Potential for pharmacokinetic interactions between Schisandra sphenanthera and bosutinib, but not imatinib: in vitro metabolism study combined with a physiologically‐based pharmacokinetic modelling approach

Aims This study aimed to investigate the potential interaction between Schisandra sphenanthera, imatinib and bosutinib combining in vitro and in silico methods. Methods In vitro metabolism of imatinib and bosutinib using recombinant enzymes and human liver microsomes were investigated in the presenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of clinical pharmacology Jg. 86; H. 10; S. 2080 - 2094
Hauptverfasser: Adiwidjaja, Jeffry, Boddy, Alan V., McLachlan, Andrew J.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England John Wiley and Sons Inc 01.10.2020
Schlagworte:
ISSN:0306-5251, 1365-2125, 1365-2125
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Aims This study aimed to investigate the potential interaction between Schisandra sphenanthera, imatinib and bosutinib combining in vitro and in silico methods. Methods In vitro metabolism of imatinib and bosutinib using recombinant enzymes and human liver microsomes were investigated in the presence and absence of Schisandra lignans. Physiologically‐based pharmacokinetic (PBPK) models for the lignans accounting for reversible and mechanism‐based inhibitions and induction of CYP3A enzymes were built in the Simcyp Simulator (version 17) and evaluated for their capability to predict interactions with midazolam and tacrolimus. Their potential effect on systemic exposures of imatinib and bosutinib were predicted using PBPK in silico simulations. Results Schisantherin A and schisandrol B, but not schisandrin A, potently inhibited CYP3A4‐mediated metabolism of imatinib and bosutinib. All three compounds showed a strong reversible inhibition on CYP2C8 enzyme with ki of less than 0.5 μmol L−1. The verified PBPK models were able to describe the increase in systemic exposure of midazolam and tacrolimus due to co‐administration of S. sphenanthera, consistent with the reported changes in the corresponding clinical interaction study (AUC ratio of 2.0 vs 2.1 and 2.4 vs 2.1, respectively). The PBPK simulation predicted that at recommended dosing regimens of S. sphenanthera, co‐administration would result in an increase in bosutinib exposure (AUC ratio 3.0) but not in imatinib exposure. Conclusion PBPK models for Schisandra lignans were successfully developed. Interaction between imatinib and Schisandra lignans was unlikely to be of clinical importance. Conversely, S. sphenanthera at a clinically‐relevant dose results in a predicted three‐fold increase in bosutinib systemic exposure.
AbstractList Aims This study aimed to investigate the potential interaction between Schisandra sphenanthera, imatinib and bosutinib combining in vitro and in silico methods. Methods In vitro metabolism of imatinib and bosutinib using recombinant enzymes and human liver microsomes were investigated in the presence and absence of Schisandra lignans. Physiologically‐based pharmacokinetic (PBPK) models for the lignans accounting for reversible and mechanism‐based inhibitions and induction of CYP3A enzymes were built in the Simcyp Simulator (version 17) and evaluated for their capability to predict interactions with midazolam and tacrolimus. Their potential effect on systemic exposures of imatinib and bosutinib were predicted using PBPK in silico simulations. Results Schisantherin A and schisandrol B, but not schisandrin A, potently inhibited CYP3A4‐mediated metabolism of imatinib and bosutinib. All three compounds showed a strong reversible inhibition on CYP2C8 enzyme with ki of less than 0.5 μmol L−1. The verified PBPK models were able to describe the increase in systemic exposure of midazolam and tacrolimus due to co‐administration of S. sphenanthera, consistent with the reported changes in the corresponding clinical interaction study (AUC ratio of 2.0 vs 2.1 and 2.4 vs 2.1, respectively). The PBPK simulation predicted that at recommended dosing regimens of S. sphenanthera, co‐administration would result in an increase in bosutinib exposure (AUC ratio 3.0) but not in imatinib exposure. Conclusion PBPK models for Schisandra lignans were successfully developed. Interaction between imatinib and Schisandra lignans was unlikely to be of clinical importance. Conversely, S. sphenanthera at a clinically‐relevant dose results in a predicted three‐fold increase in bosutinib systemic exposure.
This study aimed to investigate the potential interaction between Schisandra sphenanthera, imatinib and bosutinib combining in vitro and in silico methods. In vitro metabolism of imatinib and bosutinib using recombinant enzymes and human liver microsomes were investigated in the presence and absence of Schisandra lignans. Physiologically-based pharmacokinetic (PBPK) models for the lignans accounting for reversible and mechanism-based inhibitions and induction of CYP3A enzymes were built in the Simcyp Simulator (version 17) and evaluated for their capability to predict interactions with midazolam and tacrolimus. Their potential effect on systemic exposures of imatinib and bosutinib were predicted using PBPK in silico simulations. Schisantherin A and schisandrol B, but not schisandrin A, potently inhibited CYP3A4-mediated metabolism of imatinib and bosutinib. All three compounds showed a strong reversible inhibition on CYP2C8 enzyme with k of less than 0.5 μmol L . The verified PBPK models were able to describe the increase in systemic exposure of midazolam and tacrolimus due to co-administration of S. sphenanthera, consistent with the reported changes in the corresponding clinical interaction study (AUC ratio of 2.0 vs 2.1 and 2.4 vs 2.1, respectively). The PBPK simulation predicted that at recommended dosing regimens of S. sphenanthera, co-administration would result in an increase in bosutinib exposure (AUC ratio 3.0) but not in imatinib exposure. PBPK models for Schisandra lignans were successfully developed. Interaction between imatinib and Schisandra lignans was unlikely to be of clinical importance. Conversely, S. sphenanthera at a clinically-relevant dose results in a predicted three-fold increase in bosutinib systemic exposure.
