874
DatabaseName CrossRef
PubMed
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
Technology Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1365-2818
EndPage 129
ExternalDocumentID 1599971
32017091
10_1111_jmi_12874
JMI12874
Genre article
Journal Article
GrantInformation_xml – fundername: Department of Energy – GeoSciences
  funderid: DE‐FG02‐94ER14466
– fundername: National Science Foundation – Earth Sciences
  funderid: EAR – 1634415
– fundername: Argonne National Laboratory
  funderid: DE‐AC02‐06CH11357
– fundername: National Institute of Food and Agriculture
  funderid: 2014‐67019‐21718
– fundername: National Institute of Food and Agriculture
  grantid: 2014-67019-21718
– fundername: National Science Foundation - Earth Sciences
  grantid: EAR - 1634415
– fundername: Argonne National Laboratory
  grantid: DE-AC02-06CH11357
– fundername: Department of Energy - GeoSciences
  grantid: DE-FG02-94ER14466
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29L
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEFU
ABEML
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AI.
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
E3Z
EAD
EAP
EAS
EBB
EBC
EBD
EBO
EBS
EBX
EJD
EMB
EMK
EMOBN
EPT
ESX
EX3
F00
F01
F04
F5P
FA8
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBC
OBS
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
Q~Q
R.K
RIWAO
RJQFR
RNS
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TH9
TN5
TUS
TWZ
UB1
V8K
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIK
WIN
WOHZO
WOW
WQJ
WVDHM
WXSBR
X7M
XG1
XOL
Y6R
YFH
YUY
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ABUFD
AIQQE
CITATION
O8X
24P
AAHHS
ABTAH
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
NPM
OK1
WRC
7U5
8FD
L7M
7X8
AAJUZ
ABCVL
ABHUG
ABPTK
ACSMX
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
AKALU
OTOTI
ID FETCH-LOGICAL-c4154-94d2cabd2f46dc272ade6e4cc28c5a67ea2db42b40337544c26030bae44dda363
IEDL.DBID WIN
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000513735900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-2720
1365-2818
IngestDate Mon Sep 11 05:25:24 EDT 2023
Fri Jul 11 07:03:55 EDT 2025
Fri Jul 25 12:07:57 EDT 2025
Wed Feb 19 02:31:19 EST 2025
Sat Nov 29 02:34:15 EST 2025
Tue Nov 18 22:49:37 EST 2025
Sun Jul 06 04:45:38 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords image processing
multiphase flow
particle filtration
x-ray microtomography
porous media
Colloid transport
Language English
License 2020 The Authors Journal of Microscopy © 2020 Royal Microscopical Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4154-94d2cabd2f46dc272ade6e4cc28c5a67ea2db42b40337544c26030bae44dda363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
ORCID 0000-0003-2310-1114
0000-0002-6504-7817
0000000265047817
0000000323101114
OpenAccessLink https://www.osti.gov/biblio/1599971
PMID 32017091
PQID 2363919904
PQPubID 1086390
PageCount 12
ParticipantIDs osti_scitechconnect_1599971
proquest_miscellaneous_2350903004
proquest_journals_2363919904
pubmed_primary_32017091
crossref_citationtrail_10_1111_jmi_12874
crossref_primary_10_1111_jmi_12874
wiley_primary_10_1111_jmi_12874_JMI12874
PublicationCentury 2000
PublicationDate February 2020
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
– name: United Kingdom
PublicationTitle Journal of microscopy (Oxford)
PublicationTitleAlternate J Microsc
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Wiley-Blackwell
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley-Blackwell
References 2009; 45
1988; 270
2017; 25
2010
2015; 51
1997; 24
2018; 323
2013; 123
2014; 48
2004; 3
2008; 35
2011; 10
2007; 34
2012; 76
2005; 69
2012; 51
2017; 51
2018; 175
2017; 53
2014; 105
2006; 42
2010; 46
2006; 40
2007; 294
2017; 16
2015; 110
2016; 112
2016
2013; 110
2005; 2
2010; 4
1994; 30
2009; 17
2016; 88
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 294
  start-page: 305
  issue: 1–2
  year: 2007
  end-page: 306
  article-title: Synchroton X‐ray absorption‐edge computed microtograpy imaging of thallium compartmentalization in Iberis intermedia (vol 290, pg 51, 2007)
  publication-title: Plant Soil
– volume: 10
  start-page: 1250
  issue: 4
  year: 2011
  end-page: 1260
  article-title: Pore‐scale investigation of colloid retention and mobilization in the presence of a moving air–water interface
  publication-title: Vadose Zone J.
