A deep‐learning‐based computer vision solution for construction vehicle detection
This paper aims at providing researchers and engineering professionals from the first step of solution development to the last step of solution deployment with a practical and comprehensive deep‐learning‐based solution for detecting construction vehicles. This paper places particular focus on the of...
Saved in:
| Published in: | Computer-aided civil and infrastructure engineering Vol. 35; no. 7; pp. 753 - 767 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken
Wiley Subscription Services, Inc
01.07.2020
|
| Subjects: | |
| ISSN: | 1093-9687, 1467-8667 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper aims at providing researchers and engineering professionals from the first step of solution development to the last step of solution deployment with a practical and comprehensive deep‐learning‐based solution for detecting construction vehicles. This paper places particular focus on the often‐ignored last step of deployment. Our first phase of solution development involved data preparation, model selection, model training, and model validation. Given the necessarily small‐scale nature of construction vehicle image datasets, we propose as detection model an improved version of the single shot detector MobileNet, which is suitable for embedded devices. Our study's second phase comprised model optimization, application‐specific embedded system selection, economic analysis, and field implementation. Several embedded devices were proposed and compared. Results including a consistent above 90% mean average precision confirm the superior real‐time performance of our proposed solutions. Finally, the practical field implementation of our proposed solutions was investigated. This study validates the practicality of deep‐learning‐based object detection solutions for construction scenarios. Moreover, the detailed information provided by the current study can be employed for several purposes such as safety monitoring, productivity assessments, and managerial decision making. |
|---|---|
| AbstractList | This paper aims at providing researchers and engineering professionals from the first step of solution development to the last step of solution deployment with a practical and comprehensive deep‐learning‐based solution for detecting construction vehicles. This paper places particular focus on the often‐ignored last step of deployment. Our first phase of solution development involved data preparation, model selection, model training, and model validation. Given the necessarily small‐scale nature of construction vehicle image datasets, we propose as detection model an improved version of the single shot detector MobileNet, which is suitable for embedded devices. Our study's second phase comprised model optimization, application‐specific embedded system selection, economic analysis, and field implementation. Several embedded devices were proposed and compared. Results including a consistent above 90% mean average precision confirm the superior real‐time performance of our proposed solutions. Finally, the practical field implementation of our proposed solutions was investigated. This study validates the practicality of deep‐learning‐based object detection solutions for construction scenarios. Moreover, the detailed information provided by the current study can be employed for several purposes such as safety monitoring, productivity assessments, and managerial decision making. |
| Author | Haghighat, Arya Sharma, Anuj Arabi, Saeed |
| Author_xml | – sequence: 1 givenname: Saeed surname: Arabi fullname: Arabi, Saeed organization: Iowa State University – sequence: 2 givenname: Arya surname: Haghighat fullname: Haghighat, Arya organization: Iowa State University – sequence: 3 givenname: Anuj surname: Sharma fullname: Sharma, Anuj email: anujs@iastate.edu organization: Iowa State University |