This study aimed to investigate the potential interaction between Schisandra sphenanthera, imatinib and bosutinib combining in vitro and in silico methods.AIMSThis study aimed to investigate the potential interaction between Schisandra sphenanthera, imatinib and bosutinib combining in vitro and in silico methods.In vitro metabolism of imatinib and bosutinib using recombinant enzymes and human liver microsomes were investigated in the presence and absence of Schisandra lignans. Physiologically-based pharmacokinetic (PBPK) models for the lignans accounting for reversible and mechanism-based inhibitions and induction of CYP3A enzymes were built in the Simcyp Simulator (version 17) and evaluated for their capability to predict interactions with midazolam and tacrolimus. Their potential effect on systemic exposures of imatinib and bosutinib were predicted using PBPK in silico simulations.METHODSIn vitro metabolism of imatinib and bosutinib using recombinant enzymes and human liver microsomes were investigated in the presence and absence of Schisandra lignans. Physiologically-based pharmacokinetic (PBPK) models for the lignans accounting for reversible and mechanism-based inhibitions and induction of CYP3A enzymes were built in the Simcyp Simulator (version 17) and evaluated for their capability to predict interactions with midazolam and tacrolimus. Their potential effect on systemic exposures of imatinib and bosutinib were predicted using PBPK in silico simulations.Schisantherin A and schisandrol B, but not schisandrin A, potently inhibited CYP3A4-mediated metabolism of imatinib and bosutinib. All three compounds showed a strong reversible inhibition on CYP2C8 enzyme with ki of less than 0.5 μmol L-1 . The verified PBPK models were able to describe the increase in systemic exposure of midazolam and tacrolimus due to co-administration of S. sphenanthera, consistent with the reported changes in the corresponding clinical interaction study (AUC ratio of 2.0 vs 2.1 and 2.4 vs 2.1, respectively). The PBPK simulation predicted that at recommended dosing regimens of S. sphenanthera, co-administration would result in an increase in bosutinib exposure (AUC ratio 3.0) but not in imatinib exposure.RESULTSSchisantherin A and schisandrol B, but not schisandrin A, potently inhibited CYP3A4-mediated metabolism of imatinib and bosutinib. All three compounds showed a strong reversible inhibition on CYP2C8 enzyme with ki of less than 0.5 μmol L-1 . The verified PBPK models were able to describe the increase in systemic exposure of midazolam and tacrolimus due to co-administration of S. sphenanthera, consistent with the reported changes in the corresponding clinical interaction study (AUC ratio of 2.0 vs 2.1 and 2.4 vs 2.1, respectively). The PBPK simulation predicted that at recommended dosing regimens of S. sphenanthera, co-administration would result in an increase in bosutinib exposure (AUC ratio 3.0) but not in imatinib exposure.PBPK models for Schisandra lignans were successfully developed. Interaction between imatinib and Schisandra lignans was unlikely to be of clinical importance. Conversely, S. sphenanthera at a clinically-relevant dose results in a predicted three-fold increase in bosutinib systemic exposure.CONCLUSIONPBPK models for Schisandra lignans were successfully developed. Interaction between imatinib and Schisandra lignans was unlikely to be of clinical importance. Conversely, S. sphenanthera at a clinically-relevant dose results in a predicted three-fold increase in bosutinib systemic exposure.
Author Boddy, Alan V.
McLachlan, Andrew J.
Adiwidjaja, Jeffry
AuthorAffiliation 3 University of South Australia Cancer Research Institute University of South Australia Adelaide SA Australia
1 Sydney Pharmacy School The University of Sydney Sydney NSW Australia
2 School of Pharmacy and Medical Sciences University of South Australia Adelaide SA Australia
AuthorAffiliation_xml – name: 2 School of Pharmacy and Medical Sciences University of South Australia Adelaide SA Australia
– name: 1 Sydney Pharmacy School The University of Sydney Sydney NSW Australia
– name: 3 University of South Australia Cancer Research Institute University of South Australia Adelaide SA Australia
Author_xml – sequence: 1
  givenname: Jeffry
  orcidid: 0000-0002-6781-2113
  surname: Adiwidjaja
  fullname: Adiwidjaja, Jeffry
  organization: The University of Sydney
– sequence: 2
  givenname: Alan V.
  orcidid: 0000-0002-8920-9286
  surname: Boddy
  fullname: Boddy, Alan V.
  organization: University of South Australia
– sequence: 3
  givenname: Andrew J.
  orcidid: 0000-0003-4674-0242
  surname: McLachlan
  fullname: McLachlan, Andrew J.
  email: andrew.mclachlan@sydney.edu.au
  organization: The University of Sydney
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32250458$$D View this record in MEDLINE/PubMed
BookMark eNp1UktuFDEQtVAQmQQWXAB5CRKd-NPuDwskGPGTIhEJWFu22z1tcNuN7c6odzlCjsYZOAlOZoIgAm8sVb16r6peHYED550G4DFGJzi_U6mmE1xSRO-BFaYVKwgm7ACsEEVVwQjDh-Aoxq8IYYor9gAcUkIYKlmzAj_OfdIuGWFh7wOcBhFGofw343QyChqXdBAqGe8ilDpttXbwkxpMFK4LAsZp0E64NGQUzCEofZyTcUY-h3JO0PkEzShuIi8yG7wwKXg46iSktyaOMKa5W6Dyo8ySHdyaNECR-1ii8dZvjBLWLj8vr6SIOX23v9F32lrjNlBMU_BCDQ_B_V7YqB_t_2Pw5e2bz-v3xdnHdx_Wr84KVWJGi6otZd2otiRViWTTaN0xnAOqo0yhGmuqWU8qgZRqRdtJ1RBN6pq2uO8VIooeg5c73mmWo-5UXmIQlk8hjxsW7oXhf2ecGfjGX_C6bBlp60zwdE8Q_PdZx8RHE1WeRjjt58gJbaqSZqdwhj75U-u3yK2NGXC6A6jgYwy658okce1aljaWY8SvD4XnQ-E3h5Irnt2puCX9F3bPvjVWL_8H8tfr813FL3Qc1e8
