Modeling urban growth using video prediction technology: A time‐dependent convolutional encoder–decoder architecture

This paper presents a novel methodology for urban growth prediction using a machine learning approach. The methodology treats successive historical satellite images of an urban area as a video for which future frames are predicted. It adopts a time‐dependent convolutional encoder–decoder architectur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer-aided civil and infrastructure engineering Jg. 35; H. 5; S. 430 - 447
Hauptverfasser: Jaad, Ahmed, Abdelghany, Khaled
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken Wiley Subscription Services, Inc 01.05.2020
Schlagworte:
ISSN:1093-9687, 1467-8667
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper presents a novel methodology for urban growth prediction using a machine learning approach. The methodology treats successive historical satellite images of an urban area as a video for which future frames are predicted. It adopts a time‐dependent convolutional encoder–decoder architecture. The methodology's input includes a satellite image for the base year and the prediction horizon. It constructs an image that predicts the growth of the urban area for any given target year within the specified horizon. A sensitivity analysis is performed to determine the best combination of parameters to achieve the highest prediction performance. As a case study, the methodology is applied to predict the urban growth pattern for the Dallas–Fort Worth area in Texas, with focus on two of its counties that observed significant growth over the past decade. The methodology is shown to produce results that are consistent with other growth prediction studies conducted for the areas.
AbstractList This paper presents a novel methodology for urban growth prediction using a machine learning approach. The methodology treats successive historical satellite images of an urban area as a video for which future frames are predicted. It adopts a time‐dependent convolutional encoder–decoder architecture. The methodology's input includes a satellite image for the base year and the prediction horizon. It constructs an image that predicts the growth of the urban area for any given target year within the specified horizon. A sensitivity analysis is performed to determine the best combination of parameters to achieve the highest prediction performance. As a case study, the methodology is applied to predict the urban growth pattern for the Dallas–Fort Worth area in Texas, with focus on two of its counties that observed significant growth over the past decade. The methodology is shown to produce results that are consistent with other growth prediction studies conducted for the areas.
Author Abdelghany, Khaled
Jaad, Ahmed
Author_xml – sequence: 1
  givenname: Ahmed
  surname: Jaad
  fullname: Jaad, Ahmed
  organization: Southern Methodist University
– sequence: 2
  givenname: Khaled
  surname: Abdelghany
  fullname: Abdelghany, Khaled
  email: khaled@lyle.smu.edu
  organization: Southern Methodist University
BookMark eNp9kE1OwzAQhS1UJNrChhNYYoeUYufHTthVFT-VQGxgHTn2pDVK7eI4Ld31CEjcsCchIawQYjYzGn3vaeaN0MBYAwidUzKhbV2ttIQJDRMSHaEhjRkPUsb4oJ1JFgUZS_kJGtX1K2krjqMhen-0CiptFrhxhTB44ezWL3FTd6uNVmDx2oHS0mtrsAe5NLayi901nmKvV3DYfyhYg1FgPJbWbGzVdKioMBjZervD_lPB94SFk0vdevjGwSk6LkVVw9lPH6OX25vn2X3w8HQ3n00fAhnTJApYWRKeSsEV41kBjHAmVUhFFHLKeKg4ZCkUhJGSFVlKkzhitFAslEkiVcxUNEYXve_a2bcGap-_2sa199V5GKUsjTmPs5YiPSWdrWsHZS61F90j3gld5ZTkXb55l2_-nW8rufwlWTu9Em73N0x7eKsr2P1D5o_z2U2v-QLZWZHB