| BookMark | eNp9kE1OwzAQhS0EEm1hwwkisUNK8V-ddllVBSoVsaFry3bG4CpNgp0UdccROCMnwWlYIcRs_DT-3oz9hui0rEpA6IrgMYl1u3MGxoROGD5BA8JFlk6FyE6jxjOWzsQ0O0fDELY4FudsgDbzJAeovz4-C1C-dOVLlFoFyBNT7eq2AZ_sXXBVmYSqaJtO2MrHyzI0vjXHxh5enSkgTmrg2LlAZ1YVAS5_zhHa3C2fFw_p-ul-tZivU8PJBKdZlgMnFtsZzjPKNVWCGJHTnDMNYKeEKcP1LMuZUNpq4Fozqkxuu58Jo9kIXfdza1-9tRAaua1aX8aVknKCJ5QzRiOFe8r4KgQPVhrXqO6djVeukATLLjzZhSeP4UXLzS9L7d1O-cPfMOnhd1fA4R9SPq4Wy97zDctNhbU |
| CitedBy_id | crossref_primary_10_1186_s13677_024_00649_1 crossref_primary_10_3390_buildings14082299 crossref_primary_10_1016_j_autcon_2021_103760 crossref_primary_10_1061__ASCE_SC_1943_5576_0000598 crossref_primary_10_1111_mice_12750 crossref_primary_10_1111_mice_12749 crossref_primary_10_1155_2021_2785225 crossref_primary_10_1016_j_eswa_2023_121317 crossref_primary_10_3390_electronics11172748 crossref_primary_10_1002_itl2_312 crossref_primary_10_3390_cryptography6020016 crossref_primary_10_1016_j_array_2025_100473 crossref_primary_10_3390_s23094466 crossref_primary_10_1016_j_cscm_2023_e01952 crossref_primary_10_1111_mice_13299 crossref_primary_10_1016_j_matpr_2023_06_031 crossref_primary_10_1061_JCCEE5_CPENG_5548 crossref_primary_10_1111_mice_13295 crossref_primary_10_3390_buildings13082093 crossref_primary_10_1109_TITS_2024_3410240 crossref_primary_10_1111_mice_12767 crossref_primary_10_1016_j_autcon_2023_105016 crossref_primary_10_1111_mice_12914 crossref_primary_10_3390_designs4040054 crossref_primary_10_3390_s22124397 crossref_primary_10_1016_j_patrec_2022_04_012 crossref_primary_10_3390_en14217202 crossref_primary_10_1016_j_knosys_2022_109402 crossref_primary_10_1111_mice_13143 crossref_primary_10_20965_jaciii_2023_p1086 crossref_primary_10_1109_TITS_2023_3328195 crossref_primary_10_3390_s21082834 crossref_primary_10_1016_j_autcon_2021_104034 crossref_primary_10_1108_ECAM_11_2024_1517 crossref_primary_10_3390_buildings13041074 crossref_primary_10_1111_mice_12695 crossref_primary_10_1061_JCEMD4_COENG_14388 crossref_primary_10_1061__ASCE_CP_1943_5487_0000937 crossref_primary_10_2478_amns_2024_3133 crossref_primary_10_3390_e23111490 crossref_primary_10_1109_JIOT_2024_3492801 crossref_primary_10_1111_mice_12746 crossref_primary_10_1016_j_vlsi_2023_102127 crossref_primary_10_1016_j_autcon_2022_104440 crossref_primary_10_1111_mice_12983 crossref_primary_10_1016_j_aei_2024_102866 crossref_primary_10_1049_itr2_12342 crossref_primary_10_1016_j_aei_2023_101875 crossref_primary_10_1109_ACCESS_2021_3063028 crossref_primary_10_1016_j_autcon_2021_103966 crossref_primary_10_1007_s12065_022_00723_0 crossref_primary_10_1093_jcde_qwad019 crossref_primary_10_1109_ACCESS_2024_3450582 crossref_primary_10_3390_buildings12122167 crossref_primary_10_1016_j_autcon_2021_104092 crossref_primary_10_1111_mice_12672 crossref_primary_10_3389_fbuil_2020_575738 crossref_primary_10_1111_mice_12710 crossref_primary_10_3390_app10144991 crossref_primary_10_1016_j_autcon_2020_103444 crossref_primary_10_3390_rs13193859 crossref_primary_10_1111_mice_12795 crossref_primary_10_1111_mice_13366 crossref_primary_10_3390_s23218723 crossref_primary_10_1061_JCEMD4_COENG_15259 crossref_primary_10_3390_rs16173295 crossref_primary_10_1016_j_sasc_2024_200146 crossref_primary_10_1109_TITS_2022_3165156 crossref_primary_10_3233_ICA_210671 crossref_primary_10_1088_1755_1315_1101_3_032035 crossref_primary_10_1017_S0263574722000339 crossref_primary_10_1007_s42421_023_00086_7 crossref_primary_10_1080_13467581_2025_2520468 crossref_primary_10_1111_mice_13018 crossref_primary_10_1080_15732479_2022_2053552 crossref_primary_10_1002_stc_3135 crossref_primary_10_1016_j_aap_2022_106594 crossref_primary_10_1186_s44147_024_00411_z crossref_primary_10_1111_mice_12838 crossref_primary_10_1109_ACCESS_2020_2997946 crossref_primary_10_1016_j_autcon_2022_104193 crossref_primary_10_1111_mice_12891 crossref_primary_10_1109_ACCESS_2022_3165821 crossref_primary_10_1061_JCCEE5_CPENG_5857 crossref_primary_10_1108_CI_12_2024_0381 crossref_primary_10_1155_2024_1032674 crossref_primary_10_3390_app132413169 crossref_primary_10_1063_5_0142657 