Zika virus: Molecular responses and tissue tropism in the mammalian host
Summary Zika virus (ZIKV) outbreaks have raised alarm because of reports of congenital Zika virus syndrome in infants. The virus is also known to cause the debilitating Guillain–Barré syndrome in adults. As a result, extensive research has been carried out on the virus over the past few years. To st...
Uloženo v:
| Vydáno v: | Reviews in medical virology Ročník 29; číslo 4; s. e2050 - n/a |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Wiley Periodicals Inc
01.07.2019
|
| Témata: | |
| ISSN: | 1052-9276, 1099-1654, 1099-1654 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Summary
Zika virus (ZIKV) outbreaks have raised alarm because of reports of congenital Zika virus syndrome in infants. The virus is also known to cause the debilitating Guillain–Barré syndrome in adults. As a result, extensive research has been carried out on the virus over the past few years. To study the molecular responses of viral infectivity in mammals, in vitro two‐dimensional and three‐dimensional cellular models have been employed. The in vivo models of mouse, pig, chicken, and nonhuman primates are primarily used to investigate the teratogenicity of the virus, to study effects of the virus on specific tissues, and to study the systemic effects of a proposed antiviral agent. The virus exhibits wide tissue tropism in the mammalian host. The major host tissues of viral persistence and propagation are neural tissue, ocular tissue, testicular tissue and placental tissue. An understanding of the function of viral components, viral replication cycle, and the molecular responses elicited in the host tissues is imperative for designing antiviral treatment strategies and for development of vaccines. This review provides an update on ZIKV research models and mammalian host responses with respect to ZIKV tissue infection. |
|---|---|
| AbstractList | Zika virus (ZIKV) outbreaks have raised alarm because of reports of congenital Zika virus syndrome in infants. The virus is also known to cause the debilitating Guillain–Barré syndrome in adults. As a result, extensive research has been carried out on the virus over the past few years. To study the molecular responses of viral infectivity in mammals,
in vitro
two‐dimensional and three‐dimensional cellular models have been employed. The
in vivo
models of mouse, pig, chicken, and nonhuman primates are primarily used to investigate the teratogenicity of the virus, to study effects of the virus on specific tissues, and to study the systemic effects of a proposed antiviral agent. The virus exhibits wide tissue tropism in the mammalian host. The major host tissues of viral persistence and propagation are neural tissue, ocular tissue, testicular tissue and placental tissue. An understanding of the function of viral components, viral replication cycle, and the molecular responses elicited in the host tissues is imperative for designing antiviral treatment strategies and for development of vaccines. This review provides an update on ZIKV research models and mammalian host responses with respect to ZIKV tissue infection. Summary Zika virus (ZIKV) outbreaks have raised alarm because of reports of congenital Zika virus syndrome in infants. The virus is also known to cause the debilitating Guillain–Barré syndrome in adults. As a result, extensive research has been carried out on the virus over the past few years. To study the molecular responses of viral infectivity in mammals, in vitro two‐dimensional and three‐dimensional cellular models have been employed. The in vivo models of mouse, pig, chicken, and nonhuman primates are primarily used to investigate the teratogenicity of the virus, to study effects of the virus on specific tissues, and to study the systemic effects of a proposed antiviral agent. The virus exhibits wide tissue tropism in the mammalian host. The major host tissues of viral persistence and propagation are neural tissue, ocular tissue, testicular tissue and placental tissue. An understanding of the function of viral components, viral replication cycle, and the molecular responses elicited in the host tissues is imperative for designing antiviral treatment strategies and for development of vaccines. This review provides an update on ZIKV research models and mammalian host responses with respect to ZIKV tissue infection. Zika virus (ZIKV) outbreaks have raised alarm because of reports of congenital Zika virus syndrome in infants. The virus is also known to cause the debilitating Guillain-Barré syndrome in adults. As a result, extensive research has been carried out on the virus over the past few years. To study the molecular responses of viral infectivity in mammals, in vitro two-dimensional and three-dimensional cellular models have been employed. The in vivo models of mouse, pig, chicken, and nonhuman primates are primarily used to investigate the teratogenicity of the virus, to study effects of the virus on specific tissues, and to study the systemic effects of a proposed antiviral agent. The virus exhibits wide tissue tropism in the mammalian host. The major host tissues of viral persistence and propagation are neural tissue, ocular tissue, testicular tissue and placental tissue. An understanding of the function of viral components, viral replication cycle, and the molecular responses elicited in the host tissues is imperative for designing antiviral treatment strategies and for development of vaccines. This review provides an update on ZIKV research models and mammalian host responses with respect to ZIKV tissue infection. Zika virus (ZIKV) outbreaks have raised alarm because of reports of congenital Zika virus syndrome in infants. The virus is also known to cause the debilitating Guillain-Barré syndrome in adults. As a result, extensive research has been carried out on the virus over the past few years. To study the molecular responses of viral infectivity in mammals, in vitro two-dimensional and three-dimensional cellular models have been employed. The in vivo models of mouse, pig, chicken, and nonhuman primates are primarily used to investigate the teratogenicity of the virus, to study effects of the virus on specific tissues, and to study the systemic effects of a proposed antiviral agent. The virus exhibits wide tissue tropism in the mammalian host. The major host tissues of viral persistence and propagation are neural tissue, ocular tissue, testicular tissue and placental tissue. An understanding of the function of viral