A deep‐learning‐based computer vision solution for construction vehicle detection

This paper aims at providing researchers and engineering professionals from the first step of solution development to the last step of solution deployment with a practical and comprehensive deep‐learning‐based solution for detecting construction vehicles. This paper places particular focus on the of...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer-aided civil and infrastructure engineering Ročník 35; číslo 7; s. 753 - 767
Hlavní autori: Arabi, Saeed, Haghighat, Arya, Sharma, Anuj
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken Wiley Subscription Services, Inc 01.07.2020
Predmet:
ISSN:1093-9687, 1467-8667
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper aims at providing researchers and engineering professionals from the first step of solution development to the last step of solution deployment with a practical and comprehensive deep‐learning‐based solution for detecting construction vehicles. This paper places particular focus on the often‐ignored last step of deployment. Our first phase of solution development involved data preparation, model selection, model training, and model validation. Given the necessarily small‐scale nature of construction vehicle image datasets, we propose as detection model an improved version of the single shot detector MobileNet, which is suitable for embedded devices. Our study's second phase comprised model optimization, application‐specific embedded system selection, economic analysis, and field implementation. Several embedded devices were proposed and compared. Results including a consistent above 90% mean average precision confirm the superior real‐time performance of our proposed solutions. Finally, the practical field implementation of our proposed solutions was investigated. This study validates the practicality of deep‐learning‐based object detection solutions for construction scenarios. Moreover, the detailed information provided by the current study can be employed for several purposes such as safety monitoring, productivity assessments, and managerial decision making.
AbstractList This paper aims at providing researchers and engineering professionals from the first step of solution development to the last step of solution deployment with a practical and comprehensive deep‐learning‐based solution for detecting construction vehicles. This paper places particular focus on the often‐ignored last step of deployment. Our first phase of solution development involved data preparation, model selection, model training, and model validation. Given the necessarily small‐scale nature of construction vehicle image datasets, we propose as detection model an improved version of the single shot detector MobileNet, which is suitable for embedded devices. Our study's second phase comprised model optimization, application‐specific embedded system selection, economic analysis, and field implementation. Several embedded devices were proposed and compared. Results including a consistent above 90% mean average precision confirm the superior real‐time performance of our proposed solutions. Finally, the practical field implementation of our proposed solutions was investigated. This study validates the practicality of deep‐learning‐based object detection solutions for construction scenarios. Moreover, the detailed information provided by the current study can be employed for several purposes such as safety monitoring, productivity assessments, and managerial decision making.
Author Haghighat, Arya
Sharma, Anuj
Arabi, Saeed
Author_xml – sequence: 1
  givenname: Saeed
  surname: Arabi
  fullname: Arabi, Saeed
  organization: Iowa State University
– sequence: 2
  givenname: Arya
  surname: Haghighat
  fullname: Haghighat, Arya
  organization: Iowa State University
– sequence: 3
  givenname: Anuj
  surname: Sharma
  fullname: Sharma, Anuj
  email: anujs@iastate.edu
  organization: Iowa State University