crossref_primary_10_1111_mice_12811 crossref_primary_10_3390_su132413579 crossref_primary_10_1016_j_cscm_2024_e04051 crossref_primary_10_3233_ICA_210649 crossref_primary_10_1111_mice_12808 crossref_primary_10_1111_mice_12807 crossref_primary_10_1111_mice_12660 crossref_primary_10_3233_ICA_210651 crossref_primary_10_1016_j_cscm_2022_e01372 crossref_primary_10_3233_ICA_210655 crossref_primary_10_1016_j_autcon_2021_103892 crossref_primary_10_1016_j_autcon_2025_106483 crossref_primary_10_1111_mice_12940 crossref_primary_10_1111_mice_13115 crossref_primary_10_3390_app10207347 crossref_primary_10_1111_mice_12819 crossref_primary_10_3390_s23218740 |
| Cites_doi | 10.1016/j.jcsr.2018.09.024 10.1111/mice.12387 10.1016/j.autcon.2018.07.011 10.1109/TPAMI.2015.2437384 10.1111/mice.12359 10.1109/TNNLS.2014.2330900 10.1145/2647868.2654889 10.1609/aaai.v31i1.11231 10.1111/mice.12351 10.1016/j.autcon.2017.09.018 10.1109/CVPR.2016.308 10.1007/s11263-015-0816-y 10.1061/(ASCE)CP.1943-5487.0000562 10.1111/mice.12363 10.1061/(ASCE)CP.1943-5487.0000756 10.1111/mice.12141 10.1111/mice.12425 10.1111/mice.12334 10.1111/mice.12297 10.1111/j.1467-8667.2010.00690.x 10.1038/nature14539 10.1016/j.engstruct.2018.02.031 10.1061/(ASCE)CO.1943-7862.0000974 10.1109/CVPR.2015.7298594 10.1016/j.aei.2018.05.003 10.1016/j.engstruct.2019.109721 10.1061/(ASCE)CP.1943-5487.0000731 10.1007/s11263-009-0275-4 10.1016/j.autcon.2017.11.002 10.1016/j.autcon.2018.02.018 10.1007/978-3-319-46448-0_2 10.1016/j.autcon.2012.12.002 10.1177/0361198118777631 10.1109/TNNLS.2016.2582924 10.1111/0885-9507.00219 10.1016/j.autcon.2018.11.033 10.1007/s11831-014-9135-7 10.1561/1500000017 10.1111/mice.12367 10.1016/j.autcon.2018.11.028 10.1007/978-3-319-10602-1_48 10.1111/mice.12263 10.1111/mice.12313 |
| ContentType | Journal Article |
| Copyright | 2020 2020 Computer‐Aided Civil and Infrastructure Engineering |
| Copyright_xml | – notice: 2020 – notice: 2020 Computer‐Aided Civil and Infrastructure Engineering |
| DBID | AAYXX CITATION 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1111/mice.12530 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Computer Science |
| EISSN | 1467-8667 |
| EndPage | 767 |
| ExternalDocumentID | 10_1111_mice_12530 MICE12530 |
| Genre | article |
| GroupedDBID | ..I .3N .4S .DC .GA 05W 0R~ 10A 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABFSI ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AHBTC AHEFC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 E.L EAD EAP EBS EDO EJD EMK EST ESX F00 F01 F04 FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RJQFR RX1 SAMSI SUPJJ TN5 TUS UB1 VH1 W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 ZZTAW ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c4150-77de41f0f90d724b2a61c6d2d43beef813ac4b97d36abfbe4bb32acdf14676cb3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 112 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000507278700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1093-9687 |
| IngestDate | Fri Jul 25 04:27:00 EDT 2025 Tue Nov 18 21:42:07 EST 2025 Sat Nov 29 05:42:07 EST 2025 Wed Jan 22 16:33:27 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4150-77de41f0f90d724b2a61c6d2d43beef813ac4b97d36abfbe4bb32acdf14676cb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2410524332 |
| PQPubID | 2045171 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2410524332 crossref_citationtrail_10_1111_mice_12530 crossref_primary_10_1111_mice_12530 wiley_primary_10_1111_mice_12530_MICE12530 |
| PublicationCentury | 2000 |
| PublicationDate | July 2020 |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 07 year: 2020 text: July 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Computer-aided civil and infrastructure engineering |
