Understanding post-disaster population recovery patterns

Despite the rising importance of enhancing community resilience to disasters, our understandings on when, how and why communities are able to recover from such extreme events are limited. Here, we study the macroscopic population recovery patterns in disaster affected regions, by observing human mob...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the Royal Society interface Ročník 17; číslo 163; s. 20190532
Hlavní autoři: Yabe, Takahiro, Tsubouchi, Kota, Fujiwara, Naoya, Sekimoto, Yoshihide, Ukkusuri, Satish V
Médium: Journal Article
Jazyk:angličtina
Vydáno: England 01.02.2020
Témata:
ISSN:1742-5662, 1742-5662
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Despite the rising importance of enhancing community resilience to disasters, our understandings on when, how and why communities are able to recover from such extreme events are limited. Here, we study the macroscopic population recovery patterns in disaster affected regions, by observing human mobility trajectories of over 1.9 million mobile phone users across three countries before, during and after five major disasters. We find that, despite the diversity in socio-economic characteristics among the affected regions and the types of hazards, population recovery trends after significant displacement resemble similar patterns after all five disasters. Moreover, the heterogeneity in initial and long-term displacement rates across communities in the three countries were explained by a set of key common factors, including the community's median income level, population, housing damage rates and the connectedness to other cities. Such insights discovered from large-scale empirical data could assist policymaking in various disciplines for developing community resilience to disasters.
AbstractList Despite the rising importance of enhancing community resilience to disasters, our understandings on when, how and why communities are able to recover from such extreme events are limited. Here, we study the macroscopic population recovery patterns in disaster affected regions, by observing human mobility trajectories of over 1.9 million mobile phone users across three countries before, during and after five major disasters. We find that, despite the diversity in socio-economic characteristics among the affected regions and the types of hazards, population recovery trends after significant displacement resemble similar patterns after all five disasters. Moreover, the heterogeneity in initial and long-term displacement rates across communities in the three countries were explained by a set of key common factors, including the community's median income level, population, housing damage rates and the connectedness to other cities. Such insights discovered from large-scale empirical data could assist policymaking in various disciplines for developing community resilience to disasters.
Despite the rising importance of enhancing community resilience to disasters, our understandings on when, how and why communities are able to recover from such extreme events are limited. Here, we study the macroscopic population recovery patterns in disaster affected regions, by observing human mobility trajectories of over 1.9 million mobile phone users across three countries before, during and after five major disasters. We find that, despite the diversity in socio-economic characteristics among the affected regions and the types of hazards, population recovery trends after significant displacement resemble similar patterns after all five disasters. Moreover, the heterogeneity in initial and long-term displacement rates across communities in the three countries were explained by a set of key common factors, including the community's median income level, population, housing damage rates and the connectedness to other cities. Such insights discovered from large-scale empirical data could assist policymaking in various disciplines for developing community resilience to disasters.Despite the rising importance of enhancing community resilience to disasters, our understandings on when, how and why communities are able to recover from such extreme events are limited. Here, we study the macroscopic population recovery patterns in disaster affected regions, by observing human mobility trajectories of over 1.9 million mobile phone users across three countries before, during and after five major disasters. We find that, despite the diversity in socio-economic characteristics among the affected regions and the types of hazards, population recovery trends after significant displacement resemble similar patterns after all five disasters. Moreover, the heterogeneity in initial and long-term displacement rates across communities in the three countries were explained by a set of key common factors, including the community's median income level, population, housing damage rates and the connectedness to other cities. Such insights discovered from large-scale empirical data could assist policymaking in various disciplines for developing community resilience to disasters.
