Zika virus: Molecular responses and tissue tropism in the mammalian host

Summary Zika virus (ZIKV) outbreaks have raised alarm because of reports of congenital Zika virus syndrome in infants. The virus is also known to cause the debilitating Guillain–Barré syndrome in adults. As a result, extensive research has been carried out on the virus over the past few years. To st...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Reviews in medical virology Ročník 29; číslo 4; s. e2050 - n/a
Hlavní autoři: Shaily, Sangya, Upadhya, Archana
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Wiley Periodicals Inc 01.07.2019
Témata:
ISSN:1052-9276, 1099-1654, 1099-1654
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Summary Zika virus (ZIKV) outbreaks have raised alarm because of reports of congenital Zika virus syndrome in infants. The virus is also known to cause the debilitating Guillain–Barré syndrome in adults. As a result, extensive research has been carried out on the virus over the past few years. To study the molecular responses of viral infectivity in mammals, in vitro two‐dimensional and three‐dimensional cellular models have been employed. The in vivo models of mouse, pig, chicken, and nonhuman primates are primarily used to investigate the teratogenicity of the virus, to study effects of the virus on specific tissues, and to study the systemic effects of a proposed antiviral agent. The virus exhibits wide tissue tropism in the mammalian host. The major host tissues of viral persistence and propagation are neural tissue, ocular tissue, testicular tissue and placental tissue. An understanding of the function of viral components, viral replication cycle, and the molecular responses elicited in the host tissues is imperative for designing antiviral treatment strategies and for development of vaccines. This review provides an update on ZIKV research models and mammalian host responses with respect to ZIKV tissue infection.
AbstractList Zika virus (ZIKV) outbreaks have raised alarm because of reports of congenital Zika virus syndrome in infants. The virus is also known to cause the debilitating Guillain–Barré syndrome in adults. As a result, extensive research has been carried out on the virus over the past few years. To study the molecular responses of viral infectivity in mammals, in vitro two‐dimensional and three‐dimensional cellular models have been employed. The in vivo models of mouse, pig, chicken, and nonhuman primates are primarily used to investigate the teratogenicity of the virus, to study effects of the virus on specific tissues, and to study the systemic effects of a proposed antiviral agent. The virus exhibits wide tissue tropism in the mammalian host. The major host tissues of viral persistence and propagation are neural tissue, ocular tissue, testicular tissue and placental tissue. An understanding of the function of viral components, viral replication cycle, and the molecular responses elicited in the host tissues is imperative for designing antiviral treatment strategies and for development of vaccines. This review provides an update on ZIKV research models and mammalian host responses with respect to ZIKV tissue infection.
Summary Zika virus (ZIKV) outbreaks have raised alarm because of reports of congenital Zika virus syndrome in infants. The virus is also known to cause the debilitating Guillain–Barré syndrome in adults. As a result, extensive research has been carried out on the virus over the past few years. To study the molecular responses of viral infectivity in mammals, in vitro two‐dimensional and three‐dimensional cellular models have been employed. The in vivo models of mouse, pig, chicken, and nonhuman primates are primarily used to investigate the teratogenicity of the virus, to study effects of the virus on specific tissues, and to study the systemic effects of a proposed antiviral agent. The virus exhibits wide tissue tropism in the mammalian host. The major host tissues of viral persistence and propagation are neural tissue, ocular tissue, testicular tissue and placental tissue. An understanding of the function of viral components, viral replication cycle, and the molecular responses elicited in the host tissues is imperative for designing antiviral treatment strategies and for development of vaccines. This review provides an update on ZIKV research models and mammalian host responses with respect to ZIKV tissue infection.
Zika virus (ZIKV) outbreaks have raised alarm because of reports of congenital Zika virus syndrome in infants. The virus is also known to cause the debilitating Guillain-Barré syndrome in adults. As a result, extensive research has been carried out on the virus over the past few years. To study the molecular responses of viral infectivity in mammals, in vitro two-dimensional and three-dimensional cellular models have been employed. The in vivo models of mouse, pig, chicken, and nonhuman primates are primarily used to investigate the teratogenicity of the virus, to study effects of the virus on specific tissues, and to study the systemic effects of a proposed antiviral agent. The virus exhibits wide tissue tropism in the mammalian host. The major host tissues of viral persistence and propagation are neural tissue, ocular tissue, testicular tissue and placental tissue. An understanding of the function of viral components, viral replication cycle, and the molecular responses elicited in the host tissues is imperative for designing antiviral treatment strategies and for development of vaccines. This review provides an update on ZIKV research models and mammalian host responses with respect to ZIKV tissue infection.