| PublicationYear | 2020 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2018; 164 2015; 141 2015; 38 2019; 99 2010 2015; 521 2019; 34 2015; 30 2016; 30 2018; 85 2018; 86 2019; 200 2018; 25 2010; 88 2018; 2672 2015; 26 2015; 115 2013; 32 2019b 2019a 2017; 32 2019 2018; 91 2018 2017 2016 2001; 16 2015 2011; 26 2014 2018; 94 2018; 33 2016; 28 2018; 32 2010; 4 2018; 37 2016; 23 2019; 153 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 Girshick R. (e_1_2_6_23_1) 2015 Kuznetsova A. (e_1_2_6_36_1) 2018 Chakraborty P. (e_1_2_6_11_1) 2018 e_1_2_6_19_1 Ren S. (e_1_2_6_55_1) 2015 e_1_2_6_13_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 Howard A. G. (e_1_2_6_27_1) 2017 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 Huang J. (e_1_2_6_28_1) 2017 Simonyan K. (e_1_2_6_59_1) 2014 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_45_1 Lin T. Y. (e_1_2_6_40_1) 2017 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_10_1 e_1_2_6_31_1 He K. (e_1_2_6_26_1) 2016 e_1_2_6_50_1 Ioffe S. (e_1_2_6_30_1) 2015 Dai J. (e_1_2_6_14_1) 2016 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 Kingma D. P. (e_1_2_6_34_1) 2014 e_1_2_6_61_1 Amezquita‐Sanchez J. P. (e_1_2_6_4_1) 2018; 25 e_1_2_6_8_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_2_1 Raspberrypi.org (e_1_2_6_54_1) 2019 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_46_1 |
| References_xml | – volume: 153 start-page: 286 year: 2019 end-page: 297 article-title: Investigation of fatigue in steel sign‐support structures under diurnal temperature changes publication-title: Journal of Constructional Steel Research – volume: 4 start-page: 175 issue: 3 year: 2010 end-page: 246 article-title: Web crawling publication-title: Foundations and Trends R in Information Retrieval – volume: 200 year: 2019 article-title: Multi‐stressor fatigue assessment of steel sign‐support structures: A case study in Iowa publication-title: Engineering Structures – volume: 521 start-page: 436 issue: 7553 year: 2015 end-page: 444 article-title: Deep learning publication-title: Nature – volume: 30 issue: 4 year: 2016 article-title: Vision‐based object‐centric safety assessment using fuzzy inference: Monitoring struck‐by accidents with moving objects publication-title: Journal of Computing in Civil Engineering – start-page: 21 year: 2016 end-page: 37 – volume: 33 start-page: 638 issue: 8 year: 2018 end-page: 654 article-title: A fast detection method via region‐based fully convolutional neural networks for shield tunnel lining defects publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 25 start-page: 2913 issue: 6 year: 2018 end-page: 2925 article-title: Wireless smart sensors for monitoring the health condition of civil infrastructure publication-title: Scientia Iranica A – volume: 33 start-page: 731 issue: 9 year: 2018 end-page: 747 article-title: Autonomous structural visual inspection using region‐based deep learning for detecting multiple damage types publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 28 start-page: 2222 issue: 10 year: 2016 end-page: 2232 article-title: LSTM: A search space odyssey publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 2672 start-page: 222 issue: 45 year: 2018 end-page: 231 article-title: Traffic congestion detection from camera images using deep convolution neural networks publication-title: Transportation Research Record: Journal of the Transportation Research Board – year: 2019a – volume: 23 start-page: 1 issue: 1 year: 2016 end-page: 15 article-title: Signal processing techniques for vibration‐based health monitoring of smart structures publication-title: Archives of Computational Methods in Engineering – year: 2017 article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications publication-title: arXiv:1704.04861 – volume: 33 start-page: 748 issue: 9 year: 2018 end-page: 768 article-title: Deep transfer learning for image‐based structural damage recognition publication-title: Computer‐Aided Civil and Infrastructure Engineering – year: 2014 – volume: 33 start-page: 527 issue: 7 year: 2018 end-page: 544 article-title: Unified vision‐based methodology for simultaneous concrete defect detection and geolocalization publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 