CitedBy_id crossref_primary_10_3390_molecules27248670
crossref_primary_10_1002_jssc_202300923
crossref_primary_10_1124_pharmrev_120_000106
crossref_primary_10_1007_s00280_023_04566_z
crossref_primary_10_1016_j_ejps_2024_106757
crossref_primary_10_3390_pharmaceutics15092231
crossref_primary_10_3390_ijms23094485
crossref_primary_10_1016_j_critrevonc_2024_104258
crossref_primary_10_1186_s13020_025_01156_4
crossref_primary_10_1080_03602532_2021_1917598
crossref_primary_10_1007_s40262_024_01404_0
crossref_primary_10_1177_10915818251345116
crossref_primary_10_1007_s00228_021_03266_y
Cites_doi 10.1177/0091270010387427
10.1002/jssc.201700588
10.1016/j.clpt.2006.05.003
10.1111/bph.13880
10.1111/j.1365-2125.2003.02041.x
10.1016/j.ejmech.2012.11.003
10.1002/jps.10128
10.1111/j.1365-2125.2009.03383.x
10.1111/j.2042-7158.2010.01202.x
10.1124/dmd.115.066969
10.1124/dmd.113.055236
10.3389/fphar.2018.00229
10.1124/dmd.115.065292
10.1124/dmd.116.074450
10.1111/bph.13729
10.2174/138920007779315053
10.1007/s40262-019-00736-6
10.1111/j.1476-5381.2011.01732.x
10.1002/med.21577
10.1124/dmd.112.046623
10.1038/psp.2013.69
10.1002/ptr.4702
10.3109/00498254.2010.506224
10.1124/dmd.114.057695
10.1124/dmd.117.076737
10.1186/2193-9616-1-9
10.1055/s-2007-967178
10.1172/JCI3703
10.1158/1078-0432.CCR-07-0346
10.1208/s12249-019-1444-6
10.2174/138920007782109733
10.1016/j.ejps.2009.12.002
10.1111/j.1476-5381.2010.00946.x
10.1200/JCO.2017.74.7162
10.2174/157488408785747656
10.1007/s11255-014-0801-3
10.1111/bph.13877
10.1139/y2012-080
10.1007/s40262-013-0089-y
10.1124/dmd.114.059451
10.1007/s11101-018-9582-0
10.1002/psp4.12392
10.1124/dmd.118.085498
10.1016/j.phymed.2012.11.008
10.1016/j.jep.2019.112103
10.1016/j.chroma.2008.09.070
10.1124/dmd.117.075408
10.1016/j.fitote.2014.08.001
10.1007/s11095-006-9210-3
10.1208/s12248-015-9827-4
10.1208/s12248-020-0418-7
10.1007/s00280-012-1998-4
10.1586/ecp.13.4
10.1124/dmd.104.000646
10.1080/00498254.2017.1422156
10.1111/bcpt.12914
10.1038/aps.2015.122
10.1055/s-2007-981559
10.1002/psp4.12047
10.1007/s13197-014-1472-x
10.1097/FTD.0000000000000079
10.2174/138920008784746382
10.3390/molecules22081298
10.1111/j.1365-2125.2007.02922.x
10.1056/NEJMoa1609324
10.3389/fphar.2019.01672
10.1186/s13045-018-0685-2
10.1124/dmd.113.051508
10.1124/dmd.115.066845
10.1093/nar/gkx1121
10.1002/psp4.12417
10.1002/jps.21802
10.1124/dmd.112.048017
10.1021/bi901578n
10.1007/s40262-016-0391-6
10.1080/00498254.2016.1208854
10.5414/CPP48224
10.3324/haematol.2011.045666
10.21037/tcr.2017.09.08
10.1002/cam4.627
ContentType Journal Article
Copyright 2020 The British Pharmacological Society
2020 The British Pharmacological Society.
Copyright_xml – notice: 2020 The British Pharmacological Society
– notice: 2020 The British Pharmacological Society.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1111/bcp.14303
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
DocumentTitleAlternate Adiwidjaja et al
EISSN 1365-2125
EndPage 2094
ExternalDocumentID PMC7495297
32250458
10_1111_bcp_14303
BCP14303
Genre article
Journal Article
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
24P
2WC
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
HF~
HGLYW
HYE
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LSO
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
ROL
RPM
RX1
SUPJJ
TEORI
TR2
UB1
V8K
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WQJ
WRC
WVDHM
WXI
WXSBR
X7M
XG1
YFH
YOC
YUY
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
NPM
7X8
5PM
ID FETCH-LOGICAL-c4153-694b78c942640b88eed5178ccd35c071e3e5f26a0cc9a9dbc82e277391ffc02c3
IEDL.DBID WIN
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000532519900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-5251
1365-2125
IngestDate Thu Aug 21 14:07:02 EDT 2025
Fri Jul 11 16:12:29 EDT 2025
Mon Jul 21 06:01:45 EDT 2025
Sat Nov 29 03:17:05 EST 2025
Tue Nov 18 22:04:15 EST 2025
Wed Jan 22 16:32:41 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords physiologically-based pharmacokinetic (PBPK)
modelling and simulation
herb-drug interactions
drug metabolism
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2020 The British Pharmacological Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4153-694b78c942640b88eed5178ccd35c071e3e5f26a0cc9a9dbc82e277391ffc02c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4674-0242
0000-0002-8920-9286
0000-0002-6781-2113
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/bcp.14303
PMID 32250458
PQID 2386433221
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7495297
proquest_miscellaneous_2386433221
pubmed_primary_32250458
crossref_citationtrail_10_1111_bcp_14303
crossref_primary_10_1111_bcp_14303
wiley_primary_10_1111_bcp_14303_BCP14303
PublicationCentury 2000
PublicationDate October 2020
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Hoboken
PublicationTitle British journal of clinical pharmacology
PublicationTitleAlternate Br J Clin Pharmacol
PublicationYear 2020
Publisher John Wiley and Sons Inc
Publisher_xml – name: John Wiley and Sons Inc
References 2017; 40
2010; 99
2017; 6
2018; 122
2012; 165
2013; 1
2013; 27
2017; 47
2013; 20
2017; 45
2019; 58
2008; 9
2019; 245
2013; 71
2019; 18
2007; 73
2008; 3
2020; 10
2013; 6
2016; 37
2012; 97
2009; 48
2018; 46
2004; 32
2018; 9
2013; 59
2014; 3
2019; 20
2015; 43
2013; 52
2007; 8
2011; 63
2002; 91
2007; 64
2007; 24
2014; 98
2018; 36
2016; 44
2009; 67
2019; 8
2015; 4
2010; 39
2017; 22
2015; 52
2013; 41
2019; 39
2011; 33
2014; 46
2006
2010; 161
2017; 174
2016; 18
2017; 376
2007; 13
2010; 40
2014; 42
2016; 55
2016; 5
2009; 1216
2006; 80
2012; 90
2010; 48
2011; 51
2019; 47
2004; 57
2019; 49
2014; 36
2017
2020; 22
2018; 11
1998; 102
2012; 40
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_76_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_78_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
Rowland‐Yeo K (e_1_2_10_49_1) 2010; 39
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_80_1
e_1_2_10_82_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_71_1
e_1_2_10_73_1
Yamakawa Y (e_1_2_10_39_1) 2011; 33
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_77_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
References_xml – volume: 48