CitedBy_id crossref_primary_10_3233_ICA_210652
crossref_primary_10_1111_mice_12629
crossref_primary_10_1016_j_cities_2021_103393
crossref_primary_10_1016_j_cities_2023_104734
crossref_primary_10_1111_mice_12841
Cites_doi 10.1080/01944360208976274
10.1109/TIP.2003.819861
10.14359/51689560
10.1080/136588198241617
10.5937/fmet1601092G
10.1016/j.engstruct.2017.10.070
10.1016/j.compbiomed.2017.09.017
10.1080/01431161.2013.866293
10.1016/j.gsf.2014.10.003
10.1068/b3312
10.1016/j.landusepol.2017.10.009
10.1111/mice.12454
10.1111/mice.12485
10.1641/0006-3568(2003)053[1169:IHIEOA]2.0.CO;2
10.1016/j.aca.2012.11.007
10.3390/rs1030534
10.1111/mice.12433
10.1016/j.compenvurbsys.2017.04.002
10.1111/j.1540-5907.2009.00392.x
10.1016/j.ecolmodel.2016.04.005
10.1080/13658810410001713416
10.1007/978-3-319-46478-7_20
10.1016/0377-2217(88)90279-2
10.1111/mice.12334
10.1016/j.compenvurbsys.2008.06.006
10.1023/B:UECO.0000044037.23965.45
10.1111/mice.12376
10.7551/mitpress/9399.001.0001
10.1111/mice.12375
10.1038/nature14539
10.4324/9780203763247
10.1016/j.apgeog.2006.09.006
10.1002/tal.1400
10.3233/ICA-180577
10.1016/j.jag.2013.11.008
10.3233/ICA-180580
10.1111/mice.12359
10.4236/jgis.2012.46060
10.1016/j.landurbplan.2014.01.018
10.1109/CVPR.2016.90
10.1080/13658811003752332
10.1109/CVPR.2017.388
10.1007/978-3-319-10578-9_12
10.1007/978-3-319-46478-7_51
10.1080/13658816.2015.1084510
10.1016/j.landurbplan.2010.10.007
10.1007/978-3-319-46454-1_35
10.1016/j.neunet.2014.09.003
10.3233/ICA-180560
10.1109/ICCV.2017.478
10.1111/mice.12387
10.1111/mice.12412
10.1111/mice.12363
10.1111/mice.12440
10.1007/978-3-319-68560-1_13
10.1007/978-3-319-46493-0_47
10.1111/mice.12367
ContentType Journal Article
Copyright 2019
2020 Computer‐Aided Civil and Infrastructure Engineering
Copyright_xml – notice: 2019
– notice: 2020 Computer‐Aided Civil and Infrastructure Engineering
DBID AAYXX
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1111/mice.12503
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
Architecture
EISSN 1467-8667
EndPage 447
ExternalDocumentID 10_1111_mice_12503
MICE12503
Genre article
GroupedDBID ..I
.3N
.4S
.DC
.GA
05W
0R~
10A
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABFSI
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AHBTC
AHEFC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
E.L
EAD
EAP
EBS
EDO
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RJQFR
RX1
SAMSI
SUPJJ
TN5
TUS
UB1
VH1
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZZTAW
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c4153-6ff078ca7d679be6076cd21a3271672d7e98eb060f6b98154361bd62c55cd46d3
IEDL.DBID DRFUL
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000488546200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1093-9687
IngestDate Sun Nov 09 06:00:25 EST 2025
Sat Nov 29 05:42:07 EST 2025
Tue Nov 18 22:00:41 EST 2025
Wed Jan 22 16:34:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4153-6ff078ca7d679be6076cd21a3271672d7e98eb060f6b98154361bd62c55cd46d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2386847749
PQPubID 2045171
PageCount 18
ParticipantIDs proquest_journals_2386847749
