Modeling urban growth using video prediction technology: A time‐dependent convolutional encoder–decoder architecture
This paper presents a novel methodology for urban growth prediction using a machine learning approach. The methodology treats successive historical satellite images of an urban area as a video for which future frames are predicted. It adopts a time‐dependent convolutional encoder–decoder architectur...
Uloženo v:
| Vydáno v: | Computer-aided civil and infrastructure engineering Ročník 35; číslo 5; s. 430 - 447 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken
Wiley Subscription Services, Inc
01.05.2020
|
| Témata: | |
| ISSN: | 1093-9687, 1467-8667 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper presents a novel methodology for urban growth prediction using a machine learning approach. The methodology treats successive historical satellite images of an urban area as a video for which future frames are predicted. It adopts a time‐dependent convolutional encoder–decoder architecture. The methodology's input includes a satellite image for the base year and the prediction horizon. It constructs an image that predicts the growth of the urban area for any given target year within the specified horizon. A sensitivity analysis is performed to determine the best combination of parameters to achieve the highest prediction performance. As a case study, the methodology is applied to predict the urban growth pattern for the Dallas–Fort Worth area in Texas, with focus on two of its counties that observed significant growth over the past decade. The methodology is shown to produce results that are consistent with other growth prediction studies conducted for the areas. |
|---|---|
| AbstractList | This paper presents a novel methodology for urban growth prediction using a machine learning approach. The methodology treats successive historical satellite images of an urban area as a video for which future frames are predicted. It adopts a time‐dependent convolutional encoder–decoder architecture. The methodology's input includes a satellite image for the base year and the prediction horizon. It constructs an image that predicts the growth of the urban area for any given target year within the specified horizon. A sensitivity analysis is performed to determine the best combination of parameters to achieve the highest prediction performance. As a case study, the methodology is applied to predict the urban growth pattern for the Dallas–Fort Worth area in Texas, with focus on two of its counties that observed significant growth over the past decade. The methodology is shown to produce results that are consistent with other growth prediction studies conducted for the areas. |
| Author | Abdelghany, Khaled Jaad, Ahmed |
| Author_xml | – sequence: 1 givenname: Ahmed surname: Jaad fullname: Jaad, Ahmed organization: Southern Methodist University – sequence: 2 givenname: Khaled surname: Abdelghany fullname: Abdelghany, Khaled email: khaled@lyle.smu.edu organization: Southern Methodist University |
| BookMark | eNp9kE1OwzAQhS1UJNrChhNYYoeUYufHTthVFT-VQGxgHTn2pDVK7eI4Ld31CEjcsCchIawQYjYzGn3vaeaN0MBYAwidUzKhbV2ttIQJDRMSHaEhjRkPUsb4oJ1JFgUZS_kJGtX1K2krjqMhen-0CiptFrhxhTB44ezWL3FTd6uNVmDx2oHS0mtrsAe5NLayi901nmKvV3DYfyhYg1FgPJbWbGzVdKioMBjZervD_lPB94SFk0vdevjGwSk6LkVVw9lPH6OX25vn2X3w8HQ3n00fAhnTJApYWRKeSsEV41kBjHAmVUhFFHLKeKg4ZCkUhJGSFVlKkzhitFAslEkiVcxUNEYXve_a2bcGap-_2sa199V5GKUsjTmPs5YiPSWdrWsHZS61F90j3gld5ZTkXb55l2_-nW8rufwlWTu9Em73N0x7eKsr2P1D5o_z2U2v-QLZWZHB |
| CitedBy_id | crossref_primary_10_3233_ICA_210652 crossref_primary_10_1111_mice_12629 crossref_primary_10_1016_j_cities_2021_103393 crossref_primary_10_1016_j_cities_2023_104734 crossref_primary_10_1111_mice_12841 |