  start-page: 11572
  issue: 48
  year: 2009
  end-page: 11581
  article-title: The structural basis of pregnane x receptor binding promiscuity
  publication-title: Biochemistry
– volume: 9
  start-page: 229
  year: 2018
  article-title: The cytochrome P450‐mediated metabolism alternation of four effective lignans from in carbon tetrachloride‐intoxicated rats and patients with advanced hepatocellular carcinoma
  publication-title: Front Pharmacol
– volume: 52
  start-page: 4537
  issue: 7
  year: 2015
  end-page: 4543
  article-title: Comparative inhibitory potential of selected dietary bioactive polyphenols, phytosterols on CYP3A4 and CYP2D6 with fluorometric high‐throughput screening
  publication-title: J Food Sci Technol
– volume: 80
  start-page: 192
  issue: 2
  year: 2006
  end-page: 201
  article-title: Association of enzyme and transporter genotypes with the pharmacokinetics of imatinib
  publication-title: Clin Pharmacol Ther
– volume: 174
  start-page: 672
  issue: 8
  year: 2017
  end-page: 688
  article-title: Schisandrol B protects against cholestatic liver injury through pregnane x receptors
  publication-title: Br J Pharmacol
– volume: 71
  start-page: 209
  issue: 1
  year: 2013
  end-page: 218
  article-title: Pharmacokinetic‐pharmacodynamic relationship of bosutinib in patients with chronic phase chronic myeloid leukemia
  publication-title: Cancer Chemother Pharmacol
– volume: 36
  start-page: 231
  issue: 3
  year: 2018
  end-page: 237
  article-title: Bosutinib versus imatinib for newly diagnosed chronic myeloid leukemia: results from the randomized BFORE trial
  publication-title: J Clin Oncol
– volume: 8
  start-page: 33
  issue: 1
  year: 2007
  end-page: 45
  article-title: Scaling factors for the extrapolation of metabolic drug clearance from in vitro data: reaching a consensus on values of human microsomal protein and hepatocellularity per gram of liver
  publication-title: Curr Drug Metab
– volume: 11
  start-page: 143
  issue: 1
  year: 2018
  article-title: Management of adverse events associated with bosutinib treatment of chronic‐phase chronic myeloid leukemia: expert panel review
  publication-title: J Hematol Oncol
– volume: 20
  start-page: 375
  issue: 3‐4
  year: 2013
  end-page: 379
  article-title: Effect of long‐term co‐administration of Wuzhi tablet ( extract) and prednisone on the pharmacokinetics of tacrolimus
  publication-title: Phytomedicine
– volume: 3
  start-page: 198
  issue: 3
  year: 2008
  end-page: 203
  article-title: Influence of enzyme‐inducing antiepileptic drugs on trough level of imatinib in glioblastoma patients
  publication-title: Curr Clin Pharmacol
– volume: 3
  year: 2014
  article-title: Physiologically based pharmacokinetic modeling framework for quantitative prediction of an herb–drug interaction
  publication-title: CPT Pharmacometrics Syst Pharmacol
– volume: 4
  start-page: 701
  issue: 12
  year: 2015
  end-page: 710
  article-title: Quantitative prediction and clinical evaluation of an unexplored herb–drug interaction mechanism in healthy volunteers
  publication-title: CPT Pharmacometrics Syst Pharmacol
– volume: 97
  start-page: 731
  issue: 5
  year: 2012
  end-page: 738
  article-title: Plasma exposure of imatinib and its correlation with clinical response in the tyrosine kinase inhibitor optimization and selectivity trial
  publication-title: Haematologica
– volume: 46
  start-page: 1977
  issue: 10
  year: 2014
  end-page: 1982
  article-title: Co‐administration of Wuzhi capsules and tacrolimus in patients with idiopathic membranous nephropathy: clinical efficacy and pharmacoeconomics
  publication-title: Int Urol Nephrol
– volume: 161
  start-page: 1059
  issue: 5
  year: 2010
  end-page: 1069
  article-title: Participation of CYP2C8 and CYP3A4 in the N‐demethylation of imatinib in human hepatic microsomes
  publication-title: Br J Pharmacol
– volume: 41
  start-page: 1433
  issue: 7
  year: 2013
  end-page: 1441
  article-title: Dynamic modeling of cytochrome P450 inhibition in vitro: impact of inhibitor depletion on IC shift
  publication-title: Drug Metab Dispos
– volume: 42
  start-page: 1202
  issue: 7
  year: 2014
  end-page: 1209
  article-title: assessment of time‐dependent inhibitory effects on CYP2C8 and CYP3A activity by fourteen protein kinase inhibitors
  publication-title: Drug Metab Dispos
– volume: 165
  start-page: 2787
  issue: 8
  year: 2012
  end-page: 2798
  article-title: Potent mechanism‐based inhibition of CYP3A4 by imatinib explains its liability to interact with CYP3A4 substrates
  publication-title: Br J Pharmacol
– volume: 45
  start-page: 1019
  issue: 9
  year: 2017
  end-page: 1026
  article-title: Prediction of clinically relevant herb–drug clearance interactions using sandwich‐cultured human hepatocytes: spp. case study
  publication-title: Drug Metab Dispos
– volume: 73
  start-page: 444
  issue: 5
  year: 2007
  end-page: 450
  article-title: Effects of lignans on P‐glycoprotein‐mediated drug efflux in human intestinal Caco‐2
  publication-title: Planta Med
– volume: 36
  start-page: 781
  issue: 6
  year: 2014
  end-page: 788
  article-title: Validation of an LC‐MS/MS method for quantitative analysis of the 5 bioactive components of Wuzhi capsule in human plasma samples
  publication-title: Ther Drug Monit
– volume: 91
  start-page: 1358
  issue: 5
  year: 2002
  end-page: 1370
  article-title: Prediction of pharmacokinetics prior to studies. II. Generic physiologically based pharmacokinetic models of drug disposition
  publication-title: J Pharm Sci
– volume: 48
  start-page: 224
  issue: 3
  year: 2010
  end-page: 229
  article-title: Effect of extract on the concentration of tacrolimus in the blood of liver transplant patients
  publication-title: Int J Clin Pharmacol Ther
– volume: 39
  start-page: 2105
  issue: 6
  year: 2019
  end-page: 2152
  article-title: Identifying the reactive metabolites of tyrosine kinase inhibitors in a comprehensive approach: implications for drug–drug interactions and hepatotoxicity
  publication-title: Med Res Rev
– volume: 98
  start-page: 241
  year: 2014
  end-page: 247