Zika virus (ZIKV) outbreaks have raised alarm because of reports of congenital Zika virus syndrome in infants. The virus is also known to cause the debilitating Guillain-Barré syndrome in adults. As a result, extensive research has been carried out on the virus over the past few years. To study the molecular responses of viral infectivity in mammals, in vitro two-dimensional and three-dimensional cellular models have been employed. The in vivo models of mouse, pig, chicken, and nonhuman primates are primarily used to investigate the teratogenicity of the virus, to study effects of the virus on specific tissues, and to study the systemic effects of a proposed antiviral agent. The virus exhibits wide tissue tropism in the mammalian host. The major host tissues of viral persistence and propagation are neural tissue, ocular tissue, testicular tissue and placental tissue. An understanding of the function of viral components, viral replication cycle, and the molecular responses elicited in the host tissues is imperative for designing antiviral treatment strategies and for development of vaccines. This review provides an update on ZIKV research models and mammalian host responses with respect to ZIKV tissue infection.Zika virus (ZIKV) outbreaks have raised alarm because of reports of congenital Zika virus syndrome in infants. The virus is also known to cause the debilitating Guillain-Barré syndrome in adults. As a result, extensive research has been carried out on the virus over the past few years. To study the molecular responses of viral infectivity in mammals, in vitro two-dimensional and three-dimensional cellular models have been employed. The in vivo models of mouse, pig, chicken, and nonhuman primates are primarily used to investigate the teratogenicity of the virus, to study effects of the virus on specific tissues, and to study the systemic effects of a proposed antiviral agent. The virus exhibits wide tissue tropism in the mammalian host. The major host tissues of viral persistence and propagation are neural tissue, ocular tissue, testicular tissue and placental tissue. An understanding of the function of viral components, viral replication cycle, and the molecular responses elicited in the host tissues is imperative for designing antiviral treatment strategies and for development of vaccines. This review provides an update on ZIKV research models and mammalian host responses with respect to ZIKV tissue infection.
Author Shaily, Sangya
Upadhya, Archana
Author_xml – sequence: 1
  givenname: Sangya
  surname: Shaily
  fullname: Shaily, Sangya
  organization: SVKM'S NMIMS
– sequence: 2
  givenname: Archana
  orcidid: 0000-0002-6331-5179
  surname: Upadhya
  fullname: Upadhya, Archana
  email: arch271@gmail.com, archana.upadhya@nmims.edu
  organization: SVKM'S NMIMS
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31095819$$D View this record in MEDLINE/PubMed
BookMark eNp10Utr3DAQB3BREvJqoJ-gCHrJxZvRw7LVW1nyKGwIhDSHXMTY1hKltrSV7IR8-2i72RZCiw4S6DfDMP9DsuODt4R8YjBjAPw0Dk8zDiV8IAcMtC6YKuXO-l3yQvNK7ZPDlB4BWD5yj-yLrMqa6QNyee9-In1ycUpf6VXobTv1GGm0aRV8somi7-joUposHWNYuTRQ5-n4YOmAw4C9Q08fQho_kt0l9skev91H5Mf52e38slhcX3yff1sUrWQlFBxLJQGVaAXKum5b2dWoZMOqpqlq1SnRIehuyaAGxXVTabXMP1BrhaLTII7IyabvKoZfk02jGVxqbd-jt2FKhnPBQZaMiUy_vKOPYYo-T5dVqYBXQtZZfX5TUzPYzqyiGzC-mO2OMphtQBtDStEuTetGHF3wY0TXGwZmHYLJIZh1CH9H_FOw7fkPWmzos-vty3-dubm6--1fAZZgk1Y
CitedBy_id crossref_primary_10_1002_rmv_2571
crossref_primary_10_1186_s43556_024_00195_x
crossref_primary_10_3390_microorganisms11051097
crossref_primary_10_3390_vaccines10091517
crossref_primary_10_3389_fmicb_2021_639655