BookMark eNp9kE1OwzAQhS0EEm1hwwkisUNK8V-ddllVBSoVsaFry3bG4CpNgp0UdccROCMnwWlYIcRs_DT-3oz9hui0rEpA6IrgMYl1u3MGxoROGD5BA8JFlk6FyE6jxjOWzsQ0O0fDELY4FudsgDbzJAeovz4-C1C-dOVLlFoFyBNT7eq2AZ_sXXBVmYSqaJtO2MrHyzI0vjXHxh5enSkgTmrg2LlAZ1YVAS5_zhHa3C2fFw_p-ul-tZivU8PJBKdZlgMnFtsZzjPKNVWCGJHTnDMNYKeEKcP1LMuZUNpq4Fozqkxuu58Jo9kIXfdza1-9tRAaua1aX8aVknKCJ5QzRiOFe8r4KgQPVhrXqO6djVeukATLLjzZhSeP4UXLzS9L7d1O-cPfMOnhd1fA4R9SPq4Wy97zDctNhbU
CitedBy_id crossref_primary_10_1186_s13677_024_00649_1
crossref_primary_10_3390_buildings14082299
crossref_primary_10_1016_j_autcon_2021_103760
crossref_primary_10_1061__ASCE_SC_1943_5576_0000598
crossref_primary_10_1111_mice_12750
crossref_primary_10_1111_mice_12749
crossref_primary_10_1155_2021_2785225
crossref_primary_10_1016_j_eswa_2023_121317
crossref_primary_10_3390_electronics11172748
crossref_primary_10_1002_itl2_312
crossref_primary_10_3390_cryptography6020016
crossref_primary_10_1016_j_array_2025_100473
crossref_primary_10_3390_s23094466
crossref_primary_10_1016_j_cscm_2023_e01952
crossref_primary_10_1111_mice_13299
crossref_primary_10_1016_j_matpr_2023_06_031
crossref_primary_10_1061_JCCEE5_CPENG_5548
crossref_primary_10_1111_mice_13295
crossref_primary_10_3390_buildings13082093
crossref_primary_10_1109_TITS_2024_3410240
crossref_primary_10_1111_mice_12767
crossref_primary_10_1016_j_autcon_2023_105016
crossref_primary_10_1111_mice_12914
crossref_primary_10_3390_designs4040054
crossref_primary_10_3390_s22124397
crossref_primary_10_1016_j_patrec_2022_04_012
crossref_primary_10_3390_en14217202
crossref_primary_10_1016_j_knosys_2022_109402
crossref_primary_10_1111_mice_13143
crossref_primary_10_20965_jaciii_2023_p1086
crossref_primary_10_1109_TITS_2023_3328195
crossref_primary_10_3390_s21082834
crossref_primary_10_1016_j_autcon_2021_104034
crossref_primary_10_1108_ECAM_11_2024_1517
crossref_primary_10_3390_buildings13041074
crossref_primary_10_1111_mice_12695
crossref_primary_10_1061_JCEMD4_COENG_14388
crossref_primary_10_1061__ASCE_CP_1943_5487_0000937
crossref_primary_10_2478_amns_2024_3133
crossref_primary_10_3390_e23111490
crossref_primary_10_1109_JIOT_2024_3492801
crossref_primary_10_1111_mice_12746
crossref_primary_10_1016_j_vlsi_2023_102127
crossref_primary_10_1016_j_autcon_2022_104440
crossref_primary_10_1111_mice_12983
crossref_primary_10_1016_j_aei_2024_102866
crossref_primary_10_1049_itr2_12342
crossref_primary_10_1016_j_aei_2023_101875
crossref_primary_10_1109_ACCESS_2021_3063028
crossref_primary_10_1016_j_autcon_2021_103966
crossref_primary_10_1007_s12065_022_00723_0
crossref_primary_10_1093_jcde_qwad019
crossref_primary_10_1109_ACCESS_2024_3450582
crossref_primary_10_3390_buildings12122167
crossref_primary_10_1016_j_autcon_2021_104092
crossref_primary_10_1111_mice_12672
crossref_primary_10_3389_fbuil_2020_575738
crossref_primary_10_1111_mice_12710
crossref_primary_10_3390_app10144991
crossref_primary_10_1016_j_autcon_2020_103444
crossref_primary_10_3390_rs13193859
crossref_primary_10_1111_mice_12795
crossref_primary_10_1111_mice_13366
crossref_primary_10_3390_s23218723
crossref_primary_10_1061_JCEMD4_COENG_15259
crossref_primary_10_3390_rs16173295
crossref_primary_10_1016_j_sasc_2024_200146
crossref_primary_10_1109_TITS_2022_3165156
crossref_primary_10_3233_ICA_210671
crossref_primary_10_1088_1755_1315_1101_3_032035
crossref_primary_10_1017_S0263574722000339
crossref_primary_10_1007_s42421_023_00086_7
crossref_primary_10_1080_13467581_2025_2520468
crossref_primary_10_1111_mice_13018
crossref_primary_10_1080_15732479_2022_2053552
crossref_primary_10_1002_stc_3135
crossref_primary_10_1016_j_aap_2022_106594
crossref_primary_10_1186_s44147_024_00411_z
crossref_primary_10_1111_mice_12838
crossref_primary_10_1109_ACCESS_2020_2997946
crossref_primary_10_1016_j_autcon_2022_104193
crossref_primary_10_1111_mice_12891
crossref_primary_10_1109_ACCESS_2022_3165821
crossref_primary_10_1061_JCCEE5_CPENG_5857
crossref_primary_10_1108_CI_12_2024_0381