  article-title: Molecular mechanisms of antiproliferative effects induced by ‐derived dibenzocyclooctadiene lignans (+)‐deoxyschisandrin and (−)‐gomisin N in human tumour cell lines
  publication-title: Fitoterapia
– volume: 33
  start-page: 244
  issue: 2
  year: 2011
  end-page: 250
  article-title: Association of genetic polymorphisms in the influx transporter and the efflux transporter with imatinib pharmacokinetics in patients with chronic myeloid leukemia
  publication-title: Ther Drug Monit
– volume: 32
  start-page: 1351
  issue: 12
  year: 2004
  end-page: 1358
  article-title: Identification and characterization of potent CYP3A4 inhibitors in fruit extract
  publication-title: Drug Metab Dispos
– volume: 49
  start-page: 22
  issue: 1
  year: 2019
  end-page: 35
  article-title: Direct and quantitative evaluation of the major human CYP contribution (fmCYP) to drug clearance using the in vitro Silensomes model
  publication-title: Xenobiotica
– volume: 42
  start-page: 301
  issue: 3
  year: 2014
  end-page: 317
  article-title: Herb–drug interactions: challenges and opportunities for improved predictions
  publication-title: Drug Metab Dispos
– volume: 51
  start-page: 1721
  issue: 12
  year: 2011
  end-page: 1727
  article-title: Effect of ketoconazole on the pharmacokinetics of oral bosutinib in healthy subjects
  publication-title: J Clin Pharmacol
– volume: 22
  start-page: 1298
  issue: 8
  year: 2017
  article-title: Time‐ and NADPH‐dependent inhibition on CYP3A by gomisin A and the pharmacokinetic interactions between gomisin A and cyclophosphamide in rats
  publication-title: Molecules
– volume: 41
  start-page: 50
  issue: 1
  year: 2013
  end-page: 59
  article-title: Autoinhibition of CYP3A4 leads to important role of CYP2C8 in imatinib metabolism: variability in CYP2C8 activity may alter plasma concentrations and response
  publication-title: Drug Metab Dispos
– volume: 42
  start-page: 1675
  issue: 10
  year: 2014
  end-page: 1683
  article-title: Identification of diet‐derived constituents as potent inhibitors of intestinal glucuronidation
  publication-title: Drug Metab Dispos
– volume: 39
  start-page: 298
  issue: 5
  year: 2010
  end-page: 309
  article-title: Physiologically based mechanistic modelling to predict complex drug–drug interactions involving simultaneous competitive and time‐dependent enzyme inhibition by parent compound and its metabolite in both liver and gut: the effect of diltiazem on the time‐course of exposure to triazolam
  publication-title: Eur J Pharm Sci
– volume: 10
  start-page: 1672
  year: 2020
  article-title: Implementation of a physiologically based pharmacokinetic modelling approach to guide optimal dosing regimens for imatinib and potential drug interactions in paediatrics
  publication-title: Front Pharmacol
– volume: 44
  start-page: 337
  issue: 3
  year: 2016
  end-page: 342
  article-title: Hepatoprotective effects of extract against lithocholic acid‐induced cholestasis in male mice are associated with activation of the pregnane x receptor pathway and promotion of liver regeneration
  publication-title: Drug Metab Dispos
– volume: 122
  start-page: 331
  issue: 3
  year: 2018
  end-page: 340
  article-title: Prediction of drug–drug interaction between tacrolimus and principal ingredients of Wuzhi capsule in Chinese healthy volunteers using physiologically‐based pharmacokinetic modelling
  publication-title: Basic Clin Pharmacol Toxicol
– volume: 47
  start-page: 436
  issue: 4
  year: 2019
  end-page: 443
  article-title: Critical differences between enzyme sources in sensitivity to detect time‐dependent inactivation of CYP2C8
  publication-title: Drug Metab Dispos
– volume: 13
  start-page: 7394
  issue: 24
  year: 2007
  end-page: 7400
  article-title: Influence of CYP3A4 inhibition on the steady‐state pharmacokinetics of imatinib
  publication-title: Clin Cancer Res
– volume: 18
  start-page: 109
  year: 2019
  end-page: 128
  article-title: Phytochemical studies and biological activity of three Chinese species ( , and ): current findings and future applications
  publication-title: Phytochem Rev
– volume: 46
  start-page: D1091
  year: 2018
  end-page: D1106
  article-title: The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY
  publication-title: Nucl Acids Res
– volume: 52
  start-page: 1085
  issue: 12
  year: 2013
  end-page: 1100
  article-title: Differences in cytochrome P450‐mediated pharmacokinetics between Chinese and Caucasian populations predicted by mechanistic physiologically based pharmacokinetic modelling
  publication-title: Clin Pharmacokinet
– volume: 245
  start-page: 112103
  year: 2019
  article-title: Lignans from protect against lithocholic acid‐induced cholestasis by pregnane x receptor activation in mice
  publication-title: J Ethnopharmacol
– volume: 376
  start-page: 917
  issue: 10
  year: 2017
  end-page: 927
  article-title: Long‐term outcomes of imatinib treatment for chronic myeloid leukemia
  publication-title: N Engl J Med
– volume: 40
  start-page: 3430
  issue: 17
  year: 2017
  end-page: 3439
  article-title: A sensitive UHPLC‐MS/MS method for the simultaneous quantification of three lignans in human plasma and its application to a pharmacokinetic study
  publication-title: J Sep Sci
– volume: 63
  start-page: 214
  issue: 2
  year: 2011
  end-page: 221
  article-title: Mechanism of cytochrome P450‐3A inhibition by ketoconazole
  publication-title: J Pharm Pharmacol
– volume: 8
  start-page: 511
  issue: 7
  year: 2019
  end-page: 519
  article-title: The cancer drug fraction of metabolism database
  publication-title: CPT Pharmacometrics Syst Pharmacol
– volume: 99
  start-page: 486
  issue: 1
  year: 2010
  end-page: 514
  article-title: Physiologically based predictions of the impact of inhibition of intestinal and hepatic metabolism on human pharmacokinetics of CYP3A substrates
  publication-title: J Pharm Sci
– volume: 58
  start-page: 911
  issue: 7
  year: 2019
  end-page: 926
  article-title: Physiologically based pharmacokinetic modelling of hyperforin to predict drug interactions with St John's wort
  publication-title: Clin Pharmacokinet
– volume: 6
  start-page: 143
  year: 2013
  end-page: 157