| Cites_doi | 10.1080/01944360208976274 10.1109/TIP.2003.819861 10.14359/51689560 10.1080/136588198241617 10.5937/fmet1601092G 10.1016/j.engstruct.2017.10.070 10.1016/j.compbiomed.2017.09.017 10.1080/01431161.2013.866293 10.1016/j.gsf.2014.10.003 10.1068/b3312 10.1016/j.landusepol.2017.10.009 10.1111/mice.12454 10.1111/mice.12485 10.1641/0006-3568(2003)053[1169:IHIEOA]2.0.CO;2 10.1016/j.aca.2012.11.007 10.3390/rs1030534 10.1111/mice.12433 10.1016/j.compenvurbsys.2017.04.002 10.1111/j.1540-5907.2009.00392.x 10.1016/j.ecolmodel.2016.04.005 10.1080/13658810410001713416 10.1007/978-3-319-46478-7_20 10.1016/0377-2217(88)90279-2 10.1111/mice.12334 10.1016/j.compenvurbsys.2008.06.006 10.1023/B:UECO.0000044037.23965.45 10.1111/mice.12376 10.7551/mitpress/9399.001.0001 10.1111/mice.12375 10.1038/nature14539 10.4324/9780203763247 10.1016/j.apgeog.2006.09.006 10.1002/tal.1400 10.3233/ICA-180577 10.1016/j.jag.2013.11.008 10.3233/ICA-180580 10.1111/mice.12359 10.4236/jgis.2012.46060 10.1016/j.landurbplan.2014.01.018 10.1109/CVPR.2016.90 10.1080/13658811003752332 10.1109/CVPR.2017.388 10.1007/978-3-319-10578-9_12 10.1007/978-3-319-46478-7_51 10.1080/13658816.2015.1084510 10.1016/j.landurbplan.2010.10.007 10.1007/978-3-319-46454-1_35 10.1016/j.neunet.2014.09.003 10.3233/ICA-180560 10.1109/ICCV.2017.478 10.1111/mice.12387 10.1111/mice.12412 10.1111/mice.12363 10.1111/mice.12440 10.1007/978-3-319-68560-1_13 10.1007/978-3-319-46493-0_47 10.1111/mice.12367 |
| ContentType | Journal Article |
| Copyright | 2019 2020 Computer‐Aided Civil and Infrastructure Engineering |
| Copyright_xml | – notice: 2019 – notice: 2020 Computer‐Aided Civil and Infrastructure Engineering |
| DBID | AAYXX CITATION 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1111/mice.12503 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Computer Science Architecture |
| EISSN | 1467-8667 |
| EndPage | 447 |
| ExternalDocumentID | 10_1111_mice_12503 MICE12503 |
| Genre | article |
| GroupedDBID | ..I .3N .4S .DC .GA 05W 0R~ 10A 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABFSI ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AHBTC AHEFC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 E.L EAD EAP EBS EDO EJD EMK EST ESX F00 F01 F04 FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RJQFR RX1 SAMSI SUPJJ TN5 TUS UB1 VH1 W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 ZZTAW ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c4153-6ff078ca7d679be6076cd21a3271672d7e98eb060f6b98154361bd62c55cd46d3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000488546200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1093-9687 |
| IngestDate | Sun Nov 09 06:00:25 EST 2025 Sat Nov 29 05:42:07 EST 2025 Tue Nov 18 22:00:41 EST 2025 Wed Jan 22 16:34:11 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4153-6ff078ca7d679be6076cd21a3271672d7e98eb060f6b98154361bd62c55cd46d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2386847749 |
| PQPubID | 2045171 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_2386847749 crossref_citationtrail_10_1111_mice_12503 crossref_primary_10_1111_mice_12503 wiley_primary_10_1111_mice_12503_MICE12503 |
| PublicationCentury | 2000 |
| PublicationDate | May 2020 |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 05 year: 2020 text: May 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Computer-aided civil and infrastructure engineering |