crossref_primary_10_3390_pathogens11121410
crossref_primary_10_1001_jamaophthalmol_2020_5138
crossref_primary_10_1002_cti2_1082
crossref_primary_10_22201_ib_20078706e_2022_93_4021
crossref_primary_10_3390_v12030278
Cites_doi 10.1016/j.jmb.2018.02.006
10.1016/j.cell.2010.01.022
10.3390/v9100297
10.5501/wjv.v7.i1.10
10.1016/j.cell.2016.05.008
10.1016/j.celrep.2017.10.016
10.1016/j.celrep.2018.03.080
10.1038/nature17994
10.1007/s12035-018-1263-x
10.1093/cid/cix968
10.1128/JVI.00002-08
10.1128/CMR.00072-15
10.1016/j.chom.2018.04.003
10.1016/j.ceb.2018.06.006
10.1038/nature20556
10.1371/journal.ppat.1007237
10.1073/pnas.1707513114
10.1136/bmj.k4431
10.1038/nature18296
10.1016/j.chom.2016.07.002
10.1080/21505594.2018.1504558
10.1016/j.tibs.2017.02.009
10.1128/JVI.01180-08
10.1177/2040206616653873
10.1038/ncomms13410
10.1016/j.jaut.2017.04.008
10.1128/JVI.00354-15
10.1016/j.micinf.2016.03.003
10.1371/journal.pntd.0006417
10.3390/v9120383
10.1371/journal.ppat.1006258
10.1101/gad.298216.117
10.1016/j.ebiom.2017.04.029
10.1016/j.chom.2016.05.009
10.1016/j.meegid.2019.01.018
10.1016/j.stem.2016.04.014
10.1038/srep35296
10.1089/scd.2016.0231
10.1523/JNEUROSCI.2248-12.2012
10.1016/j.virol.2017.04.013
10.1128/mSystems.00219-17
10.1172/jci.insight.92340
10.1371/journal.pntd.0004658
10.1016/S0140-6736(16)00650-4
10.3389/fmicb.2016.02028
10.1038/emi.2016.141
10.1016/j.apjtb.2016.09.007
10.1371/journal.pntd.0001477
10.3390/v10110646
10.1038/s41598-018-23899-x
10.1016/j.cell.2016.11.016
10.1128/JVI.00009-17
10.3390/pathogens7030066
10.12688/f1000research.12695.1
10.1016/j.ebiom.2017.09.021
10.3389/fcimb.2017.00327
10.15252/embj.201695871
10.1016/j.vaccine.2017.03.018
10.1038/s41467-017-02499-9
10.1016/j.ijid.2016.07.015
10.1038/s41467-018-05519-4
10.4199/C00016ED1V01Y201008ISP009
10.1016/j.it.2007.01.005
10.1016/j.virusres.2017.08.015
10.1007/s00018-018-2751-x
10.1038/s41426-018-0096-z
10.1016/j.stem.2016.08.005
10.1038/nature22365
10.1016/j.chom.2017.01.004
10.3389/fmicb.2018.01350
10.1371/journal.ppat.1006994
10.1111/bpa.12644
10.1542/peds.2017-2038F
10.1016/j.antiviral.2017.07.007
10.1016/j.jneuroim.2017.03.001
10.1055/s-0036-1592071
10.1097/ICU.0000000000000420
10.1002/rmv.1835
10.1016/j.stem.2016.12.005
10.1038/s41467-018-04444-w
10.1016/j.chom.2016.12.010
10.1016/j.chom.2016.03.010
10.3390/v7072795
10.1128/JCM.00279-16
10.1056/NEJMoa1613108
10.1016/j.micinf.2018.02.009
10.1371/journal.pntd.0005933
10.4049/jimmunol.1601949
10.1016/j.immuni.2013.05.007
10.5935/1676-2444.20170039
10.1016/S1473-3099(17)30444-9
10.3390/pathogens7020049
10.1038/s41426-018-0044-y
10.4049/jimmunol.0900398
10.1038/ncomms12204
10.1016/j.celrep.2016.08.079
10.1016/j.neurobiolaging.2015.01.003
10.1016/j.chom.2016.04.013
10.1016/j.antiviral.2017.06.001
10.3390/v10100530
10.1128/CMR.00014-16
10.1038/nn0502-392
10.1523/JNEUROSCI.2140-08.2008
10.1126/science.aam9243
10.3390/v10110593
10.1128/genomeA.00800-16
10.1038/emi.2016.99
10.1093/infdis/jix515
10.12688/f1000research.12271.1
10.1155/2016/1890568
10.1210/er.2014-1101
10.1038/s41426-018-0080-7
10.1093/femsle/fnw202
10.1099/jgv.0.001153
10.1128/JVI.00623-17
10.1371/journal.ppat.1006378
10.1016/j.stem.2017.07.014
10.1016/j.antiviral.2013.03.008
10.1016/j.stem.2016.07.019
10.1136/bmj.i657
10.1001/jamapediatrics.2016.3982
10.1016/j.isci.2018.02.005
10.15585/mmwr.mm6731e1
10.1146/annurev-immunol-042617-053142
10.1002/uog.15831
10.1016/j.chom.2017.06.015
10.1038/cddis.2017.517
10.3390/ijms19040936
ContentType Journal Article
Copyright 2019 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2019 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7U9
8FD
FR3
H94
K9.