– volume: 42
  start-page: 1
  issue: 12
  year: 2006
  end-page: 13
  article-title: Quantifying colloid retention in partially saturated porous media
  publication-title: Water Resour. Res.
– volume: 42
  start-page: 1
  issue: 12
  year: 2006
  end-page: 14
  article-title: Methods for colloid transport visualization in pore networks
  publication-title: Water Resour. Res.
– volume: 35
  start-page: 1
  issue: 7
  year: 2008
  end-page: 5
  article-title: Pore‐scale analysis of permeability reduction resulting from colloid deposition
  publication-title: Geophys. Res. Lett.
– volume: 175
  start-page: 257
  year: 2018
  end-page: 266
  article-title: Colloid deposition in monolithic porous media – experimental investigations using X‐ray computed microtomography and magnetic resonance velocimetry
  publication-title: Chem. Eng. Sci.
– start-page: 87
  year: 2010
  end-page: 90
– volume: 112
  start-page: 105
  issue: 1
  year: 2016
  end-page: 116
  article-title: A method for image decomposition and particle quantification in multiphase systems
  publication-title: Transp. Porous Media
– volume: 17
  start-page: 17669
  issue: 20
  year: 2009
  end-page: 17677
  article-title: Demonstration of 12 nm resolution Fresnel zone plate lens based soft X‐ray microscopy
  publication-title: Opt. Express
– volume: 53
  start-page: 5247
  issue: 7
  year: 2017
  end-page: 5275
  article-title: Role of air‐water interfaces in colloid transport in porous media: a review
  publication-title: Water Resour. Res.
– volume: 24
  start-page: 137
  year: 1997
  end-page: 154
  article-title: Alignment by maximization of mutual information
  publication-title: Int. J. Comput. Vision
– volume: 3
  start-page: 338
  year: 2004
  end-page: 351
  article-title: Colloid movement in unsaturated porous media: recent advances and future directions
  publication-title: Vadose Zone J.
– volume: 105
  start-page: 451
  issue: 2
  year: 2014
  end-page: 469
  article-title: Fast X‐ray micro‐tomography of multiphase flow in Berea sandstone: a sensitivity study on image processing
  publication-title: Transp. Porous Media
– volume: 3
  start-page: 444
  year: 2004
  end-page: 450
  article-title: Pore‐scale visualization of colloid transport and retention in partly saturated porous media
  publication-title: Vadose Zone J.
– volume: 88
  start-page: 274
  year: 2016
  end-page: 284
  article-title: Critical role of surface roughness on colloid retention and release in porous media
  publication-title: Water Res.
– volume: 45
  start-page: 1
  issue: 6
  year: 2009
  end-page: 12
  article-title: Temporal evolution of pore geometry, fluid flow, and solute transport resulting from colloid deposition
  publication-title: Water Resour. Res.
– volume: 51
  start-page: 2096
  issue: 4
  year: 2017
  end-page: 2104
  article-title: Experimental and numerical investigations of silver nanoparticle transport under variable flow and ionic strength in soil
  publication-title: Environ. Sci. Technol.
– volume: 34
  issue: 18
  year: 2007
  article-title: Imaging of colloidal deposits in granular porous media by X‐ray difference micro‐tomography
  publication-title: Geophys. Res. Lett.
– volume: 69
  start-page: 1173
  issue: 4
  year: 2005
  end-page: 1184
  article-title: Particle‐size and element distributions of soil colloids
  publication-title: Soil Sci. Soc. Am. J.
– year: 2016
– volume: 48
  start-page: 1114
  issue: 2
  year: 2014
  end-page: 1122
  article-title: Method for obtaining silver nanoparticle concentrations within a porous medium via synchrotron X‐ray computed microtomography
  publication-title: Environ Scie. Technol.
– volume: 48
  start-page: 7272
  issue: 13
  year: 2014
  end-page: 7279
  article-title: Colloid mobilization and transport during capillary fringe fluctuations
  publication-title: Environ. Sci. Technol.
– volume: 16
  issue: 9
  year: 2017
  article-title: Sandy soil microaggregates: rethinking our understanding of hydraulic function
  publication-title: Vadose Zone J.