| PublicationYear | 2020 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2018; 100 2017; 64 2013; 1 2017; 26 2017; 69 2015; 521 2019; 34 2004; 7 1988; 37 2009 2013; 760 2007 2016; 30 2008; 35 2003 2014; 28 2017; 353 2017; 114 2003; 53 2018; 25 2009; 33 2016; 7 2005; 19 2009; 53 2017; 59 2001 2015; 61 2018; 156 2002; 68 2006; 26 2004; 13 2019 2018 2017 2014; 35 2016 2015 2014 2013 2011; 25 2018; 33 2009; 1 2012; 4 1998; 12 2014; 125 2011; 100 2016; 44 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 Albeverio S. (e_1_2_9_4_1) 2007 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 Chaudhuri G. (e_1_2_9_11_1) 2013; 1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 Defferrard M. (e_1_2_9_16_1) 2016 e_1_2_9_71_1 Finn C. (e_1_2_9_18_1) 2016 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 Cheng J. (e_1_2_9_13_1) 2003 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 Kalchbrenner N. (e_1_2_9_26_1) 2017 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 Ge V. (e_1_2_9_20_1) 2017; 59 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
| References_xml | – year: 2009 – start-page: 64 year: 2016 end-page: 72 – volume: 68 start-page: 297 issue: 3 year: 2002 end-page: 314 article-title: UrbanSim: Modeling urban development for land use, transportation, and environmental planning publication-title: Journal of the American Planning Association – volume: 521 start-page: 436 issue: 7553 year: 2015 end-page: 444 article-title: Deep learning publication-title: Nature – volume: 33 start-page: 638 issue: 8 year: 2018 end-page: 654 article-title: A fast detection method via region‐based fully convolutional neural networks for shield tunnel lining defects publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 33 start-page: 731 issue: 9 year: 2018 end-page: 747 article-title: Autonomous structural visual inspection using region‐based deep learning for detecting multiple damage types publication-title: Computer‐Aided Civil and Infrastructure Engineering – start-page: 770 year: 2016 end-page: 778 – volume: 30 start-page: 637 issue: 4 year: 2016 end-page: 659 article-title: A partitioned and asynchronous cellular automata model for urban growth simulation publication-title: International Journal of Geographical Information Science – volume: 35 start-page: 296 issue: 2 year: 2008 end-page: 317 article-title: Using the ART‐MMAP neural network to model and predict urban growth: A spatiotemporal data mining approach publication-title: Environment and Planning B: Planning and Design – year: 2001 – volume: 33 start-page: 849 issue: 10 year: 2018 end-page: 863 article-title: End‐to‐end deep learning methodology for real‐time traffic network management publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 100 start-page: 35 issue: 1–2 year: 2011 end-page: 44 article-title: An urban growth boundary model using neural networks, GIS and radial parameterization: An application to Tehran, Iran publication-title: Landscape and Urban Planning – volume: 7 start-page: 45 issue: 1 year: 2016 end-page: 52 article-title: Multivariate adaptive regression splines and neural network models for prediction of pile drivability publication-title: Geoscience Frontiers – volume: 19 start-page: 197 issue: 2 year: 2005 end-page: 215 article-title: Calibrating a neural network‐based urban change model for two metropolitan areas of the Upper Midwest of the United States publication-title: International Journal of Geographical Information Science – year: 2019 article-title: A convolutional neural‐network‐based pedestrian counting model for various crowded scenes publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 353 start-page: 107 year: 2017 end-page: 116 article-title: Simulating the spatial dynamics of urban growth with an integrated modeling approach: A case study of Foshan, China publication-title: Ecological Modelling – volume: 69 start-page: 529 year: 2017 end-page: 540 article-title: Coupling agent‐based, cellular automata and logistic regression into a hybrid urban expansion model (HUEM) publication-title: Land Use Policy – volume: 25 start-page: 321 issue: 4 year: 2018 end-page: 333 article-title: Vehicle type detection by ensembles of convolutional neural networks operating on super resolved images publication-title: Integrated