crossref_citationtrail_10_1111_mice_12503
crossref_primary_10_1111_mice_12503
wiley_primary_10_1111_mice_12503_MICE12503
PublicationCentury 2000
PublicationDate May 2020
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Computer-aided civil and infrastructure engineering
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 100
2017; 64
2013; 1
2017; 26
2017; 69
2015; 521
2019; 34
2004; 7
1988; 37
2009
2013; 760
2007
2016; 30
2008; 35
2003
2014; 28
2017; 353
2017; 114
2003; 53
2018; 25
2009; 33
2016; 7
2005; 19
2009; 53
2017; 59
2001
2015; 61
2018; 156
2002; 68
2006; 26
2004; 13
2019
2018
2017
2014; 35
2016
2015
2014
2013
2011; 25
2018; 33
2009; 1
2012; 4
1998; 12
2014; 125
2011; 100
2016; 44
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
Albeverio S. (e_1_2_9_4_1) 2007
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
Chaudhuri G. (e_1_2_9_11_1) 2013; 1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Defferrard M. (e_1_2_9_16_1) 2016
e_1_2_9_71_1
Finn C. (e_1_2_9_18_1) 2016
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
Cheng J. (e_1_2_9_13_1) 2003
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
Kalchbrenner N. (e_1_2_9_26_1) 2017
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
Ge V. (e_1_2_9_20_1) 2017; 59
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – year: 2009
– start-page: 64
  year: 2016
  end-page: 72
– volume: 68
  start-page: 297
  issue: 3
  year: 2002
  end-page: 314
  article-title: UrbanSim: Modeling urban development for land use, transportation, and environmental planning
  publication-title: Journal of the American Planning Association
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– volume: 33
  start-page: 638
  issue: 8
  year: 2018
  end-page: 654
  article-title: A fast detection method via region‐based fully convolutional neural networks for shield tunnel lining defects
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 33
  start-page: 731
  issue: 9
  year: 2018
  end-page: 747
  article-title: Autonomous structural visual inspection using region‐based deep learning for detecting multiple damage types
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– start-page: 770
  year: 2016
  end-page: 778
– volume: 30
  start-page: 637
  issue: 4
  year: 2016
  end-page: 659
  article-title: A partitioned and asynchronous cellular automata model for urban growth simulation
  publication-title: International Journal of Geographical Information Science
– volume: 35
  start-page: 296
  issue: 2
  year: 2008
  end-page: 317
  article-title: Using the ART‐MMAP neural network to model and predict urban growth: A spatiotemporal data mining approach
  publication-title: Environment and Planning B: Planning and Design
– year: 2001
– volume: 33
  start-page: 849
  issue: 10
  year: 2018
  end-page: 863
  article-title: End‐to‐end deep learning methodology for real‐time traffic network management
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 100
  start-page: 35
  issue: 1–2
  year: 2011
  end-page: 44
  article-title: An urban growth boundary model using neural networks, GIS and radial parameterization: An application to Tehran, Iran
  publication-title: Landscape and Urban Planning
– volume: 7
  start-page: 45
  issue: 1
  year: 2016
  end-page: 52
  article-title: Multivariate adaptive regression splines and neural network models for prediction of pile drivability