  article-title: Predicting drug–drug interactions: application of physiologically based pharmacokinetic models under a systems biology approach
  publication-title: Expert Rev Clin Pharmacol
– volume: 40
  start-page: 713
  issue: 10
  year: 2010
  end-page: 720
  article-title: Sources of variability in ketoconazole inhibition of human cytochrome P450 3A in vitro
  publication-title: Xenobiotica
– volume: 6
  start-page: S1541
  year: 2017
  end-page: S1557
  article-title: Role of pharmacogenetics in personalised imatinib dosing
  publication-title: Trans Cancer Res
– volume: 90
  start-page: 941
  issue: 7
  year: 2012
  end-page: 945
  article-title: A study about drug combination therapy of extract and rapamycin in healthy subjects
  publication-title: Can J Physiol Pharmacol
– volume: 18
  start-page: 134
  issue: 1
  year: 2016
  end-page: 145
  article-title: Gomisin A is a novel isoform‐specific probe for the selective sensing of human cytochrome P450 3A4 in liver microsomes and living cells
  publication-title: AAPS J
– volume: 55
  start-page: 1191
  issue: 10
  year: 2016
  end-page: 1204
  article-title: Clinical pharmacokinetics and pharmacodynamics of bosutinib
  publication-title: Clin Pharmacokinet
– volume: 43
  start-page: 1934
  issue: 12
  year: 2015
  end-page: 1937
  article-title: The nonspecific binding of tyrosine kinase inhibitors to human liver microsomes
  publication-title: Drug Metab Dispos
– volume: 37
  start-page: 276
  issue: 2
  year: 2016
  end-page: 284
  article-title: Evaluating a physiologically based pharmacokinetic model for predicting the pharmacokinetics of midazolam in Chinese after oral administration
  publication-title: Acta Pharmacol Sin
– volume: 24
  start-page: 918
  year: 2007
  end-page: 933
  article-title: Mechanistic approaches to volume of distribution predictions: understanding the processes
  publication-title: Pharm Res
– volume: 47
  start-page: 562
  issue: 7
  year: 2017
  end-page: 575
  article-title: Direct and quantitative evaluation of the human CYP3A4 contribution (f ) to drug clearance using the in vitro SILENSOMES model
  publication-title: Xenobiotica
– volume: 64
  start-page: 469
  issue: 4
  year: 2007
  end-page: 475
  article-title: Effects of extract on the pharmacokinetics of tacrolimus in healthy volunteers
  publication-title: Br J Clin Pharmacol
– volume: 5
  start-page: 640
  issue: 4
  year: 2016
  end-page: 648
  article-title: Adjunctive Chinese herbal medicine therapy improves survival of patients with chronic myeloid leukemia: a nationwide population‐based cohort study
  publication-title: Cancer Med
– volume: 1
  start-page: 9
  issue: 1
  year: 2013
  article-title: The Simcyp population based simulator: architecture, implementation, and quality assurance
  publication-title: In Silico Pharmacol
– volume: 1216
  start-page: 1980
  issue: 11
  year: 2009
  end-page: 1990
  article-title: Analysis of and
  publication-title: J Chromatogr A
– volume: 73
  start-page: 1116
  issue: 10
  year: 2007
  end-page: 1126
  article-title: Composition and biological activity of different extracts from and
  publication-title: Planta Med
– volume: 67
  start-page: 541
  issue: 5
  year: 2009
  end-page: 546
  article-title: Effects of extract on the pharmacokinetics of midazolam in healthy volunteers
  publication-title: Br J Clin Pharmacol
– volume: 8
  start-page: 273
  issue: 5
  year: 2019
  end-page: 284
  article-title: A theoretical physiologically‐based pharmacokinetic approach to ascertain covariates explaining the large interpatient variability in tacrolimus disposition
  publication-title: CPT Pharmacometrics Syst Pharmacol
– year: 2006
– volume: 174
  start-page: S272
  year: 2017
  end-page: S359
  article-title: The Concise Guide to PHARMACOLOGY 2017/18: Enzymes
  publication-title: Br J Pharmacol
– volume: 44
  start-page: 821
  issue: 6
  year: 2016
  end-page: 832
  article-title: Prediction of drug–drug interactions arising from CYP3A induction using a physiologically based dynamic model
  publication-title: Drug Metab Dispos
– volume: 40
  start-page: 2026
  issue: 10
  year: 2012
  end-page: 2030
  article-title: Absolute oral bioavailability and metabolic turnover of beta‐sitosterol in healthy subjects
  publication-title: Drug Metab Dispos
– volume: 59
  start-page: 265
  year: 2013
  end-page: 273
  article-title: Lignans from Rehd. et Wils. and semisynthetic schisantherin A analogues: absolute configuration, and their estrogenic and anti‐proliferative activity
  publication-title: Eur J Med Chem
– volume: 20
  start-page: 247
  year: 2019
  article-title: The pharmacokinetic prediction of cyclosporin A after coadministration with Wuzhi capsule
  publication-title: AAPS PharmSciTech
– volume: 27
  start-page: 368
  issue: 3
  year: 2013
  end-page: 373
  article-title: Improvement of liver function in humans using a mixture of fruit extract and sesamin
  publication-title: Phytother Res
– volume: 57
  start-page: 473
  issue: 4
  year: 2004
  end-page: 486
  article-title: Database analyses for the prediction of drug–drug interactions from in vitro data
  publication-title: Br J Clin Pharmacol
– volume: 8
  start-page: 676
  issue: 7
  year: 2007
  end-page: 684
  article-title: Prediction of intestinal first‐pass drug metabolism
  publication-title: Curr Drug Metab
– volume: 9
  start-page: 384
  issue: 5
  year: 2008
  end-page: 394
  article-title: Cytochrome P450 turnover: regulation of synthesis and degradation, methods for determining rates, and implications for the prediction of drug interactions
  publication-title: Curr Drug Metab
– volume: 22
  start-page: 41
  issue: 2
  year: 2020
  article-title: Global sensitivity analysis of the Rodgers and Rowland model for prediction of tissue:plasma partitioning coefficients: assessment of the key physiological and physicochemical factors that determine small‐molecule tissue distribution
  publication-title: AAPS J
– volume: 102
  start-page: 1016
  issue: 5
  year: 1998
  end-page: 1023
  article-title: The human orphan nuclear receptor PXR is activated by compounds that regulate gene expression and cause drug interactions
  publication-title: J Clin Invest
– year: 2017
– volume: 174
  start-page: S208