Computer‐Aided Engineering – volume: 156 start-page: 598 year: 2018 end-page: 607 article-title: A novel unsupervised deep learning model for global and local health condition assessment of structures publication-title: Engineering Structures – year: 2018 – volume: 33 start-page: 748 issue: 9 year: 2018 end-page: 768 article-title: Deep transfer learning for image‐based structural damage recognition publication-title: Computer‐Aided Civil and Infrastructure Engineering – year: 2014 – volume: 12 start-page: 699 issue: 7 year: 1998 end-page: 714 article-title: Loose‐coupling a cellular automaton model and GIS: Long‐term urban growth prediction for San Francisco and Washington/Baltimore publication-title: International Journal of Geographical Information Science – volume: 59 start-page: 68 year: 2017 end-page: 75 article-title: A survey on deep video prediction publication-title: Learning – volume: 13 start-page: 1 issue: 4 year: 2004 end-page: 14 article-title: Image quality assessment: From error visibility to structural similarity publication-title: IEEE Transactions on Image Processing – volume: 114 start-page: 237 issue: 2 year: 2017 end-page: 244 article-title: Supervised deep restricted Boltzmann machine for estimation of concrete publication-title: ACI Materials Journal – volume: 26 issue: 18 year: 2017 article-title: A novel machine learning‐based algorithm to detect damage in high‐rise building structures publication-title: The Structural Design of Tall and Special Buildings – start-page: 548 year: 2017 end-page: 556 – volume: 33 start-page: 1127 year: 2018 end-page: 1141 article-title: Road damage detection and classification using deep neural networks with smartphone images publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 1 start-page: 534 issue: 3 year: 2009 end-page: 556 article-title: Examining spatiotemporal urbanization patterns in Kathmandu Valley, Nepal: Remote sensing and spatial metrics approaches publication-title: Remote Sensing – volume: 25 start-page: 335 issue: 4 year: 2018 end-page: 348 article-title: A scalable approach based on deep learning for big data time series forecasting publication-title: Integrated Computer‐Aided Engineering – volume: 64 start-page: 297 year: 2017 end-page: 308 article-title: Coupling machine learning, tree‐based and statistical models with cellular automata to simulate urban growth publication-title: Computers, Environment and Urban Systems – volume: 33 start-page: 35 issue: 1 year: 2009 end-page: 43 article-title: Modeling urban growth using a variable grid cellular automaton publication-title: Computers, Environment and Urban Systems – volume: 26 start-page: 323 issue: 3–4 year: 2006 end-page: 345 article-title: Modeling urban expansion scenarios by coupling cellular automata model and system dynamic model in Beijing, China publication-title: Applied Geography – start-page: 835 year: 2016 end-page: 851 – volume: 28 start-page: 102 year: 2014 end-page: 116 article-title: Modeling multiple land use changes using ANN, CART and MARS: Comparing tradeoffs in goodness of fit and explanatory power of data mining tools publication-title: International Journal of Applied Earth Observation and Geoinformation – volume: 44 start-page: 92 issue: 1 year: 2016 end-page: 98 article-title: Enrollment management: Development of prediction model based on logistic regression publication-title: FME Transactions – year: 2015 – volume: 4 start-page: 555 issue: 6 year: 2012 end-page: 587 article-title: Urban growth prediction: A review of computational models and human perceptions publication-title: Journal of Geographic Information System – start-page: 3844 year: 2016 end-page: 3852 – volume: 33 start-page: 459 issue: 6 year: 2018 end-page: 480 article-title: Deep learning for accelerated reliability analysis of