38 start-page: 142 issue: 1 year: 2015 end-page: 158 article-title: Region‐based convolutional networks for accurate object detection and segmentation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 37 start-page: 139 year: 2018 end-page: 149 article-title: Automated detection of workers and heavy equipment on construction sites: A convolutional neural network approach publication-title: Advanced Engineering Informatics – start-page: 7310 year: 2017 end-page: 7311 article-title: Speed/accuracy trade‐offs for modern convolutional object detectors publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 16 start-page: 126 issue: 2 year: 2001 end-page: 142 article-title: Neural networks in civil engineering: 1989–2000 publication-title: Computer‐Aided Civil and Infrastructure Engineering – year: 2019b – volume: 141 issue: 9 year: 2015 article-title: Hardhat‐wearing detection for enhancing on‐site safety of construction workers publication-title: Journal of Construction Engineering and Management – year: 2019 – volume: 85 start-page: 1 year: 2018 end-page: 9 article-title: Detecting non‐hardhat‐use by a deep learning method from far‐field surveillance videos publication-title: Automation in Construction – volume: 88 start-page: 303 year: 2010 end-page: 338 article-title: The PASCAL visual object classes (VOC) challenge publication-title: International Journal of Computer Vision – start-page: 2980 year: 2017 end-page: 2988 article-title: Focal loss for dense object detection publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 32 start-page: 805 issue: 10 year: 2017 end-page: 819 article-title: Automated pixel‐level pavement crack detection on 3D asphalt surfaces using a deep‐learning network publication-title: Computer‐Aided Civil and Infrastructure Engineering – start-page: 770 year: 2016 end-page: 778 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 1840 year: 2018 end-page: 1845 article-title: Freeway traffic incident detection from cameras: A semi‐supervised learning approach publication-title: 21st International Conference on Intelligent Transportation Systems (ITSC) – volume: 30 start-page: 759 issue: 10 year: 2015 end-page: 770 article-title: Vision‐based automated crack detection for bridge inspection publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 32 start-page: 1025 issue: 12 year: 2017 end-page: 1046 article-title: Structural damage detection with automatic feature‐extraction through deep learning publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 32 start-page: 24 year: 2013 end-page: 37 article-title: Automated 2D detection of construction equipment and workers from site video streams using histograms of oriented gradients and colors publication-title: Automation in Construction – volume: 26 start-page: 368 issue: 5 year: 2011 end-page: 380 article-title: Automated object identification using optical video cameras on construction sites publication-title: Computer‐Aided Civil and Infrastructure Engineering – year: 2018 article-title: The Open Images dataset V4: Unified image classification, object detection, and visual relationship detection at scale publication-title: arXiv:1811.00982 – volume: 34 start-page: 415 issue: 5 year: 2019 end-page: 430 article-title: Image‐based post‐disaster inspection of reinforced concrete bridge systems using deep learning with Bayesian optimization publication-title: Computer‐Aided Civil and Infrastructure Engineering – start-page: 2818 year: 2016 end-page: 2826 – year: 2014 article-title: Very deep convolutional networks for large‐scale image recognition publication-title: arXiv:1409.1556 – volume: 91 start-page: 53 year: 2018 end-page: 61 article-title: Falls from heights: A computer vision‐based approach for safety harness detection publication-title: Automation in Construction – start-page: 91 year: 2015 end-page: 99 article-title: Faster R‐CNN: Towards real‐time object detection with region proposal networks publication-title: Advances