  publication-title: Geoscience Frontiers
– volume: 19
  start-page: 197
  issue: 2
  year: 2005
  end-page: 215
  article-title: Calibrating a neural network‐based urban change model for two metropolitan areas of the Upper Midwest of the United States
  publication-title: International Journal of Geographical Information Science
– year: 2019
  article-title: A convolutional neural‐network‐based pedestrian counting model for various crowded scenes
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 353
  start-page: 107
  year: 2017
  end-page: 116
  article-title: Simulating the spatial dynamics of urban growth with an integrated modeling approach: A case study of Foshan, China
  publication-title: Ecological Modelling
– volume: 69
  start-page: 529
  year: 2017
  end-page: 540
  article-title: Coupling agent‐based, cellular automata and logistic regression into a hybrid urban expansion model (HUEM)
  publication-title: Land Use Policy
– volume: 25
  start-page: 321
  issue: 4
  year: 2018
  end-page: 333
  article-title: Vehicle type detection by ensembles of convolutional neural networks operating on super resolved images
  publication-title: Integrated Computer‐Aided Engineering
– volume: 156
  start-page: 598
  year: 2018
  end-page: 607
  article-title: A novel unsupervised deep learning model for global and local health condition assessment of structures
  publication-title: Engineering Structures
– year: 2018
– volume: 33
  start-page: 748
  issue: 9
  year: 2018
  end-page: 768
  article-title: Deep transfer learning for image‐based structural damage recognition
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– year: 2014
– volume: 12
  start-page: 699
  issue: 7
  year: 1998
  end-page: 714
  article-title: Loose‐coupling a cellular automaton model and GIS: Long‐term urban growth prediction for San Francisco and Washington/Baltimore
  publication-title: International Journal of Geographical Information Science
– volume: 59
  start-page: 68
  year: 2017
  end-page: 75
  article-title: A survey on deep video prediction
  publication-title: Learning
– volume: 13
  start-page: 1
  issue: 4
  year: 2004
  end-page: 14
  article-title: Image quality assessment: From error visibility to structural similarity
  publication-title: IEEE Transactions on Image Processing
– volume: 114
  start-page: 237
  issue: 2
  year: 2017
  end-page: 244
  article-title: Supervised deep restricted Boltzmann machine for estimation of concrete
  publication-title: ACI Materials Journal
– volume: 26
  issue: 18
  year: 2017
  article-title: A novel machine learning‐based algorithm to detect damage in high‐rise building structures
  publication-title: The Structural Design of Tall and Special Buildings
– start-page: 548
  year: 2017
  end-page: 556
– volume: 33
  start-page: 1127
  year: 2018
  end-page: 1141
  article-title: Road damage detection and classification using deep neural networks with smartphone images
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 1
  start-page: 534
  issue: 3
  year: 2009
  end-page: 556
  article-title: Examining spatiotemporal urbanization patterns in Kathmandu Valley, Nepal: Remote sensing and spatial metrics approaches
  publication-title: Remote Sensing
– volume: 25
  start-page: 335
  issue: 4
  year: 2018
  end-page: 348