P64
RC3
7X8
DOI 10.1002/rmv.2050
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE
Genetics Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1099-1654
EndPage n/a
ExternalDocumentID 31095819
10_1002_rmv_2050
RMV2050
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
29P
31~
33P
3SF
3V.
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88A
88E
8CJ
8FE
8FH
8FI
8FJ
8R4
8R5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ABQWH
ABUWG
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BBNVY
BDRZF
BENPR
BFHJK
BHBCM
BHPHI
BMXJE
BPHCQ
BROTX
BRXPI
BVXVI
BY8
C45
CCPQU
CS3
D-6
D-7
D-E
D-F
D1J
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
ELTNK
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
FYUFA
G-S
G.N
GNP
GODZA
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HMCUK
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M0L
M1P
M65
M7P
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
PROAC
PSQYO
Q.N
Q11
Q2X
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AFFHD
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7U9
8FD
FR3
H94
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c4150-2a5640a63c3a488cc4d8a64b17bb786d63da09df1080629b796fbb70896a3d903
IEDL.DBID DRFUL
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000484264800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1052-9276
1099-1654
IngestDate Sun Nov 23 09:41:02 EST 2025
Fri Oct 03 06:01:17 EDT 2025
Wed Feb 19 02:30:54 EST 2025
Tue Nov 18 22:35:13 EST 2025
Sat Nov 29 02:22:31 EST 2025
Wed Jan 22 16:39:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords tissue tropism
Zika virus
pathophysiology
research models
Language English
License 2019 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4150-2a5640a63c3a488cc4d8a64b17bb786d63da09df1080629b796fbb70896a3d903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-6331-5179
PMID 31095819
PQID 2256027348
PQPubID 30417
PageCount 16
ParticipantIDs proquest_miscellaneous_2232045113
proquest_journals_2256027348
pubmed_primary_31095819
crossref_citationtrail_10_1002_rmv_2050
crossref_primary_10_1002_rmv_2050
wiley_primary_10_1002_rmv_2050_RMV2050
PublicationCentury 2000
PublicationDate July 2019
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: July 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Chichester
PublicationTitle Reviews in medical virology
PublicationTitleAlternate Rev Med Virol
PublicationYear 2019
Publisher Wiley Periodicals Inc
Publisher_xml – name: Wiley Periodicals Inc
References 2017; 6
2017; 83
2017; 7
2017; 42
2018; 363
2017; 8
2015; 36
2017; 2
2019; 56
2016; 387
2016; 540
2016; 2016
2010; 140
2017; 198
2017; 114
2017; 9
2017; 357
2016; 35
2016; 34
2018; 7
2007; 28
2015; 89
2018; 254
2018; 9
2017; 31
2018; 8
2018; 3
2013; 98
2018; 1
2018; 379
2019; 69
2008; 28
1987
2016; 352
2019; 29
2010; 2
2018; 75
2016; 47
2018; 36
2018; 141
2017; 20
2016; 19
2017; 25
2017; 28
2002; 5
2017; 22
2017; 21
1986; 59
2016; 54
2016; 10
2016; 167
2017; 171
2016; 363
2016; 165
2016; 51
2016; 18
2018; 67
2018; 23
2018; 66
2016; 16
2018; 20
2015; 7
2012; 32
2017; 216
2016; 4
2015; 24
2016; 5
2018; 19
2017; 53
2016; 6
2018; 430
2017; 308
2016; 7
2015; 25
2017; 507
2017; 91
2013; 38
2017; 17
2017; 11
2017; 13
2016; 20
2009; 183
2016; 534
2016; 533
2016; 29
2017; 144
2012; 6
2018; 12
2018; 55
2018; 99
2017; 145
2018; 10
2008; 82
2016; 25
2017; 545
2018; 14
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_132_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_120_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
Hutchings PR (e_1_2_8_63_1) 1986; 59
e_1_2_8_133_1
e_1_2_8_110_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_125_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_134_1
e_1_2_8_17_1
Darbellay J (e_1_2_8_71_1) 2017; 6
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_35_1
Butler H (e_1_2_8_67_1) 1987
e_1_2_8_16_1
e_1_2_8_58_1
Wang A (e_1_2_8_2_1) 2017; 6
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 20
  start-page: 193
  year: 2017
  end-page: 201
  article-title: Visual and motor deficits in grown‐up mice with congenital Zika virus infection
  publication-title: EBioMedicine
– volume: 19
  start-page: 720
  issue: 5
  year: 2016
  end-page: 730
  article-title: A mouse model of Zika virus pathogenesis
  publication-title: Cell Host Microbe
– volume: 56