crossref_primary_10_1155_2024_1032674
crossref_primary_10_3390_app132413169
crossref_primary_10_1063_5_0142657
crossref_primary_10_1111_mice_12811
crossref_primary_10_3390_su132413579
crossref_primary_10_1016_j_cscm_2024_e04051
crossref_primary_10_3233_ICA_210649
crossref_primary_10_1111_mice_12808
crossref_primary_10_1111_mice_12807
crossref_primary_10_1111_mice_12660
crossref_primary_10_3233_ICA_210651
crossref_primary_10_1016_j_cscm_2022_e01372
crossref_primary_10_3233_ICA_210655
crossref_primary_10_1016_j_autcon_2021_103892
crossref_primary_10_1016_j_autcon_2025_106483
crossref_primary_10_1111_mice_12940
crossref_primary_10_1111_mice_13115
crossref_primary_10_3390_app10207347
crossref_primary_10_1111_mice_12819
crossref_primary_10_3390_s23218740
Cites_doi 10.1016/j.jcsr.2018.09.024
10.1111/mice.12387
10.1016/j.autcon.2018.07.011
10.1109/TPAMI.2015.2437384
10.1111/mice.12359
10.1109/TNNLS.2014.2330900
10.1145/2647868.2654889
10.1609/aaai.v31i1.11231
10.1111/mice.12351
10.1016/j.autcon.2017.09.018
10.1109/CVPR.2016.308
10.1007/s11263-015-0816-y
10.1061/(ASCE)CP.1943-5487.0000562
10.1111/mice.12363
10.1061/(ASCE)CP.1943-5487.0000756
10.1111/mice.12141
10.1111/mice.12425
10.1111/mice.12334
10.1111/mice.12297
10.1111/j.1467-8667.2010.00690.x
10.1038/nature14539
10.1016/j.engstruct.2018.02.031
10.1061/(ASCE)CO.1943-7862.0000974
10.1109/CVPR.2015.7298594
10.1016/j.aei.2018.05.003
10.1016/j.engstruct.2019.109721
10.1061/(ASCE)CP.1943-5487.0000731
10.1007/s11263-009-0275-4
10.1016/j.autcon.2017.11.002
10.1016/j.autcon.2018.02.018
10.1007/978-3-319-46448-0_2
10.1016/j.autcon.2012.12.002
10.1177/0361198118777631
10.1109/TNNLS.2016.2582924
10.1111/0885-9507.00219
10.1016/j.autcon.2018.11.033
10.1007/s11831-014-9135-7
10.1561/1500000017
10.1111/mice.12367
10.1016/j.autcon.2018.11.028
10.1007/978-3-319-10602-1_48
10.1111/mice.12263
10.1111/mice.12313
ContentType Journal Article
Copyright 2020
2020 Computer‐Aided Civil and Infrastructure Engineering
Copyright_xml – notice: 2020
– notice: 2020 Computer‐Aided Civil and Infrastructure Engineering
DBID AAYXX
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1111/mice.12530
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1467-8667
EndPage 767
ExternalDocumentID 10_1111_mice_12530
MICE12530
Genre article
GroupedDBID ..I
.3N
.4S
.DC
.GA
05W
0R~
10A
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABFSI
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AHBTC
AHEFC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
E.L
EAD
EAP
EBS
EDO
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RJQFR
RX1
SAMSI
SUPJJ
TN5
TUS
UB1
VH1
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZZTAW
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c4150-77de41f0f90d724b2a61c6d2d43beef813ac4b97d36abfbe4bb32acdf14676cb3
IEDL.DBID DRFUL
ISICitedReferencesCount 112
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000507278700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1093-9687
IngestDate Fri Jul 25 04:27:00 EDT 2025
Tue Nov 18 21:42:07 EST 2025
Sat Nov 29 05:42:07 EST 2025
Wed Jan 22 16:33:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4150-77de41f0f90d724b2a61c6d2d43beef813ac4b97d36abfbe4bb32acdf14676cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2410524332
PQPubID 2045171
PageCount 15
ParticipantIDs proquest_journals_2410524332
crossref_citationtrail_10_1111_mice_12530
crossref_primary_10_1111_mice_12530
wiley_primary_10_1111_mice_12530_MICE12530
PublicationCentury 2000
PublicationDate July 2020
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Computer-aided civil and infrastructure engineering
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 164
2015; 141
2015; 38
2019; 99
2010
2015; 521
2019; 34
2015; 30
2016; 30
2018; 85
2018; 86
2019; 200
2018; 25
2010; 88
2018; 2672
2015; 26
2015; 115
2013; 32
2019b
2019a
2017; 32
2019
2018; 91
2018
2017
2016
2001; 16
2015
2011; 26
2014
2018; 94
2018; 33
2016; 28
2018; 32
2010; 4
2018; 37
2016; 23
2019; 153