– volume: 110
  start-page: 3755
  issue: 10
  year: 2013
  end-page: 3759
  article-title: Real‐time 3D imaging of Haines jumps in porous media flow
  publication-title: PNAS
– volume: 30
  start-page: 11
  year: 1994
  end-page: 23
  article-title: Visualization of the role of the gas‐water interface on the fate and transport of colloids in porous media
  publication-title: Water Resour. Res.
– volume: 42
  start-page: 1
  issue: 1
  year: 2006
  end-page: 9
  article-title: Pore‐scale mechanisms of colloid deposition and mobilization during steady and transient flow through unsaturated granular media
  publication-title: Water Resour. Res.
– volume: 323
  start-page: 146
  year: 2018
  end-page: 155
  article-title: Bioavailable water in coarse soils: a fractal approach
  publication-title: Geoderma
– volume: 76
  start-page: 192
  year: 2012
  end-page: 198
  article-title: Local position of colloid clusters in a packed bed of spheres
  publication-title: Chem. Eng. Sci.
– volume: 2
  start-page: 60
  year: 2005
  end-page: 65
– volume: 40
  start-page: 3769
  year: 2006
  end-page: 3774
  article-title: Role of grain‐to‐grain contacts on profiles of retained colloids in porous media in the presence of an energy barrier to deposition
  publication-title: Environ. Sci. Technol.
– volume: 51
  start-page: 6804
  issue: 9
  year: 2015
  end-page: 6845
  article-title: Predicting colloid transport through saturated porous media: a critical review
  publication-title: Water Resour. Res.
– volume: 4
  start-page: 840
  issue: 12
  year: 2010
  end-page: 848
  article-title: Nanoscale X‐ray imaging
  publication-title: Nat. Photonics
– volume: 51
  start-page: 217
  year: 2012
  end-page: 246
  article-title: X‐ray imaging and analysis techniques for quantifying pore‐scale structure and processes in subsurface porous medium systems
  publication-title: Adv. Water Res.
– volume: 110
  start-page: 1
  issue: 1
  year: 2015
  end-page: 24
  article-title: The imaging of dynamic multiphase fluid flow using synchrotron‐based X‐ray microtomography at reservoir conditions
  publication-title: Transp. Porous Media
– volume: 123
  start-page: 1
  year: 2013
  end-page: 17
  article-title: High‐resolution X‐ray computed tomography in geosciences: a review of the current technology and applications
  publication-title: Earth Sci. Rev.
– volume: 270
  start-page: 572
  issue: 2–3
  year: 1988
  end-page: 577
  article-title: Principles and applications of differential tomography
  publication-title: Nucl. Instrum. Meth. A
– volume: 46
  start-page: 1
  issue: 11
  year: 2010
  end-page: 12
  article-title: A multi‐scale investigation of interfacial transport, pore fluid flow, and fine particle deposition in a sediment bed
  publication-title: Water Resour. Res.
– volume: 25
  start-page: 79
  issue: 1
  year: 2017
  end-page: 89
  article-title: Column experiments to investigate transport of colloidal humic acid through porous media during managed aquifer recharge
  publication-title: Hydrogeol. J.
– ident: e_1_2_9_3_1
  doi: 10.1007/s11242-015-0553-2
– ident: e_1_2_9_14_1
  doi: 10.2136/vzj2004.0444
– ident: e_1_2_9_24_1