  article-title: A scalable approach based on deep learning for big data time series forecasting
  publication-title: Integrated Computer‐Aided Engineering
– volume: 64
  start-page: 297
  year: 2017
  end-page: 308
  article-title: Coupling machine learning, tree‐based and statistical models with cellular automata to simulate urban growth
  publication-title: Computers, Environment and Urban Systems
– volume: 33
  start-page: 35
  issue: 1
  year: 2009
  end-page: 43
  article-title: Modeling urban growth using a variable grid cellular automaton
  publication-title: Computers, Environment and Urban Systems
– volume: 26
  start-page: 323
  issue: 3–4
  year: 2006
  end-page: 345
  article-title: Modeling urban expansion scenarios by coupling cellular automata model and system dynamic model in Beijing, China
  publication-title: Applied Geography
– start-page: 835
  year: 2016
  end-page: 851
– volume: 28
  start-page: 102
  year: 2014
  end-page: 116
  article-title: Modeling multiple land use changes using ANN, CART and MARS: Comparing tradeoffs in goodness of fit and explanatory power of data mining tools
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: 44
  start-page: 92
  issue: 1
  year: 2016
  end-page: 98
  article-title: Enrollment management: Development of prediction model based on logistic regression
  publication-title: FME Transactions
– year: 2015
– volume: 4
  start-page: 555
  issue: 6
  year: 2012
  end-page: 587
  article-title: Urban growth prediction: A review of computational models and human perceptions
  publication-title: Journal of Geographic Information System
– start-page: 3844
  year: 2016
  end-page: 3852
– volume: 33
  start-page: 459
  issue: 6
  year: 2018
  end-page: 480
  article-title: Deep learning for accelerated reliability analysis of transportation networks
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 7
  start-page: 215
  issue: 3
  year: 2004
  end-page: 240
  article-title: Modeling urban landscape dynamics: A case study in Phoenix, USA
  publication-title: Urban Ecosystems
– year: 2007
– start-page: 1771
  year: 2017
  end-page: 1779
– volume: 100
  start-page: 270
  year: 2018
  end-page: 278
  article-title: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals
  publication-title: Computers in Biology and Medicine
– year: 2003
– volume: 53
  start-page: 1169
  issue: 12
  year: 2003
  end-page: 1179
  article-title: Integrating humans into ecology: Opportunities and challenges for studying urban ecosystems
  publication-title: BioScience
– volume: 1
  start-page: 88
  issue: 1
  year: 2013
  end-page: 105
  article-title: The SLEUTH land use change model: A review
  publication-title: Environmental Resources Research
– year: 2016
– volume: 760
  start-page: 25
  year: 2013
  end-page: 33
  article-title: Sample size planning for classification models
  publication-title: Analytica Chimica Acta
– volume: 37
  start-page: 42
  issue: 1
  year: 1988
  end-page: 57
  article-title: The theory of self‐organization and modelling complex urban systems
  publication-title: European Journal of Operational Research
– volume: 125
  start-page: 209
  year: 2014
  end-page: 221
  article-title: Urban ecology and sustainability: The state‐of‐the‐science and future directions
  publication-title: Landscape and Urban Planning
– volume: 33
  start-page: 1090