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
Girshick R. (e_1_2_6_23_1) 2015
Kuznetsova A. (e_1_2_6_36_1) 2018
Chakraborty P. (e_1_2_6_11_1) 2018
e_1_2_6_19_1
Ren S. (e_1_2_6_55_1) 2015
e_1_2_6_13_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
Howard A. G. (e_1_2_6_27_1) 2017
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
Huang J. (e_1_2_6_28_1) 2017
Simonyan K. (e_1_2_6_59_1) 2014
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_45_1
Lin T. Y. (e_1_2_6_40_1) 2017
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_10_1
e_1_2_6_31_1
He K. (e_1_2_6_26_1) 2016
e_1_2_6_50_1
Ioffe S. (e_1_2_6_30_1) 2015
Dai J. (e_1_2_6_14_1) 2016
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
Kingma D. P. (e_1_2_6_34_1) 2014
e_1_2_6_61_1
Amezquita‐Sanchez J. P. (e_1_2_6_4_1) 2018; 25
e_1_2_6_8_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_2_1
Raspberrypi.org (e_1_2_6_54_1) 2019
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_46_1
References_xml – volume: 153
  start-page: 286
  year: 2019
  end-page: 297
  article-title: Investigation of fatigue in steel sign‐support structures under diurnal temperature changes
  publication-title: Journal of Constructional Steel Research
– volume: 4
  start-page: 175
  issue: 3
  year: 2010
  end-page: 246
  article-title: Web crawling
  publication-title: Foundations and Trends R in Information Retrieval
– volume: 200
  year: 2019
  article-title: Multi‐stressor fatigue assessment of steel sign‐support structures: A case study in Iowa
  publication-title: Engineering Structures
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– volume: 30
  issue: 4
  year: 2016
  article-title: Vision‐based object‐centric safety assessment using fuzzy inference: Monitoring struck‐by accidents with moving objects
  publication-title: Journal of Computing in Civil Engineering
– start-page: 21
  year: 2016
  end-page: 37
– volume: 33
  start-page: 638
  issue: 8
  year: 2018
  end-page: 654
  article-title: A fast detection method via region‐based fully convolutional neural networks for shield tunnel lining defects
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 25
  start-page: 2913
  issue: 6
  year: 2018
  end-page: 2925
  article-title: Wireless smart sensors for monitoring the health condition of civil infrastructure
  publication-title: Scientia Iranica A
– volume: 33
  start-page: 731
  issue: 9
  year: 2018
  end-page: 747
  article-title: Autonomous structural visual inspection using region‐based deep learning for detecting multiple damage types
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 28
  start-page: 2222
  issue: 10
  year: 2016
  end-page: 2232
  article-title: LSTM: A search space odyssey
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 2672
  start-page: 222
  issue: 45
  year: 2018
  end-page: 231
  article-title: Traffic congestion detection from camera images using deep convolution neural networks
  publication-title: Transportation Research Record: Journal of the Transportation Research Board
– year: 2019a
– volume: 23
  start-page: 1
  issue: 1
  year: 2016
  end-page: 15
  article-title: Signal processing techniques for vibration‐based health monitoring of smart structures
  publication-title: Archives of Computational Methods in Engineering
– year: 2017
  article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv:1704.04861
– volume: 33
  start-page: 748
  issue: 9
  year: 2018
  end-page: 768
  article-title: Deep transfer learning for image‐based structural damage recognition
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– year: 2014
– volume: 33
  start-page: 527
  issue: 7
  year: 2018
  end-page: 544
  article-title: Unified vision‐based methodology for simultaneous concrete defect detection and geolocalization
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 38
  start-page: 142
  issue: 1
  year: 2015
  end-page: 158
  article-title: Region‐based convolutional networks for accurate object detection and segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 37