  doi: 10.1021/acs.est.6b04882
– ident: e_1_2_9_6_1
– ident: e_1_2_9_19_1
  doi: 10.1007/s11242-016-0634-x
– ident: e_1_2_9_29_1
  doi: 10.1029/2006WR004961
– ident: e_1_2_9_10_1
  doi: 10.1029/2008WR007252
– ident: e_1_2_9_27_1
  doi: 10.1002/2015WR017318
– ident: e_1_2_9_7_1
– ident: e_1_2_9_5_1
  doi: 10.1073/pnas.1221373110
– ident: e_1_2_9_25_1
  doi: 10.1016/j.ces.2017.09.054
– ident: e_1_2_9_21_1
  doi: 10.1007/s11242-014-0378-4
– ident: e_1_2_9_33_1
  doi: 10.1007/s11104-007-9257-x
– ident: e_1_2_9_38_1
  doi: 10.1016/j.advwatres.2012.07.018
– ident: e_1_2_9_30_1
  doi: 10.2136/vzj2017.05.0090
– ident: e_1_2_9_15_1
  doi: 10.2136/vzj2004.0338
– ident: e_1_2_9_31_1
  doi: 10.2136/sssaj2004.0081
– ident: e_1_2_9_26_1
  doi: 10.1063/1.3463356
– ident: e_1_2_9_4_1
  doi: 10.1021/es501797y
– ident: e_1_2_9_9_1
  doi: 10.1364/OE.17.017669
– ident: e_1_2_9_17_1
  doi: 10.1029/2007GL030514
– ident: e_1_2_9_22_1
  doi: 10.1021/es052501w
– ident: e_1_2_9_32_1
  doi: 10.1038/nphoton.2010.267
– ident: e_1_2_9_36_1
  doi: 10.1029/93WR02403
– ident: e_1_2_9_2_1
  doi: 10.1016/j.geoderma.2018.02.036
– ident: e_1_2_9_8_1
  doi: 10.1016/0168-9002(88)90731-0
– ident: e_1_2_9_28_1
  doi: 10.1021/es403381s
– ident: e_1_2_9_37_1
  doi: 10.1016/j.ces.2012.04.034
– ident: e_1_2_9_39_1
  doi: 10.1029/2006WR004929
– ident: e_1_2_9_18_1
  doi: 10.1029/2005WR004233
– ident: e_1_2_9_12_1
  doi: 10.1029/2009WR009018
– ident: e_1_2_9_11_1
  doi: 10.1029/2007GL033077
– ident: e_1_2_9_16_1
  doi: 10.1002/2017WR020597
– ident: e_1_2_9_13_1
  doi: 10.1016/j.earscirev.2013.04.003
– ident: e_1_2_9_35_1
  doi: 10.1023/A:1007958904918
– ident: e_1_2_9_34_1
  doi: 10.1016/j.watres.2015.10.022
– ident: e_1_2_9_20_1
  doi: 10.2136/vzj2011.0003
– ident: e_1_2_9_23_1
  doi: 10.1007/s10040-016-1465-0
SSID ssj0008580
Score 2.290166
Snippet Summary Colloidal transport and deposition are of both environmental and engineering importance. Easier access to x‐ray microtomography (XMT) coupled with...
Colloidal transport and deposition are of both environmental and engineering importance. Easier access to x‐ray microtomography (XMT) coupled with improved...
Colloidal transport and deposition are of both environmental and engineering importance. Easier access to x-ray microtomography (XMT) coupled with improved...
SourceID osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 118
SubjectTerms Algorithms
Attachment
Chemical properties
Colloid chemistry
Colloid transport
Colloiding
Colloids
Contaminants
Contamination
Datasets
Deposition
Fluid flow
Groundwater
Image processing
Image resolution
Image segmentation
Interfaces
Microtomography
Multiphase flow
Organic chemistry
particle filtration
Partitioning
Pollutants
Porous media
Soil chemistry
Soil pollution
Soils
Surface properties
Surface water
Water resources
Wetting
x‐ray microtomography
Title A proximity‐based image‐processing algorithm for colloid assignment in segmented multiphase flow datasets
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjmi.12874
https://www.ncbi.nlm.nih.gov/pubmed/32017091
https://www.proquest.com/docview/2363919904
https://www.proquest.com/docview/2350903004
https://www.osti.gov/biblio/1599971