in Neural Information Processing Systems – start-page: 379 year: 2016 end-page: 387 article-title: R‐FCN: Object detection via region‐based fully convolutional networks publication-title: Proceedings of the 30th International Conference on Neural Information Processing Systems – year: 2016 – start-page: 675 year: 2014 end-page: 678 article-title: Caffe: Convolutional architecture for fast feature embedding publication-title: Proceedings of the 22nd ACM International Conference on Multimedia – volume: 99 start-page: 52 issue: March year: 2019 end-page: 58 article-title: Autonomous concrete crack detection using deep fully convolutional neural network publication-title: Automation in Construction – year: 2010 – volume: 32 issue: 3 year: 2018 article-title: Recognizing diverse construction activities in site images via relevance networks of construction‐related objects detected by convolutional neural networks publication-title: Journal of Computing in Civil Engineering – volume: 99 start-page: 27 issue: November year: 2019 end-page: 38 article-title: Automation in construction detection of construction workers under varying poses and changing background in image sequences via very deep residual networks publication-title: Automation in Construction – volume: 86 start-page: 118 year: 2018 end-page: 124 article-title: Automation in construction. A deep hybrid learning model to detect unsafe behavior: Integrating convolution neural networks and long short‐term memory publication-title: Automation in Construction – year: 2014 article-title: Adam: A method for stochastic optimization publication-title: arXiv:1412.6980 – start-page: 1440 year: 2015 end-page: 1448 article-title: Fast R-CNN publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 164 start-page: 305 issue: 2 year: 2018 end-page: 315 article-title: Fatigue analysis of sign‐support structures during transportation under road‐induced excitations publication-title: Engineering Structures – volume: 32 start-page: 361 issue: 5 year: 2017 end-page: 378 article-title: Deep learning‐based crack damage detection using convolutional neural networks publication-title: Computer‐Aided Civil and Infrastructure Engineering – start-page: 1 year: 2015 end-page: 9 – start-page: 740 year: 2014 end-page: 755 – volume: 26 start-page: 1019 issue: 5 year: 2015 end-page: 1034 article-title: Transfer learning for visual categorization: A survey publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 33 start-page: 443 issue: 6 year: 2018 end-page: 458 article-title: Deep learning for accelerated seismic reliability analysis of transportation networks publication-title: Computer‐Aided Civil and Infrastructure Engineering – start-page: 448 year: 2015 end-page: 456 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: International Conference on Machine Learning – volume: 94 start-page: 360 year: 2018 end-page: 370 article-title: Towards efficient and objective work sampling: Recognizing workers’ activities in site surveillance videos with two‐stream convolutional networks publication-title: Automation in Construction – year: 2017 – volume: 32 issue: 2 year: 2018 article-title: Detecting construction equipment using a region‐based fully convolutional network and transfer learning publication-title: Journal of Computing in Civil Engineering – volume: 33 start-page: 1127 issue: 12 year: 2018 end-page: 1141 article-title: Road damage detection and classification using deep neural networks with smartphone images publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 115 start-page: 211 issue: 3 year: 2015 end-page: 252 article-title: ImageNet large scale visual recognition challenge publication-title: International Journal of Computer Vision – volume: 25 start-page: 2913 issue: 6 year: 2018 ident: e_1_2_6_4_1 article-title: Wireless smart sensors for monitoring the health condition of civil infrastructure publication-title: Scientia Iranica A – ident: e_1_2_6_7_1 doi: 10.1016/j.jcsr.2018.09.024 – ident: e_1_2_6_46_1 doi: 10.1111/mice.12387 – ident: e_1_2_6_45_1 doi: 10.1016/j.autcon.2018.07.011 – ident: e_1_2_6_29_1 – ident: e_1_2_6_24_1 doi: 10.1109/TPAMI.2015.2437384 – ident: e_1_2_6_48_1 doi: 10.1111/mice.12359 – ident: e_1_2_6_57_1 doi: 10.1109/TNNLS.2014.2330900 – ident: e_1_2_6_31_1 doi: 10.1145/2647868.2654889 – ident: e_1_2_6_62_1 doi: 10.1609/aaai.v31i1.11231 – ident: e_1_2_6_38_1 doi: 10.1111/mice.12351 – ident: e_1_2_6_19_1 doi: 10.1016/j.autcon.2017.09.018 – start-page: 1840 year: 2018 ident: e_1_2_6_11_1 article-title: Freeway traffic incident detection from cameras: A semi‐supervised learning approach publication-title: 21st International Conference on Intelligent Transportation Systems (ITSC) – start-page: 770 year: 2016 ident: e_1_2_6_26_1 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 379 year: 2016 ident: e_1_2_6_14_1 article-title: R‐FCN: Object detection via region‐based fully convolutional networks publication-title: Proceedings of the 30th International Conference on Neural Information Processing Systems – ident: e_1_2_6_64_1 doi: 10.1109/CVPR.2016.308 – year: 2018 ident: e_1_2_6_36_1 article-title: The Open Images dataset V4: Unified image classification, object detection, and visual relationship detection at scale publication-title: arXiv:1811.00982 – ident: e_1_2_6_56_1 doi: 10.1007/s11263-015-0816-y – ident: e_1_2_6_58_1 – ident: e_1_2_6_33_1 doi: 10.1061/(ASCE)CP.1943-5487.0000562 – start-page: 91 year: 2015 ident: e_1_2_6_55_1 article-title: Faster R‐CNN: Towards real‐time object detection with region proposal networks publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_6_22_1 doi: 10.1111/mice.12363 – ident: e_1_2_6_44_1 doi: 10.1061/(ASCE)CP.1943-5487.0000756 – ident: e_1_2_6_67_1 doi: 10.1111/mice.12141 – year: 2014 ident: e_1_2_6_59_1 article-title: Very deep convolutional networks for large‐scale image recognition publication-title: arXiv:1409.1556 – ident: e_1_2_6_39_1 doi: 10.1111/mice.12425 – ident: e_1_2_6_9_1 doi: 10.1111/mice.12334 – ident: e_1_2_6_50_1 – start-page: 2980 year: 2017 ident: e_1_2_6_40_1 article-title: Focal loss for dense object detection publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume-title: Teach, learn, and make with Raspberry Pi— Raspberry Pi year: 2019 ident: e_1_2_6_54_1 – ident: e_1_2_6_68_1 doi: 10.1111/mice.12297 – ident: e_1_2_6_12_1 doi: 10.1111/j.1467-8667.2010.00690.x – ident: e_1_2_6_37_1 doi: 10.1038/nature14539 – ident: e_1_2_6_6_1 doi: 10.1016/j.engstruct.2018.02.031 – ident: e_1_2_6_65_1 – ident: e_1_2_6_53_1 doi: 10.1061/(ASCE)CO.1943-7862.0000974 – ident: e_1_2_6_51_1 – ident: e_1_2_6_63_1 doi: 10.1109/CVPR.2015.7298594 – ident: e_1_2_6_21_1 doi: 10.1016/j.aei.2018.05.003 – ident: e_1_2_6_5_1 doi: 10.1016/j.engstruct.2019.109721 – ident: e_1_2_6_32_1 doi: 10.1061/(ASCE)CP.1943-5487.0000731 – ident: e_1_2_6_18_1 doi: 10.1007/s11263-009-0275-4 – ident: e_1_2_6_15_1 doi: 10.1016/j.autcon.2017.11.002 – ident: e_1_2_6_20_1 doi: 10.1016/j.autcon.2018.02.018 – year: 2014 ident: e_1_2_6_34_1 article-title: Adam: A method for stochastic optimization publication-title: arXiv:1412.6980 – start-page: 448 year: 2015 ident: e_1_2_6_30_1 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: International Conference on Machine Learning – ident: e_1_2_6_60_1 – start-page: 1440 year: 2015 ident: e_1_2_6_23_1 article-title: Fast R-CNN publication-title: Proceedings of the IEEE International Conference on Computer Vision – ident: e_1_2_6_43_1 doi: 10.1007/978-3-319-46448-0_2 – ident: e_1_2_6_47_1 doi: 10.1016/j.autcon.2012.12.002 – ident: e_1_2_6_17_1 – ident: e_1_2_6_10_1 doi: 10.1177/0361198118777631 – ident: e_1_2_6_25_1 doi: 10.1109/TNNLS.2016.2582924 – ident: e_1_2_6_2_1 doi: 10.1111/0885-9507.00219 – year: 2017 ident: e_1_2_6_27_1 article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications publication-title: arXiv:1704.04861 – ident: e_1_2_6_61_1 doi: 10.1016/j.autcon.2018.11.033 – ident: e_1_2_6_13_1 – ident: e_1_2_6_3_1 doi: 10.1007/s11831-014-9135-7 – ident: e_1_2_6_52_1 doi: 10.1561/1500000017 – ident: e_1_2_6_66_1 doi: 10.1111/mice.12367 – ident: e_1_2_6_16_1 doi: 10.1016/j.autcon.2018.11.028 – ident: e_1_2_6_35_1 – ident: e_1_2_6_41_1 doi: 10.1007/978-3-319-10602-1_48 – ident: e_1_2_6_8_1 doi: 10.1111/mice.12263 – ident: e_1_2_6_42_1 doi: 10.1111/mice.12313 – start-page: 7310 year: 2017 ident: e_1_2_6_28_1 article-title: Speed/accuracy trade‐offs for modern convolutional object detectors publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – ident: e_1_2_6_49_1 |