  year: 2017
  end-page: S224
  article-title: The Concise Guide to PHARMACOLOGY 2017/18: Nuclear hormone receptors
  publication-title: Br J Pharmacol
– volume: 45
  start-page: 390
  issue: 4
  year: 2017
  end-page: 398
  article-title: Application of physiologically based pharmacokinetic modeling to the understanding of bosutinib pharmacokinetics: prediction of drug–drug and drug–disease interactions
  publication-title: Drug Metab Dispos
– volume: 45
  start-page: 1114
  issue: 11
  year: 2017
  end-page: 1119
  article-title: Wuzhi tablet ( extract) is a promising tacrolimus‐sparing agent for renal transplant recipients who are CYP3A5 expressers: a two‐phase prospective study
  publication-title: Drug Metab Dispos
– ident: e_1_2_10_75_1
  doi: 10.1177/0091270010387427
– ident: e_1_2_10_57_1
  doi: 10.1002/jssc.201700588
– ident: e_1_2_10_40_1
  doi: 10.1016/j.clpt.2006.05.003
– ident: e_1_2_10_65_1
  doi: 10.1111/bph.13880
– ident: e_1_2_10_43_1
  doi: 10.1111/j.1365-2125.2003.02041.x
– ident: e_1_2_10_6_1
  doi: 10.1016/j.ejmech.2012.11.003
– ident: e_1_2_10_8_1
  doi: 10.1002/jps.10128
– ident: e_1_2_10_17_1
  doi: 10.1111/j.1365-2125.2009.03383.x
– ident: e_1_2_10_42_1
  doi: 10.1111/j.2042-7158.2010.01202.x
– ident: e_1_2_10_3_1
  doi: 10.1124/dmd.115.066969
– ident: e_1_2_10_23_1
  doi: 10.1124/dmd.113.055236
– ident: e_1_2_10_12_1
  doi: 10.3389/fphar.2018.00229
– ident: e_1_2_10_44_1
  doi: 10.1124/dmd.115.065292
– ident: e_1_2_10_60_1
  doi: 10.1124/dmd.116.074450
– ident: e_1_2_10_83_1
  doi: 10.1111/bph.13729
– ident: e_1_2_10_52_1
  doi: 10.2174/138920007779315053
– ident: e_1_2_10_27_1
  doi: 10.1007/s40262-019-00736-6
– ident: e_1_2_10_70_1
  doi: 10.1111/j.1476-5381.2011.01732.x
– ident: e_1_2_10_71_1
  doi: 10.1002/med.21577
– ident: e_1_2_10_86_1
  doi: 10.1124/dmd.112.046623
– ident: e_1_2_10_66_1
– ident: e_1_2_10_24_1
  doi: 10.1038/psp.2013.69
– ident: e_1_2_10_4_1
  doi: 10.1002/ptr.4702
– ident: e_1_2_10_41_1
  doi: 10.3109/00498254.2010.506224
– ident: e_1_2_10_79_1
  doi: 10.1124/dmd.114.057695
– ident: e_1_2_10_20_1
  doi: 10.1124/dmd.117.076737
– ident: e_1_2_10_48_1
  doi: 10.1186/2193-9616-1-9
– ident: e_1_2_10_15_1
  doi: 10.1055/s-2007-967178
– ident: e_1_2_10_54_1
  doi: 10.1172/JCI3703
– ident: e_1_2_10_72_1
  doi: 10.1158/1078-0432.CCR-07-0346
– ident: e_1_2_10_67_1
  doi: 10.1208/s12249-019-1444-6
– ident: e_1_2_10_11_1
  doi: 10.2174/138920007782109733
– volume: 39
  start-page: 298
  issue: 5
  year: 2010
  ident: e_1_2_10_49_1
  article-title: Physiologically based mechanistic modelling to predict complex drug–drug interactions involving simultaneous competitive and time‐dependent enzyme inhibition by parent compound and its metabolite in both liver and gut: the effect of diltiazem on the time‐course of exposure to triazolam
  publication-title: Eur J Pharm Sci
  doi: 10.1016/j.ejps.2009.12.002
– ident: e_1_2_10_74_1
  doi: 10.1111/j.1476-5381.2010.00946.x
– ident: e_1_2_10_30_1
  doi: 10.1200/JCO.2017.74.7162
– ident: e_1_2_10_73_1
  doi: 10.2174/157488408785747656
– ident: e_1_2_10_21_1
  doi: 10.1007/s11255-014-0801-3
– ident: e_1_2_10_64_1
  doi: 10.1111/bph.13877
– ident: e_1_2_10_45_1
– ident: e_1_2_10_18_1
  doi: 10.1139/y2012-080
– ident: e_1_2_10_69_1
  doi: 10.1007/s40262-013-0089-y
– ident: e_1_2_10_47_1
  doi: 10.1124/dmd.114.059451
– ident: e_1_2_10_2_1
  doi: 10.1007/s11101-018-9582-0
– ident: e_1_2_10_58_1
  doi: 10.1002/psp4.12392
– ident: e_1_2_10_37_1
  doi: 10.1124/dmd.118.085498
– ident: e_1_2_10_62_1
  doi: 10.1016/j.phymed.2012.11.008
– ident: e_1_2_10_68_1
  doi: 10.1016/j.jep.2019.112103
– ident: e_1_2_10_53_1
  doi: 10.1016/j.chroma.2008.09.070
– ident: e_1_2_10_16_1
  doi: 10.1124/dmd.117.075408
– ident: e_1_2_10_78_1
– ident: e_1_2_10_7_1
  doi: 10.1016/j.fitote.2014.08.001
– ident: e_1_2_10_9_1
  doi: 10.1007/s11095-006-9210-3
– ident: e_1_2_10_13_1
  doi: 10.1208/s12248-015-9827-4
– ident: e_1_2_10_50_1
  doi: 10.1208/s12248-020-0418-7
– ident: e_1_2_10_81_1
  doi: 10.1007/s00280-012-1998-4
– ident: e_1_2_10_22_1
  doi: 10.1586/ecp.13.4
– ident: e_1_2_10_77_1
– ident: e_1_2_10_14_1
  doi: 10.1124/dmd.104.000646
– ident: e_1_2_10_38_1
  doi: 10.1080/00498254.2017.1422156
– volume: 33
  start-page: 244
  issue: 2
  year: 2011
  ident: e_1_2_10_39_1
  article-title: Association of genetic polymorphisms in the influx transporter SLCO1B3 and the efflux transporter ABCB1 with imatinib pharmacokinetics in patients with chronic myeloid leukemia
  publication-title: Ther Drug Monit
– ident: e_1_2_10_10_1
  doi: 10.1111/bcpt.12914
– ident: e_1_2_10_59_1
  doi: 10.1038/aps.2015.122
– ident: e_1_2_10_84_1
  doi: 10.1055/s-2007-981559
– ident: e_1_2_10_26_1
  doi: 10.1002/psp4.12047
– ident: e_1_2_10_85_1
  doi: 10.1007/s13197-014-1472-x
– ident: e_1_2_10_56_1
  doi: 10.1097/FTD.0000000000000079
– ident: e_1_2_10_80_1
  doi: 10.2174/138920008784746382
– ident: e_1_2_10_82_1
  doi: 10.3390/molecules22081298
– ident: e_1_2_10_19_1
  doi: 10.1111/j.1365-2125.2007.02922.x
– ident: e_1_2_10_28_1
  doi: 10.1056/NEJMoa1609324
– ident: e_1_2_10_61_1
  doi: 10.3389/fphar.2019.01672
– ident: e_1_2_10_29_1
  doi: 10.1186/s13045-018-0685-2
– ident: e_1_2_10_46_1
  doi: 10.1124/dmd.113.051508
– ident: e_1_2_10_51_1
  doi: 10.1124/dmd.115.066845
– ident: e_1_2_10_63_1
  doi: 10.1093/nar/gkx1121
– ident: e_1_2_10_76_1
  doi: 10.1002/psp4.12417
– ident: e_1_2_10_25_1
  doi: 10.1002/jps.21802
– ident: e_1_2_10_36_1
  doi: 10.1124/dmd.112.048017
– ident: e_1_2_10_55_1
  doi: 10.1021/bi901578n
– ident: e_1_2_10_34_1
  doi: 10.1007/s40262-016-0391-6
– ident: e_1_2_10_35_1
  doi: 10.1080/00498254.2016.1208854
– ident: e_1_2_10_5_1
  doi: 10.5414/CPP48224
– ident: e_1_2_10_32_1
  doi: 10.3324/haematol.2011.045666
– ident: e_1_2_10_33_1
  doi: 10.21037/tcr.2017.09.08
– ident: e_1_2_10_31_1
  doi: 10.1002/cam4.627
SSID ssj0013165
Score 2.420771
Snippet Aims This study aimed to investigate the potential interaction between Schisandra sphenanthera, imatinib and bosutinib combining in vitro and in silico...
This study aimed to investigate the potential interaction between Schisandra sphenanthera, imatinib and bosutinib combining in vitro and in silico methods. In...