Volume 277
WOSCitedRecordID wos000513735900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1365-2818
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008580
  issn: 0022-2720
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-2818
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008580
  issn: 0022-2720
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFB7qquBL6921dRnFh75EksnkMvSpqIuVuohY3Lcwt2wDm6Rs0krf_An-xv6SnjO5YKGC4FtCzoRh5ly-mTnnG0LeAqTPpQhSL1Eq9LhMAw-iYuQZHcY5Hg3mwhUKHyeLRbpciq9b5GCohen4IcYNN7QM56_RwKVq_jTysngXIFs7-N-AO6P8cbQYvXAapf7AFI5njT2rkMviGVreiEWTGmzqNpx5E7a6uDPf-a8ePyTbPdykh51-PCJbtnpM7ncXUF4-IeUhxTwWLHK6vPr1G0OaoUUJPgbezroaAohtVK5X9aZoT0sKGJei7tSFoYC7i5XLJqBFRRu7cgSfhnZJiqfwM5qv658Us1Ab2zZPycn84_f3n7z-AgZPQ1znnuCGaakMy3lsNIyiNDa2XGuW6kjGiZXMKM4U90O8SZdrWByFvpKWc2NkGIfPyKSqK_uCUMFUYLmNVa4tz3Uuc-5rLXwNiE4xGU3J_jAVme7ZyfGSjHU2rlLKInOjNyVvRtGzjpLjNqFdnM8McASS4WrMGtJtBuBNiCSYkr1hmrPeZpuMQYdFANEZGr8eP4O14RGKrGx9jjIRbmz5KPO8U4-xDyFDLiIBP993WvD3zmWfvxy5h5f_LrpLHjBc6ruE8T0yaTfn9hW5py_aotnMyJ1kmc7I3Q_f5ifHM2cJ123-DGM
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VLYhe-IcuLWAQh15SJY6TjSUuFbBqYbtCqJV6ixzb2UbaJNVuCuqNR-AZeRJmnB9RqUhI3BJlHFn2jOezPfMNwFuE9LmSQeJNsiz0hEoCD71i5BkdxjldDebSJQrPJvN5cnYmv2zAuz4XpuWHGA7cyDLcek0GTgfSf1p5WewHRNd-CzYFqlE0gs0PX6ens2ElTqLE79nC6b6xYxZykTx942v-aFSjXd2ENa9DV-d7pvf_r9cP4F6HOdlBqyQPYcNWj-BOW4Xy6jGUB4yCWSjT6erXj5_k1wwrSlxo8O2iTSRAB8fUclGviua8ZAh0GSlQXRiG4LtYuJACVlRsbReO5dOwNlLxHH_G8mX9nVEo6to26ydwOv148v7Q66oweBqdu_CkMFyrzPBcxEbjMCpjYyu05omOVDyxiptM8Ez4IZXTFRp3SKGfKSuEMSqMw6cwqurKbgOTPAussHGWaytynatc-FpLXyOsy7iKxrDXz0WqO4pyqpSxTIetSlmkbvTG8GYQvWh5OW4S2qEJTRFMECOuptAh3aSI4KScBGPY7ec57Qx3nXLssAzQRWPj18NnNDm6R1GVrS9JJqLTLZ9knrX6MfQh5ERIJPHne04N_t659NPxkXt4_u-ir-Du4cnxLJ0dzT_vwBanvb-LIN-FUbO6tC_gtv7WFOvVy84UfgObxA8n
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbKFhCX8m6XFjCIQy9BieNkY6mXqmVFYVlViEq9RY4f20ibZLVJQb3xE_iN_BJmnIdaqUhI3BJlHFn2jOezPfMNIe8A0lspgsSbZFnocZkEHnjFyNMqjC1eDVrhEoVnk_k8OT8XpxvkoM-FafkhhgM3tAy3XqOBm5W21628yN8HSNd-h2zySMRglpvHX6dns2ElTqLE79nC8b6xYxZykTx94xv-aFSBXd2GNW9CV-d7pg__r9ePyFaHOelhqySPyYYpn5B7bRXKq6ekOKQYzIKZTle_f_5Cv6ZpXsBCA2-rNpEAHByVy0W1zpuLggLQpahAVa4pgO984UIKaF7S2iwcy6embaTiBfyM2mX1g2Ioam2a-hk5m374dvTR66oweAqcO_cE10zJTDPLY61gGKU2seFKsURFMp4YyXTGWcb9EMvpcgU7pNDPpOFcaxnG4XMyKqvS7BAqWBYYbuLMKsOtstJyXynhK4B1GZPRmOz3c5GqjqIcK2Us02GrUuSpG70xeTuIrlpejtuEdnFCUwATyIirMHRINSkgOCEmwZjs9fOcdoZbpww6LAJw0dD4zfAZTA7vUWRpqkuUifB0y0eZ7VY_hj6EDAmJBPx836nB3zuXfvpy4h5e_Lvoa3L_9Hiazk7mn3fJA4ZbfxdAvkdGzfrSvCR31fcmr9evOkv4AxLtDqI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+proximity-based+image-processing+algorithm+for+colloid+assignment+in+segmented+multiphase+flow+datasets&rft.jtitle=Journal+of+microscopy+%28Oxford%29&rft.au=Brueck%2C+C+L&rft.au=Wildenschild%2C+D&rft.date=2020-02-01&rft.eissn=1365-2818&rft.volume=277&rft.issue=2&rft.spage=118&rft_id=info:doi/10.1111%2Fjmi.12874&rft_id=info%3Apmid%2F32017091&rft.externalDocID=32017091
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2720&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2720&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2720&client=summon