  start-page: 139
  year: 2018
  end-page: 149
  article-title: Automated detection of workers and heavy equipment on construction sites: A convolutional neural network approach
  publication-title: Advanced Engineering Informatics
– start-page: 7310
  year: 2017
  end-page: 7311
  article-title: Speed/accuracy trade‐offs for modern convolutional object detectors
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 16
  start-page: 126
  issue: 2
  year: 2001
  end-page: 142
  article-title: Neural networks in civil engineering: 1989–2000
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– year: 2019b
– volume: 141
  issue: 9
  year: 2015
  article-title: Hardhat‐wearing detection for enhancing on‐site safety of construction workers
  publication-title: Journal of Construction Engineering and Management
– year: 2019
– volume: 85
  start-page: 1
  year: 2018
  end-page: 9
  article-title: Detecting non‐hardhat‐use by a deep learning method from far‐field surveillance videos
  publication-title: Automation in Construction
– volume: 88
  start-page: 303
  year: 2010
  end-page: 338
  article-title: The PASCAL visual object classes (VOC) challenge
  publication-title: International Journal of Computer Vision
– start-page: 2980
  year: 2017
  end-page: 2988
  article-title: Focal loss for dense object detection
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 32
  start-page: 805
  issue: 10
  year: 2017
  end-page: 819
  article-title: Automated pixel‐level pavement crack detection on 3D asphalt surfaces using a deep‐learning network
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– start-page: 770
  year: 2016
  end-page: 778
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1840
  year: 2018
  end-page: 1845
  article-title: Freeway traffic incident detection from cameras: A semi‐supervised learning approach
  publication-title: 21st International Conference on Intelligent Transportation Systems (ITSC)
– volume: 30
  start-page: 759
  issue: 10
  year: 2015
  end-page: 770
  article-title: Vision‐based automated crack detection for bridge inspection
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 32
  start-page: 1025
  issue: 12
  year: 2017
  end-page: 1046
  article-title: Structural damage detection with automatic feature‐extraction through deep learning
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 32
  start-page: 24
  year: 2013
  end-page: 37
  article-title: Automated 2D detection of construction equipment and workers from site video streams using histograms of oriented gradients and colors
  publication-title: Automation in Construction
– volume: 26
  start-page: 368
  issue: 5
  year: 2011
  end-page: 380
  article-title: Automated object identification using optical video cameras on construction sites
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– year: 2018
  article-title: The Open Images dataset V4: Unified image classification, object detection, and visual relationship detection at scale
  publication-title: arXiv:1811.00982
– volume: 34
  start-page: 415
  issue: 5
  year: 2019
  end-page: 430
  article-title: Image‐based post‐disaster inspection of reinforced concrete bridge systems using deep learning with Bayesian optimization
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– start-page: 2818
  year: 2016
  end-page: 2826
– year: 2014
  article-title: Very deep convolutional networks for large‐scale image recognition
  publication-title: arXiv:1409.1556
– volume: 91
  start-page: 53
  year: 2018
  end-page: 61
  article-title: Falls from heights: A computer vision‐based approach for safety harness detection
  publication-title: Automation in Construction
– start-page: 91
  year: 2015
  end-page: 99
  article-title: Faster R‐CNN: Towards real‐time object detection with region proposal networks
  publication-title: Advances in Neural Information Processing Systems