  issue: 12
  year: 2018
  end-page: 1109
  article-title: Automatic pixel‐level crack detection and measurement using fully convolutional network
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 25
  start-page: 65
  issue: 1
  year: 2011
  end-page: 87
  article-title: Predictive ability of logistic regression, auto‐logistic regression and neural network models in empirical land‐use change modeling—A case study
  publication-title: International Journal of Geographical Information Science
– volume: 53
  start-page: 649
  issue: 3
  year: 2009
  end-page: 665
  article-title: Local institutions and the politics of urban growth
  publication-title: American Journal of Political Science
– volume: 34
  start-page: 713
  issue: 8
  year: 2019
  end-page: 727
  article-title: Encoder–decoder network for pixel‐level road crack detection in black‐box images
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 33
  start-page: 885
  issue: 10
  year: 2018
  end-page: 902
  article-title: Autonomous UAVs for structural health monitoring using deep learning and an ultrasonic beacon system with geo‐tagging
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 34
  start-page: 616
  issue: 7
  year: 2019
  end-page: 634
  article-title: Automatic pixel‐level multiple damage detection of concrete structure using fully convolutional network
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 35
  start-page: 149
  issue: 1
  year: 2014
  end-page: 170
  article-title: Assessing uncertainty dimensions in land‐use change models: Using swap and multiplicative error models for injecting attribute and positional errors in spatial data
  publication-title: International Journal of Remote Sensing
– year: 2019
  article-title: An ensemble machine learning‐based modeling framework for analysis of traffic crash frequency
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– year: 2017
– volume: 25
  start-page: 247
  issue: 3
  year: 2018
  end-page: 260
  article-title: Regional parallel structure based CNN for thermal infrared face identification
  publication-title: Integrated Computer‐Aided Engineering
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Networks
– year: 2013
– ident: e_1_2_9_42_1
– ident: e_1_2_9_68_1
  doi: 10.1080/01944360208976274
– ident: e_1_2_9_71_1
  doi: 10.1109/TIP.2003.819861
– ident: e_1_2_9_47_1
  doi: 10.14359/51689560
– ident: e_1_2_9_15_1
  doi: 10.1080/136588198241617
– ident: e_1_2_9_73_1
– ident: e_1_2_9_21_1
  doi: 10.5937/fmet1601092G
– start-page: 1771
  volume-title: Proceedings of the 34th international conference on machine learning
  year: 2017
  ident: e_1_2_9_26_1
– ident: e_1_2_9_46_1
  doi: 10.1016/j.engstruct.2017.10.070
– ident: e_1_2_9_2_1
  doi: 10.1016/j.compbiomed.2017.09.017
– ident: e_1_2_9_57_1
  doi: 10.1080/01431161.2013.866293
– ident: e_1_2_9_51_1
– ident: e_1_2_9_77_1
  doi: 10.1016/j.gsf.2014.10.003
– ident: e_1_2_9_32_1
  doi: 10.1068/b3312
– ident: e_1_2_9_39_1
  doi: 10.1016/j.landusepol.2017.10.009
– ident: e_1_2_9_50_1
  doi: 10.1111/mice.12454
– volume-title: Understanding urban growth system: Theories and methods
  year: 2003
  ident: e_1_2_9_13_1
– volume: 59
  start-page: 68
  year: 2017
  ident: e_1_2_9_20_1
  article-title: A survey on deep video prediction
  publication-title: Learning
– ident: e_1_2_9_63_1
– ident: e_1_2_9_78_1