components, viral replication cycle, and the molecular responses elicited in the host tissues is imperative for designing antiviral treatment strategies and for development of vaccines. This review provides an update on ZIKV research models and mammalian host responses with respect to ZIKV tissue infection.Zika virus (ZIKV) outbreaks have raised alarm because of reports of congenital Zika virus syndrome in infants. The virus is also known to cause the debilitating Guillain-Barré syndrome in adults. As a result, extensive research has been carried out on the virus over the past few years. To study the molecular responses of viral infectivity in mammals, in vitro two-dimensional and three-dimensional cellular models have been employed. The in vivo models of mouse, pig, chicken, and nonhuman primates are primarily used to investigate the teratogenicity of the virus, to study effects of the virus on specific tissues, and to study the systemic effects of a proposed antiviral agent. The virus exhibits wide tissue tropism in the mammalian host. The major host tissues of viral persistence and propagation are neural tissue, ocular tissue, testicular tissue and placental tissue. An understanding of the function of viral components, viral replication cycle, and the molecular responses elicited in the host tissues is imperative for designing antiviral treatment strategies and for development of vaccines. This review provides an update on ZIKV research models and mammalian host responses with respect to ZIKV tissue infection. |
| Author | Shaily, Sangya Upadhya, Archana |
| Author_xml | – sequence: 1 givenname: Sangya surname: Shaily fullname: Shaily, Sangya organization: SVKM'S NMIMS – sequence: 2 givenname: Archana orcidid: 0000-0002-6331-5179 surname: Upadhya fullname: Upadhya, Archana email: arch271@gmail.com, archana.upadhya@nmims.edu organization: SVKM'S NMIMS |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31095819$$D View this record in MEDLINE/PubMed |
| BookMark | eNp10Utr3DAQB3BREvJqoJ-gCHrJxZvRw7LVW1nyKGwIhDSHXMTY1hKltrSV7IR8-2i72RZCiw4S6DfDMP9DsuODt4R8YjBjAPw0Dk8zDiV8IAcMtC6YKuXO-l3yQvNK7ZPDlB4BWD5yj-yLrMqa6QNyee9-In1ycUpf6VXobTv1GGm0aRV8somi7-joUposHWNYuTRQ5-n4YOmAw4C9Q08fQho_kt0l9skev91H5Mf52e38slhcX3yff1sUrWQlFBxLJQGVaAXKum5b2dWoZMOqpqlq1SnRIehuyaAGxXVTabXMP1BrhaLTII7IyabvKoZfk02jGVxqbd-jt2FKhnPBQZaMiUy_vKOPYYo-T5dVqYBXQtZZfX5TUzPYzqyiGzC-mO2OMphtQBtDStEuTetGHF3wY0TXGwZmHYLJIZh1CH9H_FOw7fkPWmzos-vty3-dubm6--1fAZZgk1Y |
| CitedBy_id | crossref_primary_10_1002_rmv_2571 crossref_primary_10_1186_s43556_024_00195_x crossref_primary_10_3390_microorganisms11051097 crossref_primary_10_3390_vaccines10091517 crossref_primary_10_3389_fmicb_2021_639655 crossref_primary_10_3390_pathogens11121410 crossref_primary_10_1001_jamaophthalmol_2020_5138 crossref_primary_10_1002_cti2_1082 crossref_primary_10_22201_ib_20078706e_2022_93_4021 crossref_primary_10_3390_v12030278 |
| Cites_doi | 10.1016/j.jmb.2018.02.006 10.1016/j.cell.2010.01.022 10.3390/v9100297 10.5501/wjv.v7.i1.10 10.1016/j.cell.2016.05.008 10.1016/j.celrep.2017.10.016 10.1016/j.celrep.2018.03.080 10.1038/nature17994 10.1007/s12035-018-1263-x 10.1093/cid/cix968 10.1128/JVI.00002-08 10.1128/CMR.00072-15 10.1016/j.chom.2018.04.003 10.1016/j.ceb.2018.06.006 10.1038/nature20556 10.1371/journal.ppat.1007237 10.1073/pnas.1707513114 10.1136/bmj.k4431 10.1038/nature18296 10.1016/j.chom.2016.07.002 10.1080/21505594.2018.1504558 10.1016/j.tibs.2017.02.009 10.1128/JVI.01180-08 10.1177/2040206616653873 10.1038/ncomms13410 10.1016/j.jaut.2017.04.008 10.1128/JVI.00354-15 10.1016/j.micinf.2016.03.003 10.1371/journal.pntd.0006417 10.3390/v9120383 10.1371/journal.ppat.1006258 10.1101/gad.298216.117 10.1016/j.ebiom.2017.04.029 10.1016/j.chom.2016.05.009 10.1016/j.meegid.2019.01.018 10.1016/j.stem.2016.04.014 10.1038/srep35296 10.1089/scd.2016.0231 10.1523/JNEUROSCI.2248-12.2012 10.1016/j.virol.2017.04.013 10.1128/mSystems.00219-17 10.1172/jci.insight.92340 10.1371/journal.pntd.0004658 10.1016/S0140-6736(16)00650-4 10.3389/fmicb.2016.02028 10.1038/emi.2016.141 10.1016/j.apjtb.2016.09.007 10.1371/journal.pntd.0001477 10.3390/v10110646 10.1038/s41598-018-23899-x 10.1016/j.cell.2016.11.016 10.1128/JVI.00009-17 10.3390/pathogens7030066 10.12688/f1000research.12695.1 10.1016/j.ebiom.2017.09.021 10.3389/fcimb.2017.00327 10.15252/embj.201695871 10.1016/j.vaccine.2017.03.018 10.1038/s41467-017-02499-9 10.1016/j.ijid.2016.07.015 10.1038/s41467-018-05519-4 10.4199/C00016ED1V01Y201008ISP009 10.1016/j.it.2007.01.005 10.1016/j.virusres.2017.08.015 10.1007/s00018-018-2751-x 10.1038/s41426-018-0096-z 10.1016/j.stem.2016.08.005 10.1038/nature22365 10.1016/j.chom.2017.01.004 10.3389/fmicb.2018.01350 10.1371/journal.ppat.1006994 10.1111/bpa.12644 10.1542/peds.2017-2038F 10.1016/j.antiviral.2017.07.007 10.1016/j.jneuroim.2017.03.001 10.1055/s-0036-1592071 10.1097/ICU.0000000000000420 10.1002/rmv.1835 10.1016/j.stem.2016.12.005 10.1038/s41467-018-04444-w 10.1016/j.chom.2016.12.010 10.1016/j.chom.2016.03.010 10.3390/v7072795 10.1128/JCM.00279-16 10.1056/NEJMoa1613108 10.1016/j.micinf.2018.02.009 10.1371/journal.pntd.0005933 10.4049/jimmunol.1601949 10.1016/j.immuni.2013.05.007 10.5935/1676-2444.20170039 10.1016/S1473-3099(17)30444-9 10.3390/pathogens7020049 10.1038/s41426-018-0044-y 10.4049/jimmunol.0900398 10.1038/ncomms12204 10.1016/j.celrep.2016.08.079 10.1016/j.neurobiolaging.2015.01.003 10.1016/j.chom.2016.04.013 10.1016/j.antiviral.2017.06.001 10.3390/v10100530 10.1128/CMR.00014-16 10.1038/nn0502-392 10.1523/JNEUROSCI.2140-08.2008 10.1126/science.aam9243 10.3390/v10110593 10.1128/genomeA.00800-16 10.1038/emi.2016.99 10.1093/infdis/jix515 10.12688/f1000research.12271.1 10.1155/2016/1890568 10.1210/er.2014-1101 10.1038/s41426-018-0080-7 10.1093/femsle/fnw202 10.1099/jgv.0.001153 10.1128/JVI.00623-17 10.1371/journal.ppat.1006378 10.1016/j.stem.2017.07.014 10.1016/j.antiviral.2013.03.008 10.1016/j.stem.2016.07.019 10.1136/bmj.i657 10.1001/jamapediatrics.2016.3982 10.1016/j.isci.2018.02.005 10.15585/mmwr.mm6731e1 10.1146/annurev-immunol-042617-053142 10.1002/uog.15831 10.1016/j.chom.2017.06.015 10.1038/cddis.2017.517 10.3390/ijms19040936 |
| ContentType | Journal Article |
| Copyright | 2019 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2019 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7U9 8FD FR3 H94 K9. P64 RC3 7X8 |
| DOI | 10.1002/rmv.2050 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Virology and AIDS Abstracts Technology Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE Genetics Abstracts MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology |
| EISSN | 1099-1654 |
| EndPage | n/a |
| ExternalDocumentID | 31095819 10_1002_rmv_2050 RMV2050 |
| Genre | reviewArticle Journal Article Review |
| GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 29P 31~ 33P 3SF 3V. 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88A 88E 8CJ 8FE 8FH 8FI 8FJ 8R4 8R5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ABQWH ABUWG ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFWVQ AFZJQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BBNVY BDRZF BENPR BFHJK BHBCM BHPHI BMXJE BPHCQ BROTX BRXPI BVXVI BY8 C45 CCPQU CS3 D-6 D-7 D-E D-F D1J DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD ELTNK EMOBN F00 F01 F04 F5P FEDTE FUBAC FYUFA G-S G.N GNP GODZA H.X HBH HCIFZ HF~ HGLYW HHY HHZ HMCUK HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M0L M1P M65 M7P MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ PROAC PSQYO Q.N Q11 Q2X QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XV2 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AFFHD AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7U9 8FD FR3 H94 K9. P64 RC3 7X8 |
| ID | FETCH-LOGICAL-c4150-2a5640a63c3a488cc4d8a64b17bb786d63da09df1080629b796fbb70896a3d903 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000484264800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1052-9276 1099-1654 |
| IngestDate | Sun Nov 23 09:41:02 EST 2025 Fri Oct 03 06:01:17 EDT 2025 Wed Feb 19 02:30:54 EST 2025 Tue Nov 18 22:35:13 EST 2025 Sat Nov 29 02:22:31 EST 2025 Wed Jan 22 16:39:53 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | tissue tropism Zika virus pathophysiology research models |
| Language | English |
| License | 2019 John Wiley & Sons, Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4150-2a5640a63c3a488cc4d8a64b17bb786d63da09df1080629b796fbb70896a3d903 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-6331-5179 |
| PMID | 31095819 |
| PQID | 2256027348 |
| PQPubID | 30417 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_2232045113 proquest_journals_2256027348 pubmed_primary_31095819 crossref_citationtrail_10_1002_rmv_2050 crossref_primary_10_1002_rmv_2050 wiley_primary_10_1002_rmv_2050_RMV2050 |
| PublicationCentury | 2000 |
| PublicationDate | July 2019 |
| PublicationDateYYYYMMDD | 2019-07-01 |
| PublicationDate_xml | – month: 07 year: 2019 text: July 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Chichester |
| PublicationTitle | Reviews in medical virology |
| PublicationTitleAlternate | Rev Med Virol |
| PublicationYear | 2019 |
| Publisher | Wiley Periodicals Inc |
| Publisher_xml | – name: Wiley Periodicals Inc |
| References | 2017; 6 2017; 83 2017; 7 2017; 42 2018; 363 2017; 8 2015; 36 2017; 2 2019; 56 2016; 387 2016; 540 2016; 2016 2010; 140 2017; 198 2017; 114 2017; 9 2017; 357 2016; 35 2016; 34 2018; 7 2007; 28 2015; 89 2018; 254 2018; 9 2017; 31 2018; 8 2018; 3 2013; 98 2018; 1 2018; 379 2019; 69 2008; 28 1987 2016; 352 2019; 29 2010; 2 2018; 75 2016; 47 2018; 36 2018; 141 2017; 20 2016; 19 2017; 25 2017; 28 2002; 5 2017; 22 2017; 21 1986; 59 2016; 54 2016; 10 2016; 167 2017; 171 2016; 363 2016; 165 2016; 51 2016; 18 2018; 67 2018; 23 2018; 66 2016; 16 2018; 20 2015; 7 2012; 32 2017; 216 2016; 4 2015; 24 2016; 5 2018; 19 2017; 53 2016; 6 2018; 430 2017; 308 2016; 7 2015; 25 2017; 507 2017; 91 2013; 38 2017; 17 2017; 11 2017; 13 2016; 20 2009; 183 2016; 534 2016; 533 2016; 29 2017; 144 2012; 6 2018; 12 2018; 55 2018; 99 2017; 145 2018; 10 2008; 82 2016; 25 2017; 545 2018; 14 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_132_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_120_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 Hutchings PR (e_1_2_8_63_1) 1986; 59 e_1_2_8_133_1 e_1_2_8_110_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_125_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_134_1 e_1_2_8_17_1 Darbellay J (e_1_2_8_71_1) 2017; 6 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_1 Butler H (e_1_2_8_67_1) 1987 e_1_2_8_16_1 e_1_2_8_58_1 Wang A (e_1_2_8_2_1) 2017; 6 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_50_1 e_1_2_8_104_1 |
| References_xml | – volume: 20 start-page: 193 year: 2017 end-page: 201 article-title: Visual and motor deficits in grown‐up mice with congenital Zika virus infection publication-title: EBioMedicine – volume: 19 start-page: 720 issue: 5 year: 2016 end-page: 730 article-title: A mouse model of Zika virus pathogenesis publication-title: Cell Host Microbe – volume: 56 start-page: 2551 issue: 4 year: 2019 end-page: 2557 article-title: Zika virus and the metabolism of neuronal cells publication-title: Mol Neurobiol – volume: 11 start-page: e0005933 issue: 11 year: 2017 article-title: Zika virus: an updated review of competent or naturally infected mosquitoes publication-title: PLoS Negl Trop Dis – volume: 6 start-page: 1850 year: 2017 article-title: Zika virus reservoirs: implications for transmission, future outbreaks, drug and vaccine development publication-title: F1000Research – volume: 3 start-page: e00219‐17 issue: 1 year: 2018 article-title: Zika virus alters DNA methylation of neural genes in an organoid model of the developing human brain publication-title: mSystems – volume: 99 start-page: 1529 issue: 12 year: 2018 end-page: 1550 article-title: In vitro and in vivo models for studying Zika virus biology publication-title: J Gen Virol – volume: 8 start-page: 5477 issue: 1 year: 2018 article-title: Human Sertoli cells support high levels of Zika virus replication and persistence publication-title: Sci Rep – volume: 51 start-page: 139 year: 2016 end-page: 140 article-title: Infection of human uterine fibroblasts by Zika virus in vitro: implications for viral transmission in women publication-title: Int J Infect Dis – volume: 25 start-page: 73 year: 2017 end-page: 86 article-title: Zika virus causes persistent infection in porcine conceptuses and may impair health in offspring publication-title: EBioMedicine – volume: 9 start-page: 2090 issue: 1 year: 2018 article-title: Male germ cells support long‐term propagation of Zika virus publication-title: Nat Commun – volume: 23 start-page: 672 issue: 5 year: 2018 end-page: 685.e6 article-title: An immunocompetent mouse model of Zika virus infection publication-title: Cell Host Microbe – volume: 7 start-page: 49 issue: 2 year: 2018 article-title: Molecular responses to the Zika virus in mosquitoes publication-title: Pathogens – volume: 20 start-page: 397 issue: 3 year: 2017 end-page: 406.e5 article-title: Recent Zika virus isolates induce premature differentiation of neural progenitors in human brain organoids publication-title: Cell Stem Cell – volume: 67 start-page: 858 issue: 31 year: 2018 end-page: 867 article-title: Vital signs: Zika‐associated birth defects and neurodevelopmental abnormalities possibly associated with congenital Zika virus infection—U.S. Territories and Freely Associated States, 2018 publication-title: Morb Mortal Wkly Rep – volume: 114 start-page: 9433 issue: 35 year: 2017 end-page: 9438 article-title: Organotypic models of type III interferon‐mediated protection from Zika virus infections at the maternal–fetal interface publication-title: Proc Natl Acad Sci U S A – volume: 7 start-page: 82 issue: 1 year: 2018 end-page: 87 article-title: Human testicular organoid system as a novel tool to study Zika virus pathogenesis publication-title: Emerg Microbes Infect – volume: 69 start-page: 22 year: 2019 end-page: 29 article-title: ZIKA virus entry mechanisms in human cells publication-title: Infect Genet Evol – volume: 7 start-page: 1 issue: 1 year: 2018 end-page: 15 article-title: ZIKA virus infection causes persistent chorioretinal lesions publication-title: Emerg Microbes Infect – volume: 36 start-page: 3140 issue: 22 year: 2018 end-page: 3145 article-title: Propagation of Brazilian Zika virus strains in static and suspension cultures using Vero and BHK cells publication-title: Vaccine – volume: 19 start-page: 882 issue: 6 year: 2016 end-page: 890 article-title: Zika virus targets human STAT2 to inhibit type I interferon signaling publication-title: Cell Host Microbe – volume: 21 start-page: 35 issue: 1 year: 2017 end-page: 46 article-title: Mapping and role of the CD8 + T Cell response during primary Zika virus infection in mice publication-title: Cell Host Microbe – volume: 216 start-page: S935 issue: Suppl_10 year: 2017 end-page: S944 article-title: Zika virus structure, maturation, and receptors publication-title: J Infect Dis – volume: 36 start-page: 564 issue: 5 year: 2015 end-page: 591 article-title: The mammalian blood‐testis barrier: its biology and regulation publication-title: Endocr Rev – volume: 6 start-page: 1 issue: 1 year: 2017 end-page: 6 article-title: Zika virus genome biology and molecular pathogenesis publication-title: Emerg Microbes Infect – volume: 145 start-page: 33 year: 2017 end-page: 43 article-title: Structure‐based discovery of clinically approved drugs as Zika virus NS2B‐NS3 protease inhibitors that potently inhibit Zika virus infection in vitro and in vivo publication-title: Antiviral Res – volume: 9 start-page: 3136 issue: 1 year: 2018 article-title: Critical role of CD4+ T cells and IFNγ signaling in antibody‐mediated resistance to Zika virus infection publication-title: Nat Commun – volume: 9 start-page: 297 issue: 10 year: 2017 article-title: MicroRNA and mRNA dysregulation in astrocytes infected with Zika virus publication-title: Viruses – volume: 12 issue: 4 year: 2018 article-title: Establishment of a mouse model for the complete mosquito‐mediated transmission cycle of Zika virus publication-title: PLoS Negl Trop Dis – volume: 55 start-page: 8 year: 2018 end-page: 16 article-title: Brain organoids as models to study human neocortex development and evolution publication-title: Curr Opin Cell Biol – volume: 10 issue: 5 year: 2016 article-title: A susceptible mouse model for Zika virus infection publication-title: PLoS Negl Trop Dis – volume: 5 start-page: e93 issue: 1 year: 2016 end-page: e12 article-title: Differential cell line susceptibility to the emerging Zika virus: implications for disease pathogenesis, non‐vector‐borne human transmission and animal reservoirs publication-title: Emerg Microbes Infect – volume: 183 start-page: 3294 issue: 5 year: 2009 end-page: 3301 article-title: Original antigenic sin responses to influenza viruses publication-title: J Immunol – volume: 8 issue: 10 year: 2017 article-title: Zika virus infection dysregulates human neural stem cell growth and inhibits differentiation into neuroprogenitor cells publication-title: Cell Death Dis – volume: 10 start-page: 646 issue: 11 year: 2018 article-title: Human fetal astrocytes infected with Zika virus exhibit delayed apoptosis and resistance to interferon: Implications for persistence publication-title: Viruses – volume: 9 start-page: 263 issue: 1 year: 2018 article-title: Zika virus infection in pregnant rhesus macaques causes placental dysfunction and immunopathology publication-title: Nat Commun – volume: 540 start-page: 438 issue: 7633 year: 2016 end-page: 442 article-title: Zika virus infection damages the testes in mice publication-title: Nature – volume: 2 start-page: e92340 issue: 4 year: 2017 article-title: Zika virus infects cells lining the blood‐retinal barrier and causes chorioretinal atrophy in mouse eyes publication-title: JCI Insight – volume: 16 start-page: 3208 issue: 12 year: 2016 end-page: 3218 article-title: Zika virus infection in mice causes panuveitis with shedding of virus in tears publication-title: Cell Rep – volume: 534 start-page: 267 issue: 7606 year: 2016 end-page: 271 article-title: The Brazilian Zika virus strain causes birth defects in experimental models publication-title: Nature – volume: 2016 start-page: 1 year: 2016 end-page: 2 article-title: Neural stem and progenitor cells in nervous system function and therapy publication-title: Stem Cells Int – volume: 42 start-page: 443 issue: 6 year: 2017 end-page: 456 article-title: Structural biology of the Zika virus publication-title: Trends Biochem Sci – volume: 7 start-page: 13410 issue: 1 year: 2016 article-title: Structure of the NS2B‐NS3 protease from Zika virus after self‐cleavage publication-title: Nat Commun – volume: 38 start-page: 855 issue: 5 year: 2013 end-page: 869 article-title: Cytosolic sensing of viruses publication-title: Immunity – volume: 53 start-page: 252 issue: 4 year: 2017 end-page: 257 article-title: Clinical and laboratory diagnosis of Zika fever: an update publication-title: J Bras Patol Med Lab – volume: 13 issue: 3 year: 2017 article-title: A novel Zika virus mouse model reveals strain specific differences in virus pathogenesis and host inflammatory immune responses publication-title: PLoS Pathog – volume: 21 start-page: 134 issue: 2 year: 2017 end-page: 142 article-title: Zika virus pathogenesis and tissue tropism publication-title: Cell Host Microbe – volume: 82 start-page: 4731 issue: 10 year: 2008 end-page: 4741 article-title: Role of nonstructural protein NS2A in assembly publication-title: J Virol – volume: 533 start-page: 425 issue: 7603 year: 2016 end-page: 428 article-title: Structure of the thermally stable Zika virus publication-title: Nature – volume: 140 start-page: 805 issue: 6 year: 2010 end-page: 820 article-title: Pattern recognition receptors and inflammation publication-title: Cell – year: 1987 – volume: 32 start-page: 15012 issue: 43 year: 2012 end-page: 15026 article-title: Mammalian target of rapamycin signaling is a key regulator of the transit‐amplifying progenitor pool in the adult and aging forebrain publication-title: J Neurosci – volume: 167 start-page: 1511 issue: 6 year: 2016 end-page: 1524.e10 article-title: Zika virus causes testis damage and leads to male infertility in mice publication-title: Cell – volume: 6 start-page: e6 issue: 2 year: 2017 end-page: e4 article-title: Neonatal pigs are susceptible to experimental Zika virus infection publication-title: Emerg Microbes Infect – volume: 83 start-page: 12 year: 2017 end-page: 21 article-title: Original antigenic sin: a comprehensive review publication-title: J Autoimmun – volume: 7 start-page: 66 issue: 3 year: 2018 article-title: An update on sexual transmission of Zika virus publication-title: Pathogens – volume: 9 start-page: 1338 issue: 1 year: 2018 end-page: 1343 article-title: Persistent Zika virus infection in porcine conceptuses is associated with elevated in utero cortisol levels publication-title: Virulence – volume: 10 start-page: 530 issue: 10 year: 2018 article-title: Ocular manifestations of emerging and the blood‐retinal barrier publication-title: Viruses – volume: 6 start-page: 989 issue: 12 year: 2016 end-page: 994 article-title: Zika virus: a review of literature publication-title: Asian Pac J Trop Biomed – volume: 66 start-page: 1120 issue: 7 year: 2018 end-page: 1121 article-title: Evidence for mother‐to‐child transmission of Zika virus through breast milk publication-title: Clin Infect Dis – volume: 13 issue: 5 year: 2017 article-title: Highly efficient maternal‐fetal Zika virus transmission in pregnant rhesus macaques publication-title: PLoS Pathog – volume: 18 start-page: 295 issue: 5 year: 2016 end-page: 301 article-title: Zika virus—an overview publication-title: Microbes Infect – volume: 7 start-page: 203 year: 2018 article-title: The immunology of Zika virus publication-title: F1000Research – volume: 507 start-page: 89 year: 2017 end-page: 95 article-title: Zika virus infection of adult and fetal STAT2 knock‐out hamsters publication-title: Virology – volume: 545 start-page: 482 issue: 7655 year: 2017 end-page: 486 article-title: Evolutionary enhancement of Zika virus infectivity in mosquitoes publication-title: Nature – volume: 24 start-page: 118 issue: 3‐4 year: 2015 end-page: 126 article-title: Predicting Zika virus structural biology: Challenges and opportunities for intervention publication-title: Antivir Chem Chemother – volume: 20 start-page: 635 issue: 11‐12 year: 2018 end-page: 645 article-title: Zika virus: from an obscurity to a priority publication-title: Microbes Infect – volume: 14 issue: 9 year: 2018 article-title: CD4 + T cells mediate protection against Zika associated severe disease in a mouse model of infection publication-title: PLoS Pathog – volume: 29 start-page: 114 issue: 1 year: 2019 end-page: 125 article-title: A clinical and histopathological study of malformations observed in fetuses infected by the Zika virus publication-title: Brain Pathol – volume: 19 start-page: 936 issue: 4 year: 2018 article-title: Disease modeling using 3D organoids derived from human induced pluripotent stem cells publication-title: Int J Mol Sci – volume: 35 start-page: 2631 issue: 24 year: 2016 end-page: 2633 article-title: Zika virus NS1, a pathogenicity factor with many faces publication-title: EMBO J – volume: 23 start-page: 692 issue: 3 year: 2018 end-page: 700 article-title: Zika virus can strongly infect and disrupt secondary organizers in the ventricular zone of the embryonic chicken brain publication-title: Cell Rep – volume: 31 start-page: 849 issue: 9 year: 2017 end-page: 861 article-title: How does Zika virus cause microcephaly? publication-title: Genes Dev – volume: 5 start-page: 392 issue: 5 year: 2002 end-page: 394 article-title: Neural stem cells: form and function publication-title: Nat Neurosci – volume: 59 start-page: 445 issue: 3 year: 1986 end-page: 450 article-title: Immunological defects in SJL mice publication-title: Immunology – volume: 6 start-page: 35296 issue: 1 year: 2016 article-title: ZIKA virus reveals broad tissue and cell tropism during the first trimester of pregnancy publication-title: Sci Rep – volume: 171 start-page: 288 issue: 3 year: 2017 end-page: 295 article-title: Characterizing the pattern of anomalies in congenital Zika syndrome for pediatric clinicians publication-title: JAMA Pediatr – volume: 9 start-page: 1350 year: 2018 article-title: Zika virus non‐structural protein 4A blocks the RLR‐MAVS signaling publication-title: Front Microbiol – volume: 198 start-page: 3526 issue: 9 year: 2017 end-page: 3535 article-title: Adaptive immune responses to Zika virus are important for controlling virus infection and preventing infection in brain and testes publication-title: J Immunol – volume: 89 start-page: 8880 issue: 17 year: 2015 end-page: 8896 article-title: Biology of Zika virus infection in human skin cells publication-title: J Virol – volume: 82 start-page: 10776 issue: 21 year: 2008 end-page: 10791 article-title: Differential modulation of prM cleavage, extracellular particle distribution, and virus infectivity by conserved residues at nonfurin consensus positions of the dengue virus pr‐M junction publication-title: J Virol – volume: 141 start-page: S167 issue: Supplement 2 year: 2018 end-page: S179 article-title: Motor abnormalities and epilepsy in infants and children with evidence of congenital Zika virus infection publication-title: Pediatrics – volume: 75 start-page: 1723 issue: 10 year: 2018 end-page: 1736 article-title: Structure and function of Zika virus NS5 protein: perspectives for drug design publication-title: Cell Mol Life Sci – volume: 28 start-page: 138 issue: 3 year: 2007 end-page: 145 article-title: Astrocytes are active players in cerebral innate immunity publication-title: Trends Immunol – volume: 7 start-page: 2028 year: 2016 article-title: Development of a Zika virus infection model in cynomolgus macaques publication-title: Front Microbiol – volume: 19 start-page: 258 issue: 2 year: 2016 end-page: 265 article-title: Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3 