Author Sekimoto, Yoshihide
Ukkusuri, Satish V
Tsubouchi, Kota
Yabe, Takahiro
Fujiwara, Naoya
Author_xml – sequence: 1
  givenname: Takahiro
  surname: Yabe
  fullname: Yabe, Takahiro
  organization: Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, USA
– sequence: 2
  givenname: Kota
  surname: Tsubouchi
  fullname: Tsubouchi, Kota
  organization: Yahoo Japan Corporation, Tokyo, Japan
– sequence: 3
  givenname: Naoya
  surname: Fujiwara
  fullname: Fujiwara, Naoya
  organization: Institute of Industrial Science, University of Tokyo, Tokyo, Japan
– sequence: 4
  givenname: Yoshihide
  surname: Sekimoto
  fullname: Sekimoto, Yoshihide
  organization: Institute of Industrial Science, University of Tokyo, Tokyo, Japan
– sequence: 5
  givenname: Satish V
  surname: Ukkusuri
  fullname: Ukkusuri, Satish V
  organization: Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32070218$$D View this record in MEDLINE/PubMed
BookMark eNpNj01LxDAYhIOsuLvVq0fp0Uvrm6Rp0qMsfsGCF_dc0uSNVNq0Jq2w_96KK3iaGWYYeLZk5QePhFxTyClU6i7E1uUMaJWD4OyMbKgsWCbKkq3--TXZxvgBwCUX4oKsOQMJjKoNUQdvMcRJe9v693Qc4pTZNuo4YVjSOHd6agefBjTDF4ZjOuppqXy8JOdOdxGvTpqQw-PD2-45278-vezu95kpqGCZE0JyY6kW0iAYNChtAU5ZaFC6ykigtqlKwxYYaZ1TmhaoLSi3rDlKlpDb398xDJ8zxqnu22iw67THYY4140IJJX9QE3Jzms5Nj7YeQ9vrcKz_aNk353RaEg
CitedBy_id crossref_primary_10_1016_j_ijdrr_2024_104931
crossref_primary_10_1016_j_scs_2022_104213
crossref_primary_10_1038_s41598_023_48130_4
crossref_primary_10_1038_s41598_022_20384_4
crossref_primary_10_3390_w16071066
crossref_primary_10_1007_s41885_025_00175_7
crossref_primary_10_1007_s42001_025_00414_7
crossref_primary_10_1038_s44304_025_00104_4
crossref_primary_10_1145_3449042
crossref_primary_10_1016_j_cities_2022_104104
crossref_primary_10_1140_epjp_s13360_024_05142_x
crossref_primary_10_1016_j_compenvurbsys_2024_102160
crossref_primary_10_1038_s41467_024_48624_3
crossref_primary_10_1016_j_scs_2024_105863
crossref_primary_10_1038_s41598_020_75033_5
crossref_primary_10_1177_23998083221090246
crossref_primary_10_1016_j_cie_2022_108283
crossref_primary_10_3390_logistics7030058
crossref_primary_10_1017_dap_2024_94
crossref_primary_10_1016_j_ijdrr_2021_102047
crossref_primary_10_5194_nhess_23_317_2023
crossref_primary_10_3390_ijerph22050733
crossref_primary_10_1016_j_ijdrr_2024_104681
crossref_primary_10_1061_NHREFO_NHENG_1930
crossref_primary_10_1016_j_scs_2024_106023
crossref_primary_10_1145_3512998
crossref_primary_10_1057_s41599_021_00824_8
crossref_primary_10_1177_23998083231167433
crossref_primary_10_1057_s41599_023_02312_7
crossref_primary_10_1016_j_ijdrr_2023_104036
crossref_primary_10_1038_s41598_021_81001_4
crossref_primary_10_20965_jdr_2022_p0541
crossref_primary_10_1016_j_ijdrr_2022_103500
crossref_primary_10_26443_seismica_v3i2_1374
crossref_primary_10_1109_ACCESS_2021_3137651
crossref_primary_10_1016_j_trd_2025_104648
crossref_primary_10_1140_epjds_s13688_025_00540_2
crossref_primary_10_1016_j_pdisas_2024_100396
crossref_primary_10_1073_pnas_2111997119
crossref_primary_10_1016_j_ijdrr_2025_105608
crossref_primary_10_1016_j_compenvurbsys_2022_101777
crossref_primary_10_1177_2399808320980744
crossref_primary_10_1016_j_scs_2021_103237
crossref_primary_10_1016_j_gloenvcha_2023_102743