  doi: 10.1111/mice.12485
– ident: e_1_2_9_3_1
  doi: 10.1641/0006-3568(2003)053[1169:IHIEOA]2.0.CO;2
– ident: e_1_2_9_66_1
– ident: e_1_2_9_60_1
– ident: e_1_2_9_7_1
  doi: 10.1016/j.aca.2012.11.007
– ident: e_1_2_9_58_1
  doi: 10.3390/rs1030534
– ident: e_1_2_9_30_1
  doi: 10.1111/mice.12433
– ident: e_1_2_9_52_1
– volume: 1
  start-page: 88
  issue: 1
  year: 2013
  ident: e_1_2_9_11_1
  article-title: The SLEUTH land use change model: A review
  publication-title: Environmental Resources Research
– ident: e_1_2_9_41_1
– ident: e_1_2_9_49_1
  doi: 10.1016/j.compenvurbsys.2017.04.002
– ident: e_1_2_9_34_1
  doi: 10.1111/j.1540-5907.2009.00392.x
– ident: e_1_2_9_22_1
  doi: 10.1016/j.ecolmodel.2016.04.005
– ident: e_1_2_9_43_1
  doi: 10.1080/13658810410001713416
– ident: e_1_2_9_54_1
  doi: 10.1007/978-3-319-46478-7_20
– ident: e_1_2_9_17_1
  doi: 10.1016/0377-2217(88)90279-2
– ident: e_1_2_9_9_1
  doi: 10.1111/mice.12334
– ident: e_1_2_9_65_1
  doi: 10.1016/j.compenvurbsys.2008.06.006
– ident: e_1_2_9_8_1
  doi: 10.1023/B:UECO.0000044037.23965.45
– ident: e_1_2_9_23_1
  doi: 10.1111/mice.12376
– ident: e_1_2_9_6_1
  doi: 10.7551/mitpress/9399.001.0001
– ident: e_1_2_9_27_1
  doi: 10.1111/mice.12375
– ident: e_1_2_9_14_1
– ident: e_1_2_9_59_1
– start-page: 64
  volume-title: Advances in neural information processing systems
  year: 2016
  ident: e_1_2_9_18_1
– ident: e_1_2_9_29_1
  doi: 10.1038/nature14539
– ident: e_1_2_9_12_1
  doi: 10.4324/9780203763247
– ident: e_1_2_9_24_1
  doi: 10.1016/j.apgeog.2006.09.006
– ident: e_1_2_9_45_1
  doi: 10.1002/tal.1400
– volume-title: The dynamics of complex urban systems: An interdisciplinary approach
  year: 2007
  ident: e_1_2_9_4_1
– ident: e_1_2_9_38_1
  doi: 10.3233/ICA-180577
– ident: e_1_2_9_55_1
  doi: 10.1016/j.jag.2013.11.008
– ident: e_1_2_9_61_1
  doi: 10.3233/ICA-180580
– start-page: 3844
  volume-title: Advances in neural information processing systems
  year: 2016
  ident: e_1_2_9_16_1
– ident: e_1_2_9_40_1
  doi: 10.1111/mice.12359
– ident: e_1_2_9_62_1
  doi: 10.4236/jgis.2012.46060
– ident: e_1_2_9_72_1
  doi: 10.1016/j.landurbplan.2014.01.018
– ident: e_1_2_9_25_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_9_31_1
  doi: 10.1080/13658811003752332
– ident: e_1_2_9_10_1
  doi: 10.1109/CVPR.2017.388
– ident: e_1_2_9_44_1
  doi: 10.1007/978-3-319-10578-9_12
– ident: e_1_2_9_69_1
  doi: 10.1007/978-3-319-46478-7_51
– ident: e_1_2_9_28_1
  doi: 10.1080/13658816.2015.1084510
– ident: e_1_2_9_56_1
  doi: 10.1016/j.landurbplan.2010.10.007
– ident: e_1_2_9_36_1
  doi: 10.1007/978-3-319-46454-1_35
– ident: e_1_2_9_48_1
  doi: 10.1016/j.neunet.2014.09.003
– ident: e_1_2_9_70_1
  doi: 10.3233/ICA-180560
– ident: e_1_2_9_33_1
  doi: 10.1109/ICCV.2017.478
– ident: e_1_2_9_35_1
  doi: 10.1111/mice.12387
– ident: e_1_2_9_76_1
  doi: 10.1111/mice.12412
– ident: e_1_2_9_19_1
  doi: 10.1111/mice.12363
– ident: e_1_2_9_5_1
  doi: 10.1111/mice.12440
– ident: e_1_2_9_37_1
– ident: e_1_2_9_64_1
– ident: e_1_2_9_67_1
  doi: 10.1007/978-3-319-68560-1_13
– ident: e_1_2_9_75_1
  doi: 10.1007/978-3-319-46493-0_47
– ident: e_1_2_9_74_1
  doi: 10.1111/mice.12367
– ident: e_1_2_9_53_1
SSID ssj0000443
Score 2.2972755
Snippet This paper presents a novel methodology for urban growth prediction using a machine learning approach. The methodology treats successive historical satellite...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 430