publication-title: Cell Stem Cell – volume: 9 start-page: 383 issue: 12 year: 2017 article-title: Zika virus exhibits lineage‐specific phenotypes in cell culture, in mosquitoes, and in an embryo model publication-title: Viruses – volume: 91 issue: 22 year: 2017 article-title: Zika virus infects human Sertoli cells and modulates the integrity of in vitro blood‐testis barrier model publication-title: J Virol – volume: 387 start-page: 1587 issue: 10027 year: 2016 end-page: 1590 article-title: Teratogenic effects of the Zika virus and the role of the placenta publication-title: Lancet – volume: 7 start-page: 3741 issue: 7 year: 2015 end-page: 3767 article-title: Tissue barriers to arbovirus infection in mosquitoes publication-title: Viruses – volume: 363 year: 2018 article-title: Maternal‐fetal transmission and adverse perinatal outcomes in pregnant women infected with Zika virus: prospective cohort study in French Guiana publication-title: BMJ – volume: 21 start-page: 1180 issue: 5 year: 2017 end-page: 1190 article-title: Functional analysis of glycosylation of Zika virus envelope protein publication-title: Cell Rep – volume: 308 start-page: 50 year: 2017 end-page: 64 article-title: Zika virus: History, epidemiology, transmission, and clinical presentation publication-title: J Neuroimmunol – volume: 4 issue: 4 year: 2016 article-title: Complete genome sequences of three historically important, spatiotemporally distinct, and genetically divergent strains of Zika virus: MR‐766, P6‐740 and PRVABC‐59 publication-title: Genome Announc – volume: 28 start-page: 13978 issue: 51 year: 2008 end-page: 13984 article-title: Toll‐like receptor 3 is a negative regulator of embryonic neural progenitor cell proliferation publication-title: J Neurosci – volume: 144 start-page: 223 year: 2017 end-page: 246 article-title: Zika in the Americas, year 2: What have we learned? What gaps remain? A report from the Global Virus Network publication-title: Antiviral Res – volume: 7 start-page: 12204 issue: 1 year: 2016 article-title: A rhesus macaque model of Asian‐lineage Zika virus infection publication-title: Nat Commun – volume: 19 start-page: 663 issue: 5 year: 2016 end-page: 671 article-title: Zika virus NS4A and NS4B proteins deregulate Akt‐mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy publication-title: Cell Stem Cell – volume: 2 year: 2010 – volume: 379 start-page: 1234 issue: 13 year: 2018 end-page: 1243 article-title: Persistence of Zika virus in body fluids—final report publication-title: N Engl J Med – volume: 20 start-page: 155 issue: 2 year: 2016 end-page: 166 article-title: Zika virus targets different primary human placental cells, suggesting two routes for vertical transmission publication-title: Cell Host Microbe – volume: 22 start-page: 9 issue: 1 year: 2017 end-page: 11 article-title: Dual blades: The role of Musashi 1 in Zika replication and microcephaly publication-title: Cell Host Microbe – volume: 430 start-page: 948 issue: 7 year: 2018 end-page: 962 article-title: Crystal structure of the capsid protein from Zika virus publication-title: J Mol Biol – volume: 6 start-page: e1477 issue: 2 year: 2012 article-title: Genetic characterization of Zika virus strains: geographic expansion of the Asian lineage publication-title: PLoS Negl Trop Dis – volume: 25 start-page: 1691 issue: 22 year: 2016 end-page: 1697 article-title: Zika virus induced mortality and microcephaly in chicken embryos publication-title: Stem Cells Dev – volume: 10 start-page: 593 issue: 11 year: 2018 article-title: Research models and tools for the identification of antivirals and therapeutics against Zika virus infection publication-title: Viruses – volume: 25 start-page: 205 issue: 4 year: 2015 end-page: 223 article-title: Flaviviral NS4b, chameleon and jack‐in‐the‐box roles in viral replication and pathogenesis, and a molecular target for antiviral intervention publication-title: Rev Med Virol – volume: 254 start-page: 41 year: 2018 end-page: 53 article-title: Functional RNA during Zika virus infection publication-title: Virus Res – volume: 29 start-page: 487 issue: 3 year: 2016 end-page: 524 article-title: Zika virus publication-title: Clin Microbiol Rev – volume: 47 start-page: 6 issue: 1 year: 2016 end-page: 7 article-title: Zika virus intrauterine infection causes fetal abnormality and microcephaly: tip of the iceberg? publication-title: Ultrasound Obstet Gynecol – volume: 17 start-page: 1200 issue: 11 year: 2017 end-page: 1208 article-title: Effect of acute Zika virus infection on sperm and virus clearance in body fluids: a prospective observational study publication-title: Lancet Infect Dis – volume: 19 start-page: 696 issue: 5 year: 2016 end-page: 704 article-title: Structures of the Zika virus envelope protein and its complex with a broadly protective antibody publication-title: Cell Host Microbe – volume: 36 start-page: 279 issue: 1 year: 2018 end-page: 308 article-title: Immune response to dengue and Zika publication-title: Annu Rev Immunol – volume: 21 start-page: 349 issue: 3 year: 2017 end-page: 358.e6 article-title: Zika‐virus‐encoded NS2A disrupts mammalian cortical neurogenesis by degrading adherens junction proteins publication-title: Cell Stem Cell – volume: 36 start-page: 1716 issue: 4 year: 2015 end-page: 1726 article-title: The proliferation of amplifying neural progenitor cells is impaired in the aging brain and restored by the mTOR pathway activation publication-title: Neurobiol Aging – volume: 7 start-page: 327 year: 2017 article-title: An integrative analysis reveals a central role of P53 activation via MDM2 in Zika virus infection induced cell death publication-title: Front Cell Infect Microbiol – volume: 34 start-page: 266 issue: 05 year: 2016 end-page: 272 article-title: Pathogenesis and molecular mechanisms of Zika virus publication-title: Semin Reprod Med – volume: 14 issue: 4 year: 2018 article-title: Zika virus infection in immunocompetent pregnant mice causes fetal damage and placental pathology in the absence of fetal infection publication-title: PLoS Pathog – volume: 91 start-page: e00009‐17 issue: 8 year: 2017 article-title: Animal models of Zika virus infection, pathogenesis, and immunity publication-title: J Virol – volume: 7 start-page: 10 issue: 1 year: 2018 end-page: 20 article-title: Identification of various cell culture models for the study of Zika virus publication-title: World J Virology – volume: 98 start-page: 192 issue: 2 year: 2013 end-page: 208 article-title: The NS1 protein: molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker publication-title: Antiviral Res – volume: 19 start-page: 593 issue: 5 year: 2016 end-page: 598 article-title: Zika virus infects neural progenitors in the adult mouse brain and alters proliferation publication-title: Cell Stem Cell – volume: 7 start-page: 1 issue: 1 year: 2018 end-page: 11 article-title: Microencephaly in fetal piglets following in utero inoculation of Zika virus publication-title: Emerg Microbes Infect – volume: 357 start-page: 83 issue: 6346 year: 2017 end-page: 88 article-title: Neurodevelopment protein Musashi‐1 interacts with the Zika genome and promotes viral replication publication-title: Science – volume: 29 start-page: 659 issue: 3 year: 2016 end-page: 694 article-title: Emerging role of Zika virus in adverse fetal and neonatal outcomes publication-title: Clin Microbiol Rev – volume: 28 start-page: 595 issue: 6 year: 2017 end-page: 599 article-title: Zika virus and the eye publication-title: Curr Opin Ophthamol – volume: 165 start-page: 1081 issue: 5 year: 2016 end-page: 1091 article-title: Zika virus infection during pregnancy in mice causes placental damage and fetal demise publication-title: Cell – volume: 54 start-page: 860 issue: 4 year: 2016 end-page: 867 article-title: Zika virus: Diagnostics for an emerging pandemic threat publication-title: J Clin Microbiol – volume: 352 start-page: i657 year: 2016 article-title: Zika virus is a global public health emergency, declares WHO publication-title: BMJ – volume: 363 start-page: fnw202 issue: 18 year: 2016 article-title: Zika virus: from pathogenesis to disease control publication-title: FEMS Microbiol Lett – volume: 1 start-page: 97 year: 2018 end-page: 111 article-title: High‐throughput fitness profiling of Zika virus E protein reveals different roles for glycosylation during infection of mammalian and mosquito cells publication-title: iScience – ident: e_1_2_8_36_1 doi: 10.1016/j.jmb.2018.02.006 – ident: e_1_2_8_89_1 doi: 10.1016/j.cell.2010.01.022 – ident: e_1_2_8_106_1 doi: 10.3390/v9100297 – ident: e_1_2_8_18_1 doi: 10.5501/wjv.v7.i1.10 – ident: e_1_2_8_61_1 doi: 10.1016/j.cell.2016.05.008 – ident: e_1_2_8_41_1 doi: 10.1016/j.celrep.2017.10.016 – ident: e_1_2_8_68_1 doi: 10.1016/j.celrep.2018.03.080 – ident: e_1_2_8_78_1 doi: 10.1038/nature17994 – ident: e_1_2_8_104_1 doi: 10.1007/s12035-018-1263-x – ident: e_1_2_8_7_1 doi: 10.1093/cid/cix968 – ident: e_1_2_8_46_1 doi: 10.1128/JVI.00002-08 – ident: e_1_2_8_4_1 doi: 10.1128/CMR.00072-15 – ident: e_1_2_8_55_1 doi: 10.1016/j.chom.2018.04.003 – ident: e_1_2_8_26_1 doi: 10.1016/j.ceb.2018.06.006 – ident: e_1_2_8_130_1 doi: 10.1038/nature20556 – ident: e_1_2_8_93_1 doi: 10.1371/journal.ppat.1007237 – ident: e_1_2_8_108_1 doi: 10.1073/pnas.1707513114 – ident: e_1_2_8_76_1 doi: 10.1136/bmj.k4431 – ident: e_1_2_8_64_1 doi: 10.1038/nature18296 – ident: e_1_2_8_111_1 doi: 10.1016/j.chom.2016.07.002 – ident: e_1_2_8_70_1 doi: 10.1080/21505594.2018.1504558 – ident: e_1_2_8_38_1 doi: 10.1016/j.tibs.2017.02.009 – ident: e_1_2_8_86_1 doi: 10.1128/JVI.01180-08 – ident: e_1_2_8_50_1 doi: 10.1177/2040206616653873 – ident: e_1_2_8_49_1 doi: 10.1038/ncomms13410 – ident: e_1_2_8_96_1 doi: 10.1016/j.jaut.2017.04.008 – ident: e_1_2_8_83_1 doi: 10.1128/JVI.00354-15 – ident: e_1_2_8_9_1 doi: 10.1016/j.micinf.2016.03.003 – ident: e_1_2_8_59_1 doi: 10.1371/journal.pntd.0006417 – ident: e_1_2_8_21_1 doi: 10.3390/v9120383 – ident: e_1_2_8_60_1 doi: 10.1371/journal.ppat.1006258 – ident: e_1_2_8_117_1 doi: 10.1101/gad.298216.117 – ident: e_1_2_8_62_1 doi: 10.1016/j.ebiom.2017.04.029 – ident: e_1_2_8_56_1 doi: 10.1016/j.chom.2016.05.009 – volume-title: An Atlas for Staging Mammalian and Chick Embryos year: 1987 ident: e_1_2_8_67_1 – ident: e_1_2_8_85_1 doi: 10.1016/j.meegid.2019.01.018 – ident: e_1_2_8_119_1 doi: 10.1016/j.stem.2016.04.014 – ident: e_1_2_8_110_1 doi: 10.1038/srep35296 – ident: e_1_2_8_66_1 doi: 10.1089/scd.2016.0231 – ident: e_1_2_8_102_1 doi: 10.1523/JNEUROSCI.2248-12.2012 – ident: e_1_2_8_65_1 doi: 10.1016/j.virol.2017.04.013 – ident: e_1_2_8_28_1 doi: 10.1128/mSystems.00219-17 – ident: e_1_2_8_125_1 doi: 10.1172/jci.insight.92340 – ident: e_1_2_8_57_1 doi: 10.1371/journal.pntd.0004658 – ident: e_1_2_8_109_1 doi: 10.1016/S0140-6736(16)00650-4 – ident: e_1_2_8_74_1 doi: 10.3389/fmicb.2016.02028 – volume: 6 start-page: 1 issue: 1 year: 2017 ident: e_1_2_8_2_1 article-title: Zika virus genome biology and molecular pathogenesis publication-title: Emerg Microbes Infect doi: 10.1038/emi.2016.141 – ident: e_1_2_8_8_1 doi: 10.1016/j.apjtb.2016.09.007 – ident: e_1_2_8_24_1 doi: 10.1371/journal.pntd.0001477 – ident: e_1_2_8_123_1 doi: 10.3390/v10110646 – volume: 59 start-page: 445 issue: 3 year: 1986 ident: e_1_2_8_63_1 article-title: Immunological defects in SJL mice publication-title: Immunology – ident: e_1_2_8_133_1 doi: 10.1038/s41598-018-23899-x – ident: e_1_2_8_131_1 doi: 10.1016/j.cell.2016.11.016 – ident: e_1_2_8_32_1 doi: 10.1128/JVI.00009-17 – ident: e_1_2_8_129_1 doi: 10.3390/pathogens7030066 – ident: e_1_2_8_87_1 doi: 10.12688/f1000research.12695.1 – ident: e_1_2_8_69_1 doi: 10.1016/j.ebiom.2017.09.021 – ident: e_1_2_8_37_1 doi: 10.3389/fcimb.2017.00327 – ident: e_1_2_8_43_1 doi: 10.15252/embj.201695871 – ident: e_1_2_8_22_1 doi: 10.1016/j.vaccine.2017.03.018 – ident: e_1_2_8_115_1 doi: 10.1038/s41467-017-02499-9 – ident: e_1_2_8_112_1 doi: 10.1016/j.ijid.2016.07.015 – ident: e_1_2_8_94_1 doi: 10.1038/s41467-018-05519-4 – ident: e_1_2_8_107_1 doi: 10.4199/C00016ED1V01Y201008ISP009 – ident: e_1_2_8_105_1 doi: 10.1016/j.it.2007.01.005 – ident: e_1_2_8_34_1 doi: 10.1016/j.virusres.2017.08.015 – ident: e_1_2_8_54_1 doi: 10.1007/s00018-018-2751-x – volume: 6 start-page: e6 issue: 2 year: 2017 ident: e_1_2_8_71_1 article-title: Neonatal pigs are susceptible to experimental Zika virus infection publication-title: Emerg Microbes Infect – ident: e_1_2_8_126_1 doi: 10.1038/s41426-018-0096-z – ident: e_1_2_8_100_1 doi: 10.1016/j.stem.2016.08.005 – ident: e_1_2_8_44_1 doi: 10.1038/nature22365 – ident: e_1_2_8_77_1 doi: 10.1016/j.chom.2017.01.004 – ident: e_1_2_8_51_1 doi: 10.3389/fmicb.2018.01350 – ident: e_1_2_8_113_1 doi: 10.1371/journal.ppat.1006994 – ident: e_1_2_8_116_1 doi: 10.1111/bpa.12644 – ident: e_1_2_8_11_1 doi: 10.1542/peds.2017-2038F – ident: e_1_2_8_42_1 doi: 10.1016/j.antiviral.2017.07.007 – ident: e_1_2_8_79_1 doi: 10.1016/j.jneuroim.2017.03.001 – ident: e_1_2_8_118_1 doi: 10.1055/s-0036-1592071 – ident: e_1_2_8_13_1 doi: 10.1097/ICU.0000000000000420 – ident: e_1_2_8_53_1 doi: 10.1002/rmv.1835 – ident: e_1_2_8_27_1 doi: 10.1016/j.stem.2016.12.005 – ident: e_1_2_8_134_1 doi: 10.1038/s41467-018-04444-w – ident: e_1_2_8_92_1 doi: 10.1016/j.chom.2016.12.010 – ident: e_1_2_8_58_1 doi: 10.1016/j.chom.2016.03.010 – ident: e_1_2_8_80_1 doi: 10.3390/v7072795 – ident: e_1_2_8_20_1 doi: 10.1128/JCM.00279-16 – ident: e_1_2_8_29_1 doi: 10.1056/NEJMoa1613108 – ident: e_1_2_8_75_1 doi: 10.1016/j.micinf.2018.02.009 – ident: e_1_2_8_3_1 doi: 10.1371/journal.pntd.0005933 – ident: e_1_2_8_90_1 doi: 10.4049/jimmunol.1601949 – ident: e_1_2_8_88_1 doi: 10.1016/j.immuni.2013.05.007 – ident: e_1_2_8_5_1 doi: 10.5935/1676-2444.20170039 – ident: e_1_2_8_30_1 doi: 10.1016/S1473-3099(17)30444-9 – ident: e_1_2_8_81_1 doi: 10.3390/pathogens7020049 – ident: e_1_2_8_72_1 doi: 10.1038/s41426-018-0044-y – ident: e_1_2_8_97_1 doi: 10.4049/jimmunol.0900398 – ident: e_1_2_8_17_1 – ident: e_1_2_8_73_1 doi: 10.1038/ncomms12204 – ident: e_1_2_8_124_1 doi: 10.1016/j.celrep.2016.08.079 – ident: e_1_2_8_103_1 doi: 10.1016/j.neurobiolaging.2015.01.003 – ident: e_1_2_8_39_1 – ident: e_1_2_8_95_1 doi: 10.1016/j.chom.2016.04.013 – ident: e_1_2_8_16_1 doi: 10.1016/j.antiviral.2017.06.001 – ident: e_1_2_8_127_1 doi: 10.3390/v10100530 – ident: e_1_2_8_10_1 doi: 10.1128/CMR.00014-16 – ident: e_1_2_8_98_1 doi: 10.1038/nn0502-392 – ident: e_1_2_8_120_1 doi: 10.1523/JNEUROSCI.2140-08.2008 – ident: e_1_2_8_121_1 doi: 10.1126/science.aam9243 – ident: e_1_2_8_23_1 doi: 10.3390/v10110593 – ident: e_1_2_8_35_1 doi: 10.1128/genomeA.00800-16 – ident: e_1_2_8_19_1 doi: 10.1038/emi.2016.99 – ident: e_1_2_8_84_1 doi: 10.1093/infdis/jix515 – ident: e_1_2_8_91_1 doi: 10.12688/f1000research.12271.1 – ident: e_1_2_8_99_1 doi: 10.1155/2016/1890568 – ident: e_1_2_8_128_1 doi: 10.1210/er.2014-1101 – ident: e_1_2_8_31_1 doi: 10.1038/s41426-018-0080-7 – ident: e_1_2_8_48_1 doi: 10.1093/femsle/fnw202 – ident: e_1_2_8_33_1 doi: 10.1099/jgv.0.001153 – ident: e_1_2_8_132_1 doi: 10.1128/JVI.00623-17 – ident: e_1_2_8_114_1 doi: 10.1371/journal.ppat.1006378 – ident: e_1_2_8_47_1 doi: 10.1016/j.stem.2017.07.014 – ident: e_1_2_8_45_1 doi: 10.1016/j.antiviral.2013.03.008 – ident: e_1_2_8_52_1 doi: 10.1016/j.stem.2016.07.019 – ident: e_1_2_8_15_1 doi: 10.1136/bmj.i657 – ident: e_1_2_8_14_1 doi: 10.1001/jamapediatrics.2016.3982 – ident: e_1_2_8_40_1 doi: 10.1016/j.isci.2018.02.005 – ident: e_1_2_8_12_1 doi: 10.15585/mmwr.mm6731e1 – ident: e_1_2_8_82_1 doi: 10.1146/annurev-immunol-042617-053142 – ident: e_1_2_8_6_1 doi: 10.1002/uog.15831 – ident: e_1_2_8_122_1 doi: 10.1016/j.chom.2017.06.015 – ident: e_1_2_8_101_1 doi: 10.1038/cddis.2017.517 – ident: e_1_2_8_25_1 doi: 10.3390/ijms19040936 |
| SSID | ssj0010104 |
| Score | 2.308174 |
| SecondaryResourceType | review_article |
| Snippet | Summary
Zika virus (ZIKV) outbreaks have raised alarm because of reports of congenital Zika virus syndrome in infants. The virus is also known to cause the... Zika virus (ZIKV) outbreaks have raised alarm because of reports of congenital Zika virus syndrome in infants. The virus is also known to cause the... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2050 |
| SubjectTerms | Animal models Animals Disease Models, Animal Host-Pathogen Interactions Humans Infants Infectivity Mammals Models, Theoretical Outbreaks pathophysiology Placenta research models Teratogenicity tissue tropism Tropism Viral Tropism Zika virus Zika Virus - growth & development Zika Virus Infection - pathology Zika Virus Infection - virology |
| Title | Zika virus: Molecular responses and tissue tropism in the mammalian host |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frmv.2050 https://www.ncbi.nlm.nih.gov/pubmed/31095819 https://www.proquest.com/docview/2256027348 https://www.proquest.com/docview/2232045113 |
| Volume | 29 |
| WOSCitedRecordID | wos000484264800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1099-1654 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010104 issn: 1052-9276 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50V8WL70d9EUH0VDZN26TxJuqyh10RUVm8lLRNYdF2l3Z3wX9v0peICoKnHjJtSiaT-ZKZfANwFkiHCH0EFilnYTqeG5sBp9xkHNsksmIpRFG1pM_u7rzhkN9XWZX6LkzJD9EcuGnLKNZrbeAiyDufpKFZMlfbO71dbxM1bd0WtG8euk_9JoagdxpFrNMlJieM1tSzmHTqd786o28I8ytgLTxOd_0__7oBaxXORFflxNiEBZluwXJZefJ9C1YGVUx9G3ovo1eB5qNsll-iQV0tF2Vl8qzMkUgjNC30g6bZeDLKEzRKkQKOKBFJUpyTIH1XZAeeureP1z2zqq9ghsptY5MIlzpYUDu0hbLjMHQiT1AnsFgQMI9G1I4E5lGs0xAp4QHjNFYt2ONU2JFS5i600nEq9wEps44llp6MJXMkjdWqwHDo2Q52JCdUGHBRD7QfVuTjugbGm1_SJhNfDZGvh8iA00ZyUhJu_CBzVOvKr0wu94kGbwVZj_pE06yMRUdARCrHMy1ja_p9y7IN2Ct13HSiKVJdhY8MOC9U-Wvv_sPgWT8P_ip4CKsKZvEyyfcIWtNsJo9hKZwr3WUnsMiG3kk1eT8AADHvaw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB7E-8X7WM8Iok_FbJpNG30SdVlxdxFREV9K2qawaLvSPcB_76SXiAqCT33ItClzZCYzyTcAh77mTJkUWIjOwuJuI7J8KaTlSGqzsB5ppbKuJW2n23WfnuTtBJyVd2FyfIgq4WYsI1uvjYGbhPTJJ2poGo9xf2f261MctQjVe-ryrvnQrooIZquRFTsbzJLMESX2LGUn5btfvdG3EPNrxJq5nObiv352CRaKSJOc56qxDBM6WYGZvPfk-wrMdoqq-iq0nnsviox76WhwSjplv1yS5sdn9YCoJCTDTEJkmPbfeoOY9BKCoSOJVRxnmRJibouswUPz6v6iZRUdFqwAHTe1mGoITpWwA1uhJQcBD10luF93fN9xRSjsUFEZRuYgomDSd6SIcIS6Uig7RHGuw2TST_QmEDTsSFPt6kg7XIsI1wWHBq7NKdeSCVWD45LTXlDAj5suGK9eDpzMPGSRZ1hUg4OK8i2H3PiBZqcUllcY3cBjJnzL4HrwE9UwmoupgahE90eGxjYA_PW6XYONXMjVJAYktYERUg2OMln-Ort313k0z62_Eu7DXOu-0_ba192bbZjHoEvmR353YHKYjvQuTAdjlGO6V-jwB7Wm8nM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7IpuKL98u8RhB9KsvSLG30SZxDcRsiTsSXkjYpDG03ugv47016E1FB8KkPOW1KTk7Ol3OS7wCc-IoSYUJgUjsLi7rN0PI545bDsU1kI1RCpFVLOk6v5z4_8_s5uCjuwmT8EGXAzVhGul4bA1cjGdY_WUOTaKb3d2a_XqWmhkwFqq2Hdr9TJhHMViNNdjaJxYnDCu5ZTOrFu1-90TeI-RWxpi6nvfKvn12F5RxpostsaqzBnIrXYSGrPfm-DovdPKu-ATcvg1eBZoNkOj5H3aJeLkqy47NqjEQs0STVEJokw9FgHKFBjDR0RJGIojRSgsxtkU3ot68fr26svMKCFWjHjS0imoxiwezAFtqSg4BKVzDqNxzfd1wmmS0F5jI0BxEZ4b7DWahbsMuZsKVW5xZU4mGsdgBpww4VVq4KlUMVC_W64ODAtSmmihMmanBWjLQX5PTjpgrGm5cRJxNPD5FnhqgGx6XkKKPc-EFmv1CWlxvd2CMGvqV0PfoTZbM2F5MDEbEaTo2MbQj4Gw27BtuZkstODElqUyOkGpymuvy1d--h-2Seu38VPILF-1bb69z27vZgSWMunp343YfKJJmqA5gPZlqNyWE-hT8AVFTx7g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zika+virus%3A+Molecular+responses+and+tissue+tropism+in+the+mammalian+host&rft.jtitle=Reviews+in+medical+virology&rft.au=Shaily%2C+Sangya&rft.au=Upadhya%2C+Archana&rft.date=2019-07-01&rft.issn=1099-1654&rft.eissn=1099-1654&rft.volume=29&rft.issue=4&rft.spage=e2050&rft_id=info:doi/10.1002%2Frmv.2050&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1052-9276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1052-9276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1052-9276&client=summon |