crossref_primary_10_1016_j_ijdrr_2025_105219
crossref_primary_10_1016_j_ijdrr_2024_104625
crossref_primary_10_1038_s41598_024_59814_w
crossref_primary_10_1088_2634_4505_ac7251
crossref_primary_10_1186_s40645_023_00569_9
crossref_primary_10_1016_j_ress_2022_108366
crossref_primary_10_1007_s43621_025_01342_2
crossref_primary_10_3390_rs14051269
crossref_primary_10_1016_j_apgeog_2023_102997
crossref_primary_10_1177_23998083221075634
ContentType Journal Article
DBID NPM
7X8
DOI 10.1098/rsif.2019.0532
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1742-5662
ExternalDocumentID 32070218
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
18M
29L
2WC
4.4
53G
5GY
5VS
ACGFO
ACQIA
ACRPL
ADBBV
ADDVE
ADNMO
AENEX
AFFVI
AGPVY
AJZGM
ALMA_UNASSIGNED_HOLDINGS
ALMYZ
AOIJS
BAWUL
BGBPD
BTFSW
C1A
CAG
COF
CS3
DIK
DU5
EBS
EJD
GX1
H13
HYE
HZ~
KQ8
MRS
MV1
NPM
NSAHA
O9-
P2P
ROL
RPM
RRY
S70
TR2
V1E
W8F
XSW
7X8
ID FETCH-LOGICAL-c4152-f5573cd1a57ce0cece7d40f8d0be7f9c701db96c20987dff8a14ead08fe0c3e72
IEDL.DBID 7X8
ISSN 1742-5662
IngestDate Fri Jul 11 09:10:51 EDT 2025
Thu Apr 03 06:58:24 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 163
Keywords population recovery
human mobility
mobile phone data
disaster resilience
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4152-f5573cd1a57ce0cece7d40f8d0be7f9c701db96c20987dff8a14ead08fe0c3e72
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2019.0532
PMID 32070218
PQID 2358587174
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2358587174
pubmed_primary_32070218
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of the Royal Society interface
PublicationTitleAlternate J R Soc Interface
PublicationYear 2020
SSID ssj0037355
Score 2.529794
Snippet Despite the rising importance of enhancing community resilience to disasters, our understandings on when, how and why communities are able to recover from such...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 20190532
Title Understanding post-disaster population recovery patterns
URI https://www.ncbi.nlm.nih.gov/pubmed/32070218
https://www.proquest.com/docview/2358587174
Volume 17
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMrAA5VleChIDDKaJ41cmhBAVA1QdKOoWOY4tdUkCLkj8e85uWliQkFgsJYqT6PT5fOezvw-hC1pkxArOMU19I4XGWcwYtpwRLQtATNiM-fIohkM5mWSjdsHNtdsqFz4xOOqy1n6NvO-PdDKI7gW9aV6xV43y1dVWQmMVdVIIZTyqxWRZRUhFGlRPoQ8kXJyTJWmj7EMmHgg8s2svjfB7eBmmmcHWf39wG222AWZ0O0dEF62Yagd12yHsosuWZ_pqF8nxz4MtUVO7GS6nTnnqBLhaCHtFPmcGwH9GTeDirNweGg_un-8ecCukgLWfn7FlTKS6TBQT2sTaaCNKGltZxoURNtMiTsoi45qAZURprVQJBYTF0sLTqRFkH61VdWUOUSRiqgtLEqu0olwRZeAGZxZemFD4Sg-dL6yTA1B99UFVpn53-bd9euhgbuK8mTNq5CkBzwPBxtEfeh-jDeJz3rBz-gR1LAxTc4rW9cds6t7OAgKgHY6evgBmkruu
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+post-disaster+population+recovery+patterns&rft.jtitle=Journal+of+the+Royal+Society+interface&rft.au=Yabe%2C+Takahiro&rft.au=Tsubouchi%2C+Kota&rft.au=Fujiwara%2C+Naoya&rft.au=Sekimoto%2C+Yoshihide&rft.date=2020-02-01&rft.issn=1742-5662&rft.eissn=1742-5662&rft.volume=17&rft.issue=163&rft.spage=20190532&rft_id=info:doi/10.1098%2Frsif.2019.0532&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-5662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-5662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-5662&client=summon