transportation networks publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 7 start-page: 215 issue: 3 year: 2004 end-page: 240 article-title: Modeling urban landscape dynamics: A case study in Phoenix, USA publication-title: Urban Ecosystems – year: 2007 – start-page: 1771 year: 2017 end-page: 1779 – volume: 100 start-page: 270 year: 2018 end-page: 278 article-title: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals publication-title: Computers in Biology and Medicine – year: 2003 – volume: 53 start-page: 1169 issue: 12 year: 2003 end-page: 1179 article-title: Integrating humans into ecology: Opportunities and challenges for studying urban ecosystems publication-title: BioScience – volume: 1 start-page: 88 issue: 1 year: 2013 end-page: 105 article-title: The SLEUTH land use change model: A review publication-title: Environmental Resources Research – year: 2016 – volume: 760 start-page: 25 year: 2013 end-page: 33 article-title: Sample size planning for classification models publication-title: Analytica Chimica Acta – volume: 37 start-page: 42 issue: 1 year: 1988 end-page: 57 article-title: The theory of self‐organization and modelling complex urban systems publication-title: European Journal of Operational Research – volume: 125 start-page: 209 year: 2014 end-page: 221 article-title: Urban ecology and sustainability: The state‐of‐the‐science and future directions publication-title: Landscape and Urban Planning – volume: 33 start-page: 1090 issue: 12 year: 2018 end-page: 1109 article-title: Automatic pixel‐level crack detection and measurement using fully convolutional network publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 25 start-page: 65 issue: 1 year: 2011 end-page: 87 article-title: Predictive ability of logistic regression, auto‐logistic regression and neural network models in empirical land‐use change modeling—A case study publication-title: International Journal of Geographical Information Science – volume: 53 start-page: 649 issue: 3 year: 2009 end-page: 665 article-title: Local institutions and the politics of urban growth publication-title: American Journal of Political Science – volume: 34 start-page: 713 issue: 8 year: 2019 end-page: 727 article-title: Encoder–decoder network for pixel‐level road crack detection in black‐box images publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 33 start-page: 885 issue: 10 year: 2018 end-page: 902 article-title: Autonomous UAVs for structural health monitoring using deep learning and an ultrasonic beacon system with geo‐tagging publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 34 start-page: 616 issue: 7 year: 2019 end-page: 634 article-title: Automatic pixel‐level multiple damage detection of concrete structure using fully convolutional network publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 35 start-page: 149 issue: 1 year: 2014 end-page: 170 article-title: Assessing uncertainty dimensions in land‐use change models: Using swap and multiplicative error models for injecting attribute and positional errors in spatial data publication-title: International Journal of Remote Sensing – year: 2019 article-title: An ensemble machine learning‐based modeling framework for analysis of traffic crash frequency publication-title: Computer‐Aided Civil and Infrastructure Engineering – year: 2017 – volume: 25 start-page: 247 issue: 3 year: 2018 end-page: 260 article-title: Regional parallel structure based CNN for thermal infrared face identification publication-title: Integrated Computer‐Aided Engineering – volume: 61 start-page: 85 year: 2015 end-page: 117 article-title: Deep learning in neural networks: An overview publication-title: Neural Networks – year: 2013 – ident: e_1_2_9_42_1 – ident: e_1_2_9_68_1 doi: 10.1080/01944360208976274 – ident: e_1_2_9_71_1 doi: 