– start-page: 379
  year: 2016
  end-page: 387
  article-title: R‐FCN: Object detection via region‐based fully convolutional networks
  publication-title: Proceedings of the 30th International Conference on Neural Information Processing Systems
– year: 2016
– start-page: 675
  year: 2014
  end-page: 678
  article-title: Caffe: Convolutional architecture for fast feature embedding
  publication-title: Proceedings of the 22nd ACM International Conference on Multimedia
– volume: 99
  start-page: 52
  issue: March
  year: 2019
  end-page: 58
  article-title: Autonomous concrete crack detection using deep fully convolutional neural network
  publication-title: Automation in Construction
– year: 2010
– volume: 32
  issue: 3
  year: 2018
  article-title: Recognizing diverse construction activities in site images via relevance networks of construction‐related objects detected by convolutional neural networks
  publication-title: Journal of Computing in Civil Engineering
– volume: 99
  start-page: 27
  issue: November
  year: 2019
  end-page: 38
  article-title: Automation in construction detection of construction workers under varying poses and changing background in image sequences via very deep residual networks
  publication-title: Automation in Construction
– volume: 86
  start-page: 118
  year: 2018
  end-page: 124
  article-title: Automation in construction. A deep hybrid learning model to detect unsafe behavior: Integrating convolution neural networks and long short‐term memory
  publication-title: Automation in Construction
– year: 2014
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– start-page: 1440
  year: 2015
  end-page: 1448
  article-title: Fast R-CNN
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 164
  start-page: 305
  issue: 2
  year: 2018
  end-page: 315
  article-title: Fatigue analysis of sign‐support structures during transportation under road‐induced excitations
  publication-title: Engineering Structures
– volume: 32
  start-page: 361
  issue: 5
  year: 2017
  end-page: 378
  article-title: Deep learning‐based crack damage detection using convolutional neural networks
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– start-page: 1
  year: 2015
  end-page: 9
– start-page: 740
  year: 2014
  end-page: 755
– volume: 26
  start-page: 1019
  issue: 5
  year: 2015
  end-page: 1034
  article-title: Transfer learning for visual categorization: A survey
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 33
  start-page: 443
  issue: 6
  year: 2018
  end-page: 458
  article-title: Deep learning for accelerated seismic reliability analysis of transportation networks
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– start-page: 448
  year: 2015
  end-page: 456
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: International Conference on Machine Learning
– volume: 94
  start-page: 360
  year: 2018
  end-page: 370
  article-title: Towards efficient and objective work sampling: Recognizing workers’ activities in site surveillance videos with two‐stream convolutional networks
  publication-title: Automation in Construction
– year: 2017
– volume: 32
  issue: 2
  year: 2018
  article-title: Detecting construction equipment using a region‐based fully convolutional network and transfer learning
  publication-title: Journal of Computing in Civil Engineering
– volume: 33
  start-page: 1127
  issue: 12
  year: 2018
  end-page: 1141
  article-title: Road damage detection and classification using deep neural networks with smartphone images
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  end-page: 252
  article-title: ImageNet large scale visual recognition challenge
  publication-title: International Journal of Computer Vision
– volume: 25
  start-page: 2913
  issue: 6
  year: 2018
  ident: e_1_2_6_4_1
  article-title: Wireless smart sensors for monitoring the health condition of civil infrastructure
  publication-title: Scientia Iranica A
– ident: e_1_2_6_7_1
  doi: 10.1016/j.jcsr.2018.09.024