This study aimed to investigate the potential interaction between Schisandra sphenanthera, imatinib and bosutinib combining in vitro and in silico...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2080
SubjectTerms drug metabolism
herb–drug interactions
modelling and simulation
Original
physiologically‐based pharmacokinetic (PBPK)
Title Potential for pharmacokinetic interactions between Schisandra sphenanthera and bosutinib, but not imatinib: in vitro metabolism study combined with a physiologically‐based pharmacokinetic modelling approach
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbcp.14303
https://www.ncbi.nlm.nih.gov/pubmed/32250458
https://www.proquest.com/docview/2386433221
https://pubmed.ncbi.nlm.nih.gov/PMC7495297
Volume 86
WOSCitedRecordID wos000532519900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1365-2125
  dateEnd: 20241208
  omitProxy: false
  ssIdentifier: ssj0013165
  issn: 0306-5251
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-2125
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013165
  issn: 0306-5251
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFLWGgQUbhjcdoLogNGLRSHk7gRUMVCCNqghmoLsodhxNRCepknSk7vgEPo1v4Eu413l0qoKExC5yHMeW7-Nc-_qYsReWcDPhJ8pAs-gbLve4IXiIT66ToDcw01ATaX854bNZMJ-H0R573Z-FafkhhgU30gxtr0nBE1FfUXIhl6jmjmb6tFyLbi_4-nG22UGw9DWSBIkx2PKsjlWIsniGL7d90Q7A3M2TvIpftQOaHvxX12-zWx3uhDetoNxhe6q4y46ilrh6PYHTzTmsegJHEG0ordf32M-obCitCFtAkAvL7uU37Al-AMQ5UbUnJGroMr_gszzP66RIqwRqSiTDKaR_ABaBKGv8U5GLCYhVA0XZQE7QGUteYWtwmTdVCReqQRFd5PUFaBZcwHFiIK9SoNVjSEAvy_TWe7H-9f0HOeV0p3_6uh86dw89hfp9djZ9f3r8wejugjAkQgzH8ENX8ECGBOBMEQTo2j0LC2TqeBJhknKUl9l-YkoZJmEqZGArm3MntLJMmrZ0HrD9oizUIwZpIhzlOgIBO06CLbG2wDAXDa2f8cDMRuxlLxWx7IjS6b6ORdwHTDh_sZ6_EXs-VF227CB_qvSsF60YdZc2ZJJClas6RrjkE3-cbY3Yw1bUhmbI0NIm9ojxLSEcKhAv-PabIj_X_OAcg1475DgOLYR_71n89jjSD4f_XvUxu2nTkoPOZ3zC9ptqpZ6yG_KyyetqzK7xeTBm1999mp6djLVG_gYHAD-3
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFA7LrqAvrtd1vB5FFh-m0Hta8UUXl10ch4Kj7ltp0pQtzrZD21mYN3-CP83f4C_xnPQyO4yC4FtJ0zQh5_Ll5OQLYy8t4WbCT5SBZtE3XO5xQ_AQn1wnQW9gpqEm0v4y4dNpcHYWRjvsTX8WpuWHGAJupBnaXpOCU0D6ipYLuUA9d4jqc89FoEEXN3w9na73ECx9kSSBYlxueVbHK0R5PMOnm95oC2JuZ0peRbDaBR3v_1_nb7GbHfSEt62s3GY7qrjDDqOWu3o1htn6KFY9hkOI1qzWq7vsZ1Q2lFmELSDOhUX38ht2BT8Aop2o2kMSNXTJX_BJnud1UqRVAjXlkuEs0j8Ai0CUNf6pyMUYxLKBomwgJ_SMJa-xNbjMm6qEC9WglM7z-gI0ES7gQHEtr1KgADIkoCMzvQGfr359_0F-Od3qn77xh47eQ8-ifo99Pn4_OzoxuusgDIkowzH80BU8kCFhOFMEAXp3z8ICmTqeRKSkHOVltp-YUoZJmAoZ2Mrm3AmtLJOmLZ37bLcoC_WAQZoIR7mOQMyOk2BLrC1wpYu21s94YGYj9qoXi1h2XOl0Zcc87tdMOH-xnr8RezFUXbQEIX-q9LyXrRjVl_ZkkkKVyzpGxOQThZxtjdhBK2tDM2RraR97xPiGFA4ViBp8802Rn2uKcI7rXjvkOA4thX_vWfzuKNIPD_-96jN2_WT2cRJPTqcfHrEbNkUgdHrjY7bbVEv1hF2Tl01eV0-1Qv4GLxdBTQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFA7LrIgv3i_j9Siy-DCF3tOKL7rroDgMRXdl30qTpmxxth3azsK8-RP8af4Gf4nnpJfZYRQE30qapgk5l-8kJ18Ye2kJNxN-ogw0i77hco8bgof45DoJegMzDTWR9tcZn8-D09Mw2mNv-rMwLT_EsOBGmqHtNSm4WqbZJS0Xcol67hDV575Ll8iM2P7R5-nJbLOLYOmrJAkWY8DlWR2zEGXyDB9v-6MdkLmbK3kZw2onNL3xf92_ya534BPettJyi-2p4jY7iFr26vUEjjeHseoJHEC04bVe32E_o7Kh3CJsAZEuLLuX37Ar-AEQ8UTVHpOooUv_gi_yLK-TIq0SqCmbDOeR_gFYBKKs8U9FLiYgVg0UZQM54WcseY2twUXeVCWcqwbldJHX56CpcAEHitG8SoGWkCEBvTbTm_DF-tf3H-SZ053-6Tt_6PA99Dzqd9nJ9P3x4QejuxDCkIgzHMMPXcEDGRKKM0UQoH_3LCyQqeNJxErKUV5m-4kpZZiEqZCBrWzOndDKMmna0rnHRkVZqAcM0kQ4ynUEonacBFtibYGxLlpbP-OBmY3Zq14sYtmxpdOlHYu4j5pw_mI9f2P2Yqi6bClC_lTpeS9bMSow7cokhSpXdYyYyScSOdsas_utrA3NkLWlnewx41tSOFQgcvDtN0V-pknCOUa-dshxHFoK_96z-N1hpB8e_nvVZ-xqdDSNZx_nnx6xazYtQej8xsds1FQr9YRdkRdNXldPO438DVc-QfY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Potential+for+pharmacokinetic+interactions+between+Schisandra+sphenanthera+and+bosutinib%2C+but+not+imatinib%3A+in+vitro+metabolism+study+combined+with+a+physiologically-based+pharmacokinetic+modelling+approach&rft.jtitle=British+journal+of+clinical+pharmacology&rft.au=Adiwidjaja%2C+Jeffry&rft.au=Boddy%2C+Alan+V&rft.au=McLachlan%2C+Andrew+J&rft.date=2020-10-01&rft.issn=1365-2125&rft.eissn=1365-2125&rft.volume=86&rft.issue=10&rft.spage=2080&rft_id=info:doi/10.1111%2Fbcp.14303&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-5251&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-5251&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-5251&client=summon