10.1109/TIP.2003.819861 – ident: e_1_2_9_47_1 doi: 10.14359/51689560 – ident: e_1_2_9_15_1 doi: 10.1080/136588198241617 – ident: e_1_2_9_73_1 – ident: e_1_2_9_21_1 doi: 10.5937/fmet1601092G – start-page: 1771 volume-title: Proceedings of the 34th international conference on machine learning year: 2017 ident: e_1_2_9_26_1 – ident: e_1_2_9_46_1 doi: 10.1016/j.engstruct.2017.10.070 – ident: e_1_2_9_2_1 doi: 10.1016/j.compbiomed.2017.09.017 – ident: e_1_2_9_57_1 doi: 10.1080/01431161.2013.866293 – ident: e_1_2_9_51_1 – ident: e_1_2_9_77_1 doi: 10.1016/j.gsf.2014.10.003 – ident: e_1_2_9_32_1 doi: 10.1068/b3312 – ident: e_1_2_9_39_1 doi: 10.1016/j.landusepol.2017.10.009 – ident: e_1_2_9_50_1 doi: 10.1111/mice.12454 – volume-title: Understanding urban growth system: Theories and methods year: 2003 ident: e_1_2_9_13_1 – volume: 59 start-page: 68 year: 2017 ident: e_1_2_9_20_1 article-title: A survey on deep video prediction publication-title: Learning – ident: e_1_2_9_63_1 – ident: e_1_2_9_78_1 doi: 10.1111/mice.12485 – ident: e_1_2_9_3_1 doi: 10.1641/0006-3568(2003)053[1169:IHIEOA]2.0.CO;2 – ident: e_1_2_9_66_1 – ident: e_1_2_9_60_1 – ident: e_1_2_9_7_1 doi: 10.1016/j.aca.2012.11.007 – ident: e_1_2_9_58_1 doi: 10.3390/rs1030534 – ident: e_1_2_9_30_1 doi: 10.1111/mice.12433 – ident: e_1_2_9_52_1 – volume: 1 start-page: 88 issue: 1 year: 2013 ident: e_1_2_9_11_1 article-title: The SLEUTH land use change model: A review publication-title: Environmental Resources Research – ident: e_1_2_9_41_1 – ident: e_1_2_9_49_1 doi: 10.1016/j.compenvurbsys.2017.04.002 – ident: e_1_2_9_34_1 doi: 10.1111/j.1540-5907.2009.00392.x – ident: e_1_2_9_22_1 doi: 10.1016/j.ecolmodel.2016.04.005 – ident: e_1_2_9_43_1 doi: 10.1080/13658810410001713416 – ident: e_1_2_9_54_1 doi: 10.1007/978-3-319-46478-7_20 – ident: e_1_2_9_17_1 doi: 10.1016/0377-2217(88)90279-2 – ident: e_1_2_9_9_1 doi: 10.1111/mice.12334 – ident: e_1_2_9_65_1 doi: 10.1016/j.compenvurbsys.2008.06.006 – ident: e_1_2_9_8_1 doi: 10.1023/B:UECO.0000044037.23965.45 – ident: e_1_2_9_23_1 doi: 10.1111/mice.12376 – ident: e_1_2_9_6_1 doi: 10.7551/mitpress/9399.001.0001 – ident: e_1_2_9_27_1 doi: 10.1111/mice.12375 – ident: e_1_2_9_14_1 – ident: e_1_2_9_59_1 – start-page: 64 volume-title: Advances in neural information processing systems year: 2016 ident: e_1_2_9_18_1 – ident: e_1_2_9_29_1 doi: 10.1038/nature14539 – ident: e_1_2_9_12_1 doi: 10.4324/9780203763247 – ident: e_1_2_9_24_1 doi: 10.1016/j.apgeog.2006.09.006 – ident: e_1_2_9_45_1 doi: 10.1002/tal.1400 – volume-title: The dynamics of complex urban systems: An interdisciplinary approach year: 2007 ident: e_1_2_9_4_1 – ident: e_1_2_9_38_1 doi: 10.3233/ICA-180577 – ident: e_1_2_9_55_1 doi: 10.1016/j.jag.2013.11.008 – ident: e_1_2_9_61_1 doi: 10.3233/ICA-180580 – start-page: 3844 volume-title: Advances in neural information processing systems year: 2016 ident: e_1_2_9_16_1 – ident: e_1_2_9_40_1 doi: 10.1111/mice.12359 – ident: e_1_2_9_62_1 doi: 10.4236/jgis.2012.46060 – ident: e_1_2_9_72_1 doi: 10.1016/j.landurbplan.2014.01.018 – ident: e_1_2_9_25_1 doi: 10.1109/CVPR.2016.90 – ident: e_1_2_9_31_1 doi: 10.1080/13658811003752332 – ident: e_1_2_9_10_1 doi: 10.1109/CVPR.2017.388 – ident: e_1_2_9_44_1 doi: 10.1007/978-3-319-10578-9_12 – ident: e_1_2_9_69_1 doi: 10.1007/978-3-319-46478-7_51 – ident: e_1_2_9_28_1 doi: 10.1080/13658816.2015.1084510 – ident: e_1_2_9_56_1 doi: 10.1016/j.landurbplan.2010.10.007 – ident: e_1_2_9_36_1 doi: 10.1007/978-3-319-46454-1_35 – ident: e_1_2_9_48_1 doi: 10.1016/j.neunet.2014.09.003 – ident: e_1_2_9_70_1 doi: 10.3233/ICA-180560 – ident: e_1_2_9_33_1 doi: 10.1109/ICCV.2017.478 – ident: e_1_2_9_35_1 doi: 10.1111/mice.12387 – ident: e_1_2_9_76_1 doi: 10.1111/mice.12412 – ident: e_1_2_9_19_1 doi: 10.1111/mice.12363 – ident: e_1_2_9_5_1 doi: 10.1111/mice.12440 – ident: e_1_2_9_37_1 – ident: e_1_2_9_64_1 – ident: e_1_2_9_67_1 doi: 10.1007/978-3-319-68560-1_13 – ident: e_1_2_9_75_1 doi: 10.1007/978-3-319-46493-0_47 – ident: e_1_2_9_74_1 doi: 10.1111/mice.12367 – ident: e_1_2_9_53_1 |