– ident: e_1_2_6_46_1
  doi: 10.1111/mice.12387
– ident: e_1_2_6_45_1
  doi: 10.1016/j.autcon.2018.07.011
– ident: e_1_2_6_29_1
– ident: e_1_2_6_24_1
  doi: 10.1109/TPAMI.2015.2437384
– ident: e_1_2_6_48_1
  doi: 10.1111/mice.12359
– ident: e_1_2_6_57_1
  doi: 10.1109/TNNLS.2014.2330900
– ident: e_1_2_6_31_1
  doi: 10.1145/2647868.2654889
– ident: e_1_2_6_62_1
  doi: 10.1609/aaai.v31i1.11231
– ident: e_1_2_6_38_1
  doi: 10.1111/mice.12351
– ident: e_1_2_6_19_1
  doi: 10.1016/j.autcon.2017.09.018
– start-page: 1840
  year: 2018
  ident: e_1_2_6_11_1
  article-title: Freeway traffic incident detection from cameras: A semi‐supervised learning approach
  publication-title: 21st International Conference on Intelligent Transportation Systems (ITSC)
– start-page: 770
  year: 2016
  ident: e_1_2_6_26_1
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 379
  year: 2016
  ident: e_1_2_6_14_1
  article-title: R‐FCN: Object detection via region‐based fully convolutional networks
  publication-title: Proceedings of the 30th International Conference on Neural Information Processing Systems
– ident: e_1_2_6_64_1
  doi: 10.1109/CVPR.2016.308
– year: 2018
  ident: e_1_2_6_36_1
  article-title: The Open Images dataset V4: Unified image classification, object detection, and visual relationship detection at scale
  publication-title: arXiv:1811.00982
– ident: e_1_2_6_56_1
  doi: 10.1007/s11263-015-0816-y
– ident: e_1_2_6_58_1
– ident: e_1_2_6_33_1
  doi: 10.1061/(ASCE)CP.1943-5487.0000562
– start-page: 91
  year: 2015
  ident: e_1_2_6_55_1
  article-title: Faster R‐CNN: Towards real‐time object detection with region proposal networks
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_6_22_1
  doi: 10.1111/mice.12363
– ident: e_1_2_6_44_1
  doi: 10.1061/(ASCE)CP.1943-5487.0000756
– ident: e_1_2_6_67_1
  doi: 10.1111/mice.12141
– year: 2014
  ident: e_1_2_6_59_1
  article-title: Very deep convolutional networks for large‐scale image recognition
  publication-title: arXiv:1409.1556
– ident: e_1_2_6_39_1
  doi: 10.1111/mice.12425
– ident: e_1_2_6_9_1
  doi: 10.1111/mice.12334
– ident: e_1_2_6_50_1
– start-page: 2980
  year: 2017
  ident: e_1_2_6_40_1
  article-title: Focal loss for dense object detection
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume-title: Teach, learn, and make with Raspberry Pi— Raspberry Pi
  year: 2019
  ident: e_1_2_6_54_1
– ident: e_1_2_6_68_1
  doi: 10.1111/mice.12297
– ident: e_1_2_6_12_1
  doi: 10.1111/j.1467-8667.2010.00690.x
– ident: e_1_2_6_37_1
  doi: 10.1038/nature14539
– ident: e_1_2_6_6_1
  doi: 10.1016/j.engstruct.2018.02.031
– ident: e_1_2_6_65_1
– ident: e_1_2_6_53_1
  doi: 10.1061/(ASCE)CO.1943-7862.0000974
– ident: e_1_2_6_51_1
– ident: e_1_2_6_63_1
  doi: 10.1109/CVPR.2015.7298594
– ident: e_1_2_6_21_1
  doi: 10.1016/j.aei.2018.05.003
– ident: e_1_2_6_5_1
  doi: 10.1016/j.engstruct.2019.109721
– ident: e_1_2_6_32_1
  doi: 10.1061/(ASCE)CP.1943-5487.0000731
– ident: e_1_2_6_18_1
  doi: 10.1007/s11263-009-0275-4
– ident: e_1_2_6_15_1
  doi: 10.1016/j.autcon.2017.11.002
– ident: e_1_2_6_20_1
  doi: 10.1016/j.autcon.2018.02.018
– year: 2014
  ident: e_1_2_6_34_1
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– start-page: 448
  year: 2015
  ident: e_1_2_6_30_1
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: International Conference on Machine Learning
– ident: e_1_2_6_60_1
– start-page: 1440
  year: 2015
  ident: e_1_2_6_23_1
  article-title: Fast R-CNN
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– ident: e_1_2_6_43_1
  doi: 10.1007/978-3-319-46448-0_2
– ident: e_1_2_6_47_1
  doi: 10.1016/j.autcon.2012.12.002
– ident: e_1_2_6_17_1
– ident: e_1_2_6_10_1
  doi: 10.1177/0361198118777631
– ident: e_1_2_6_25_1
  doi: 10.1109/TNNLS.2016.2582924
– ident: e_1_2_6_2_1
  doi: 10.1111/0885-9507.00219
– year: 2017
  ident: e_1_2_6_27_1
  article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv:1704.04861
– ident: e_1_2_6_61_1
  doi: 10.1016/j.autcon.2018.11.033