| SSID | ssj0000443 |
| Score | 2.5798323 |
| Snippet | This paper aims at providing researchers and engineering professionals from the first step of solution development to the last step of solution deployment with... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 753 |
| SubjectTerms | Computer vision Decision making Deep learning Economic analysis Economic models Electronic devices Embedded systems Image detection Object recognition Optimization |
| Title | A deep‐learning‐based computer vision solution for construction vehicle detection |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.12530 https://www.proquest.com/docview/2410524332 |
| Volume | 35 |
| WOSCitedRecordID | wos000507278700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1467-8667 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000443 issn: 1093-9687 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSgMxEB5K60EPVqtitUpALwor2yRmd8FLUYsHKSIWels2fyrIWtzSs4_gM_okJrtJt4II4i0kkxCSmcyXMPkG4LifSEESmgUxP6cBFSEPONb2cw5WhAhiQHZcJpuIRqN4MknuGnDh_8JU_BCLBzdrGeV5bQ0848WSkdts7WfGPRNzYW9ho7i0Ca2r--H4tj6JqQuwT0iQsDhy9KQ2kqfu_d0h1ShzGauWzmbY_t80N2DdgUw0qLRiExoq70DbAU7kzLkwVT6ng6_rwNoSQeEWjAdIKjX9fP9w2SUeTdE6PomE71r9Tkdeh5FBwaaxJqZFc_Vkp2FGmpVxX_k2jIfXD5c3gUvEEAjj30ODwKWifR3qJJQRphxnrC-YxJISrpSO-yQTlCeRJCzjmivKOcGZkNoew0xwsgPN_DVXu4Cw5FrFQjCVmUYtuBmVMCYNbuMZproLJ343UuFYym2yjJfU31bsgqblgnbhaCE7rbg5fpTq-U1NnX0WKbbRrdhyt3XhtNy-X0ZIjUFcl6W9vwjvwyq2l_MytrcHTbPs6gBWxHz2XLwdOl39Aqbc8Qw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSsMwFD7IJqgXTqfidGpBbxQqbZKl7eXQjYlziGywu9L8qSB1uLFrH8Fn9ElM2nSdIIJ4F_JHyDkn50s4-Q7AmR8JjiOSuCFrEZdwj7kMKfM5B0mMOdYgO8ySTQSDQTgeR_c2Nsf8hcn5IRYPbsYysvPaGLh5kF6ycpOu_VL7Z6xv7FWi9ahVger1Q3fUL49iYiPsI-xGNAwsP6kJ5SlHf_dIJcxcBquZt-nW_rnOLdi0MNNp53qxDSsyrUPNQk7HGvRUVxVZHYq6OmwsURTuwKjtCCknn-8fNr_Eoy4a1yccXgzN_6c7hRY7GgfrxpKa1pnLJ7MMPdMsi_xKd2HU7Qyveq5NxeBy7eE9jcGFJL7yVOSJABGGEupzKpAgmEmpQh8nnLAoEJgmTDFJGMMo4UKZg5hyhvegkr6mch8cJJiSIedUJrpRcaZnxZQKjdxYgohqwHkhjphbnnKTLuMlLu4rZkPjbEMbcLroO8nZOX7s1SykGlsLncbIxLciw97WgItMfr_MEGuT6GSlg790PoG13vCuH_dvBreHsI7MVT2L9G1CRYtAHsEqn8-ep2_HVnG_AAnA9Pw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFL2IE9EHp1NxOrWgLwqVNsnS9nG4FcUxhjjYW2m-VJA63NizP8Hf6C8xadN1ggjiW0iTEHJzck_KzbkA534kOI5I6oasTVzCPeYypMzjHCQx5liT7DBPNhEMBuF4HA1tbI55C1PoQyx-uBlk5Oe1AbicCLWEcpOu_Ur7Z6xv7DXSjqjGZa17H4_61VFMbIR9hN2IhoHVJzWhPFXv7x6popnLZDX3NnH9n_Pchi1LM51OsS92YEVmDahbyulYQE91VZnVoaxrwOaSROEujDqOkHLy-f5h80s86qJxfcLhZdfifbpT7mJH82D9sZKmdebyyUxDjzTLI7-yPRjFvYfrG9emYnC59vCe5uBCEl95KvJEgAhDKfU5FUgQzKRUoY9TTlgUCExTppgkjGGUcqHMQUw5w_uwmr1m8gAcJJiSIedUpvqj4kyPiikVmrmxFBHVhIvSHAm3OuUmXcZLUt5XzIIm-YI24WzRdlKoc_zYqlVaNbEInSbIxLcio97WhMvcfr-MkGhI9PLS4V8an8L6sBsn_dvB3RFsIHNTzwN9W7CqLSCPYY3PZ8_TtxO7b78Apt30dw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep%E2%80%90learning%E2%80%90based+computer+vision+solution+for+construction+vehicle+detection&rft.jtitle=Computer-aided+civil+and+infrastructure+engineering&rft.au=Arabi%2C+Saeed&rft.au=Haghighat%2C+Arya&rft.au=Sharma%2C+Anuj&rft.date=2020-07-01&rft.issn=1093-9687&rft.eissn=1467-8667&rft.volume=35&rft.issue=7&rft.spage=753&rft.epage=767&rft_id=info:doi/10.1111%2Fmice.12530&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_mice_12530 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-9687&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-9687&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-9687&client=summon |