| SSID | ssj0000443 |
| Score | 2.2972755 |
| Snippet | This paper presents a novel methodology for urban growth prediction using a machine learning approach. The methodology treats successive historical satellite... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 430 |
| SubjectTerms | Architecture Coders Horizon Machine learning Methodology Parameter sensitivity Satellite imagery Sensitivity analysis Time dependence Urban areas Urban development |
| Title | Modeling urban growth using video prediction technology: A time‐dependent convolutional encoder–decoder architecture |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.12503 https://www.proquest.com/docview/2386847749 |
| Volume | 35 |
| WOSCitedRecordID | wos000488546200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1467-8667 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000443 issn: 1093-9687 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB6k9aAH32J9EdCLwkqbTZONeBG1eBARUfC2bF4qSCvbVTz2Jwj-Q3-JmW22rSCCeAshWcLOTPJNMjMfwK5xXqg0U1HM2ipitOki1cJsNC4y431s7YQrySbE5WVydyevpuCoyoUZ1ocYXbihZZT7NRp4pvoTRo5s7Qf-eMZSn3XqFZfVoH563bm9GO_ELATYyziSPBGhPClG8oxnfz-QxihzEquWh01n_n_LXIC5ADLJ8VArFmHKdpdgPgBOEsy577sqToeqbwlmJwoULsMbUqVhwjp5yVXWJffeaS8eCAbL3xPM4OuR5xyfelC8pBhd0x-SY4Ks9Z-D94pltyAY4B4U3S8OC2gam38OPowtW2TyTWMFbjtnNyfnUeBqiLSHAHHEnfNgQ2fCcCGV5U3BtaGtLKbeIRPUCCsTq5q86biSicdtMW8pw6lut7Vh3MSrUOv2unYNiOVOWmeY1DLzzrtQOJcxqrRJuDVZA_YqgaU6FDJHPo2ntHJo8J-n5T9vwM5o7POwfMePozYruafBhPupxzLcH92CyQbslxL-5Qupt5mzsrX-l8EbMEPRfy8DKDehVuQvdgum9Wvx2M-3gzp_Aeop_UE |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB6kCurBt1ifAb0orLS7abLxJmpRrEVEwduyeVVBqmxX8ehPEPyH_hIz22xbQQTxFkKyGzKZ5JtkZj6AHW2dUMNUBhFtyICGNRvIOkajMZ5qZ2Mry21BNsHb7fj2Vlx63xyMhennhxhcuKFmFPs1KjheSI9oOdK177vzGXN9jlP3y0YFxo-vmjet4VZMvYe9iALBYu7zk6Irz7D39xNpCDNHwWpx2jRn_znOOZjxMJMc9tfFPIyZ7gLMeshJvEL3XFXJ6lDWLcD0SIrCRXhFsjQMWSfPmUy7pOPM9vyOoLt8h2AM3yN5yvCxBwVM8sFF_QE5JMhb__n2XvLs5gRd3P1Sd4PDFJraZJ9vH9oUJTL6qrEEN82T66PTwLM1BMqBgChg1jq4oVKuGRfSsBpnSof1NAqdScZDzY2IjayxmmVSxA65RawuNQtVo6E0ZTpahkr3sWtWgBhmhbGaCiVSZ75ziX0pDaXSMTM6rcJuKbFE-VTmyKjxkJQmDc55Usx5FbYHbZ_6CTx-bLVeCj7xStxLHJph7vDmVFRhrxDxL19InNacFKXVvzTegsnT64tW0jprn6_BVIjWfOFOuQ6VPHs2GzChXvL7Xrbp1_YXBEABQA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB7EiujBt1ifAb0orLS7abLxJmpRlCKi4G3ZvKogtWxX8difIPgP_SVmttm2ggjiLYRkCTuZzDfJzHwAe9o6oYapDCLakAENazaQdcxGYzzVzsdWltuCbIK3WvH9vbj2sTmYCzOoDzG8cEPNKM5rVHDT1XZMy5Gu_dDZZ6z1WaENwZxeVk5vmndXo6OY-gh7EQWCxdzXJ8VQntHs7xZpBDPHwWphbZrz_1znAsx5mEmOB_tiESZMZwnmPeQkXqF7rqtkdSj7lmB2rEThMrwhWRqmrJOXTKYd0nZue_5AMFy-TTCH75l0M3zsQQGTfHhRf0SOCfLWf_bfS57dnGCIu9_qbnFYQlOb7LP_oU3RIuOvGitw1zy7PTkPPFtDoBwIiAJmrYMbKuWacSENq3GmdFhPo9C5ZDzU3IjYyBqrWSZF7JBbxOpSs1A1GkpTpqNVmOw8d8waEMOsMFZToUTq3HcucS6loVQ6ZkanVdgvJZYoX8ocGTWektKlwX-eFP-8CrvDsd1BAY8fR22Wgk-8EvcSh2aYM96ciiocFCL-5QuJ05qzorX-l8E7MH192kyuLlqXGzATojNfRFNuwmSevZgtmFKv-WMv2_Zb-wuPiwC7 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+urban+growth+using+video+prediction+technology%3A+A+time%E2%80%90dependent+convolutional+encoder%E2%80%93decoder+architecture&rft.jtitle=Computer-aided+civil+and+infrastructure+engineering&rft.au=Jaad%2C+Ahmed&rft.au=Abdelghany%2C+Khaled&rft.date=2020-05-01&rft.issn=1093-9687&rft.eissn=1467-8667&rft.volume=35&rft.issue=5&rft.spage=430&rft.epage=447&rft_id=info:doi/10.1111%2Fmice.12503&rft.externalDBID=10.1111%252Fmice.12503&rft.externalDocID=MICE12503 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-9687&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-9687&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-9687&client=summon |