SubjectTerms Architecture
Coders
Horizon
Machine learning
Methodology
Parameter sensitivity
Satellite imagery
Sensitivity analysis
Time dependence
Urban areas
Urban development
Title Modeling urban growth using video prediction technology: A time‐dependent convolutional encoder–decoder architecture
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.12503
https://www.proquest.com/docview/2386847749
Volume 35
WOSCitedRecordID wos000488546200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000443
  issn: 1093-9687
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NahsxEB6Ck0NzqJO0IU6cIGgvLWxZr3alVenFJDY5hFBKDb4t-nUDwQnrTckxjxDIG_pJollrbRdKIOQmhHYRmhnNN9JoPoDPGRWZkdRGJhNJlGbO74MsVb5Fnc5Zph2XNdkEv7zMx2PxcwN-NG9hFvUhlgduaBn1fo0GLtVszciRrf2bd89Y6nMz8YqbtmDz7NdwdLHaidOQYC9oJFjOQ3lSzORZff2vQ1qhzHWsWjubYftt09yB9wFkkv5CK3Zhw073oB0AJwnmPPNdDadD07cH22sFCj_APVKl4YN1clcqOSUTH7RXfwgmy08IvuC7IbclXvWgeEm1PKb_TvoEWevnD48Ny25FMME9KLqfHBbQNLacPzwZW7fI-p3GRxgNB79Pz6PA1RBpDwFoxJzzYENLbhgXyrKYM22SnqSJD8h4YrgVuVUxix1TIve4jbKeMizRWaZNygzdh9b0ZmoPgMTOZnGsfZxGVZrHzseETnKnmJMslr1eB740Ait0KGSOfBrXRRPQ4JoX9Zp34NNy7O2ifMd_R3UbuRfBhGeFxzLMu26eig58rSX8wh8KbzODunX4msFH8C7B-L1OoOxCqyrv7DFs6b_V1aw8Cer8DNe3_Gg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fSyMxEB-OeqA-6Ol5WP-cgfPlDla2m02y8U3Uotgrx2Ghb8tu_tQDact2FR_9CILf0E9iZpttKxwHcm8hZJeQmcn8JpnMD-CQUcl0Rk2gmYyCmFm3D_I4dy1qVcKZsiKryCZEt5v0-_KXz83BtzDT-hCzAze0jGq_RgPHA-kFK0e69iPnn7HW51Ls9Ig1YOnsd7vXmW_Fsc-wlzSQPBG-Pimm8sy_fuuR5jBzEaxW3qa9_p_z_ARrHmaSk6lebMAHM9yEdQ85iTfoieuqWR3qvk1YXShR-BkekCwNn6yTuyLPhmTgwvbyhmC6_IDgG74RGRd42YMCJuXsoP6YnBDkrX95fKp5dkuCKe5e1d3ksISmNsXL47M2VYss3mpsQa99fn16EXi2hkA5EEADbq2DGyoTmguZGx4KrnTUymjkQjIRaWFkYvKQh5bnMnHIjfJWrnmkGFM65pp-gcZwNDTbQEJrWBgqF6nRPE5C66JCmwmbc5vxMGu1mvC9lliqfClzZNS4TeuQBtc8rda8Cd9mY8fTAh5_HbVXCz71RjxJHZrhznmLWDbhRyXif_whdVZzXrV23jP4AJYvrn920s5l92oXViKM5qt0yj1olMWd2YeP6r78Mym-et1-BedlAGc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS-QwEB_EFdGH8-_hqqcBfVGodJsmae5NThdFWUQUfCtt_qzCsS7dKj7uRxDuG_pJzHTT3RUOQXwbQlpCJpP5TTKZH8A-o5LpjJpAMxkFMbNuH-Rx7iRqVcKZsiKryCZEp5Pc3ckrn5uDb2FG9SHGB25oGdV-jQZu-tpOWTnStR85_4y1Phsxk9zZZePkun17OdmKY59hL2kgeSJ8fVJM5Zl8_dEjTWDmNFitvE176ZvjXIYfHmaS49G6WIEZ01uFJQ85iTfogWuqWR3qtlVYnCpRuAYvSJaGT9bJU5FnPdJ1YXt5TzBdvkvwDd8j6Rd42YMKJuX4oP43OSbIW_82fK15dkuCKe5-qbvBYQlNbYq34T9tKolM32qsw2379ObPWeDZGgLlQAANuLUObqhMaC5kbngouNJRK6ORC8lEpIWRiclDHlqey8QhN8pbueaRYkzpmGv6E2Z7jz2zASS0hoWhcpEazeMktC4qtJmwObcZD7NWqwkHtcZS5UuZI6PG37QOaXDO02rOm7A37tsfFfD4b6_tWvGpN-JB6tAMd85bxLIJh5WKP_lD6qzmtJI2v9J5F-avTtrp5XnnYgsWIgzmq2zKbZgtiyfzC-bUc_kwKHb80n4Hc5j_0w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+urban+growth+using+video+prediction+technology%3A+A+time%E2%80%90dependent+convolutional+encoder%E2%80%93decoder+architecture&rft.jtitle=Computer-aided+civil+and+infrastructure+engineering&rft.au=Jaad%2C+Ahmed&rft.au=Abdelghany%2C+Khaled&rft.date=2020-05-01&rft.issn=1093-9687&rft.eissn=1467-8667&rft.volume=35&rft.issue=5&rft.spage=430&rft.epage=447&rft_id=info:doi/10.1111%2Fmice.12503&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_mice_12503
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-9687&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-9687&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-9687&client=summon