– ident: e_1_2_6_13_1
– ident: e_1_2_6_3_1
  doi: 10.1007/s11831-014-9135-7
– ident: e_1_2_6_52_1
  doi: 10.1561/1500000017
– ident: e_1_2_6_66_1
  doi: 10.1111/mice.12367
– ident: e_1_2_6_16_1
  doi: 10.1016/j.autcon.2018.11.028
– ident: e_1_2_6_35_1
– ident: e_1_2_6_41_1
  doi: 10.1007/978-3-319-10602-1_48
– ident: e_1_2_6_8_1
  doi: 10.1111/mice.12263
– ident: e_1_2_6_42_1
  doi: 10.1111/mice.12313
– start-page: 7310
  year: 2017
  ident: e_1_2_6_28_1
  article-title: Speed/accuracy trade‐offs for modern convolutional object detectors
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– ident: e_1_2_6_49_1
SSID ssj0000443
Score 2.5798929
Snippet This paper aims at providing researchers and engineering professionals from the first step of solution development to the last step of solution deployment with...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 753
SubjectTerms Computer vision
Decision making
Deep learning
Economic analysis
Economic models
Electronic devices
Embedded systems
Image detection
Object recognition
Optimization
Title A deep‐learning‐based computer vision solution for construction vehicle detection
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.12530
https://www.proquest.com/docview/2410524332
Volume 35
WOSCitedRecordID wos000507278700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000443
  issn: 1093-9687
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PS8MwFH-MzYMenE7F6ZSCXhQqa5K2KXgZuuFBhoiD3Ur-VQWZw46d_Qh-Rj-JL126ThBBvIX0JQ3J-xtefg_glIdxIiSGJWFAtc-EUn4istBPIrR9lEjUm6ooNhEPh3w8Tu5qcFm-hVngQywv3KxkFPraCriQ-YqQ22rtF2ieKQbsDYKMy-rQuL4fjG4rTcxcgn1C8ec8dvCkNpOnGv3dIFVe5qqvWhibQfN_y9yCTedker0FV2xDzUxa0HQOp-fEOceusqZD2deCjRWAwh0Y9TxtzPTz_cNVl3jEpjV82lPl0MXrdK_kYQ-9YPxYAdN6c_Nkl4EzzYq8r8kujAb9h6sb3xVi8BXa9y564NqwIOtmSVfHhEkiokBFmmhGpTEZD6hQTCaxppGQmTRMSkqE0plVw5GSdA_qk9eJ2QfPEEkDYWLNTcACrpNYZSbUkktuOMZmbTgrTyNVDqXcFst4SctoxW5oWmxoG06WtNMFNsePVJ3yUFMnn3lKbHYrsdhtbTgvju-XGVIUiH7ROvgL8SGsExucF7m9HajjtpsjWFPz2XP-dux49QsriPCQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSsMwFD7IJqgXTqfidGpBbxQqa5K26eXQjYlziGywu9L8VAWpw41d-wg-o0_iSZduE0QQ70KapCHnP5x8B-CM-2GUCAxLfI8qlyVSulGS-m4UoO2jRKDelHmxibDX48NhdG9zc8xbmBk-xPzCzUhGrq-NgJsL6SUpN-XaL9E-U4zYywz5yC9B-fqhPeguVDGzGfYRxb_z0OKTmlSexezvFmnhZi47q7m1aVf-uc8t2LRuptOc8cU2rOisChXrcjpWoMfYVVR1KPqqsLEEUbgDg6ajtB59vn_Y-hKP2DSmTzmymDp7n-4UXOygH4wfF9C0zlQ_mW3gSpM88yvbhUG71b_quLYUgyvRwjfQB1eaeWkjjRoqJEyQJPBkoIhiVGidco8mkokoVDRIRCo0E4KSRKrUKOJACroHpew10_vgaCKol-hQce0xj6solKn2leCCa47RWQ3OC3LE0uKUm3IZL3ERr5gDjfMDrcHpfOxohs7x46h6QdXYSug4Jia_lRj0thpc5PT7ZYUYRaKVtw7-MvgE1jr9u27cvendHsI6MaF6nulbhxKSQB_BqpxOnsdvx5ZxvwCIlfSA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSsMwFD6IE9ELp1NxOrWgNwqVNUnb5HK4DcUxhjjYXWl-qoLM4caufQSf0SfxpEu3CSKIdyVN0pCT7_yUk-8AnPMwFqnEsCQMqPZZqpQv0iz0RYS2jxKJelPlxSbibpcPBqLncnPsXZgZP8T8h5tFRq6vLcDNSGdLKLfl2q_QPlOM2EssFBHistS8b_c7C1XMXIa9oPh1Hjt-UpvKsxj93SIt3MxlZzW3Nu3yP9e5DVvOzfQas3OxAytmWIGyczk9B-gxNhVVHYq2CmwuURTuQr_haWNGn-8frr7EIz5a06c9VQyd3U_3ilPsoR-MLxfUtN7UPNll4EyTPPNruAf9duvh-sZ3pRh8hRa-jj64NizI6pmo65gwSdIoUJEmmlFpTMYDmiomRaxplMpMGiYlJanSmVXEkZJ0H1aHr0NzAJ4hkgapiTU3AQu4FrHKTKgll9xwjM6qcFGII1GOp9yWy3hJinjFbmiSb2gVzuZ9RzN2jh971QqpJg6h44TY_FZi2duqcJnL75cZEoREK386_EvnU1jvNdtJ57Z7dwQbxEbqeaJvDVZRAuYY1tR08jx-O3Hn9gsmPfP7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep%E2%80%90learning%E2%80%90based+computer+vision+solution+for+construction+vehicle+detection&rft.jtitle=Computer-aided+civil+and+infrastructure+engineering&rft.au=Arabi%2C+Saeed&rft.au=Haghighat%2C+Arya&rft.au=Sharma%2C+Anuj&rft.date=2020-07-01&rft.issn=1093-9687&rft.eissn=1467-8667&rft.volume=35&rft.issue=7&rft.spage=753&rft.epage=767&rft_id=info:doi/10.1111%2Fmice.12530&rft.externalDBID=10.1111%252Fmice.12530&rft.externalDocID=MICE12530
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-9687&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-9687&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-9687&client=summon