  start-page: 2551
  issue: 4
  year: 2019
  end-page: 2557
  article-title: Zika virus and the metabolism of neuronal cells
  publication-title: Mol Neurobiol
– volume: 11
  start-page: e0005933
  issue: 11
  year: 2017
  article-title: Zika virus: an updated review of competent or naturally infected mosquitoes
  publication-title: PLoS Negl Trop Dis
– volume: 6
  start-page: 1850
  year: 2017
  article-title: Zika virus reservoirs: implications for transmission, future outbreaks, drug and vaccine development
  publication-title: F1000Research
– volume: 3
  start-page: e00219‐17
  issue: 1
  year: 2018
  article-title: Zika virus alters DNA methylation of neural genes in an organoid model of the developing human brain
  publication-title: mSystems
– volume: 99
  start-page: 1529
  issue: 12
  year: 2018
  end-page: 1550
  article-title: In vitro and in vivo models for studying Zika virus biology
  publication-title: J Gen Virol
– volume: 8
  start-page: 5477
  issue: 1
  year: 2018
  article-title: Human Sertoli cells support high levels of Zika virus replication and persistence
  publication-title: Sci Rep
– volume: 51
  start-page: 139
  year: 2016
  end-page: 140
  article-title: Infection of human uterine fibroblasts by Zika virus in vitro: implications for viral transmission in women
  publication-title: Int J Infect Dis
– volume: 25
  start-page: 73
  year: 2017
  end-page: 86
  article-title: Zika virus causes persistent infection in porcine conceptuses and may impair health in offspring
  publication-title: EBioMedicine
– volume: 9
  start-page: 2090
  issue: 1
  year: 2018
  article-title: Male germ cells support long‐term propagation of Zika virus
  publication-title: Nat Commun
– volume: 23
  start-page: 672
  issue: 5
  year: 2018
  end-page: 685.e6
  article-title: An immunocompetent mouse model of Zika virus infection
  publication-title: Cell Host Microbe
– volume: 7
  start-page: 49
  issue: 2
  year: 2018
  article-title: Molecular responses to the Zika virus in mosquitoes
  publication-title: Pathogens
– volume: 20
  start-page: 397
  issue: 3
  year: 2017
  end-page: 406.e5
  article-title: Recent Zika virus isolates induce premature differentiation of neural progenitors in human brain organoids
  publication-title: Cell Stem Cell
– volume: 67
  start-page: 858
  issue: 31
  year: 2018
  end-page: 867
  article-title: Vital signs: Zika‐associated birth defects and neurodevelopmental abnormalities possibly associated with congenital Zika virus infection—U.S. Territories and Freely Associated States, 2018
  publication-title: Morb Mortal Wkly Rep
– volume: 114
  start-page: 9433
  issue: 35
  year: 2017
  end-page: 9438
  article-title: Organotypic models of type III interferon‐mediated protection from Zika virus infections at the maternal–fetal interface
  publication-title: Proc Natl Acad Sci U S A
– volume: 7
  start-page: 82
  issue: 1
  year: 2018
  end-page: 87
  article-title: Human testicular organoid system as a novel tool to study Zika virus pathogenesis
  publication-title: Emerg Microbes Infect
– volume: 69
  start-page: 22
  year: 2019
  end-page: 29
  article-title: ZIKA virus entry mechanisms in human cells
  publication-title: Infect Genet Evol
– volume: 7
  start-page: 1
  issue: 1
  year: 2018
  end-page: 15
  article-title: ZIKA virus infection causes persistent chorioretinal lesions
  publication-title: Emerg Microbes Infect
– volume: 36
  start-page: 3140
  issue: 22
  year: 2018
  end-page: 3145
  article-title: Propagation of Brazilian Zika virus strains in static and suspension cultures using Vero and BHK cells
  publication-title: Vaccine
– volume: 19
  start-page: 882
  issue: 6
  year: 2016
  end-page: 890
  article-title: Zika virus targets human STAT2 to inhibit type I interferon signaling
  publication-title: Cell Host Microbe
– volume: 21
  start-page: 35
  issue: 1
  year: 2017
  end-page: 46
  article-title: Mapping and role of the CD8 + T Cell response during primary Zika virus infection in mice
  publication-title: Cell Host Microbe
– volume: 216
  start-page: S935
  issue: Suppl_10
  year: 2017
  end-page: S944
  article-title: Zika virus structure, maturation, and receptors
  publication-title: J Infect Dis
– volume: 36
  start-page: 564
  issue: 5
  year: 2015
  end-page: 591
  article-title: The mammalian blood‐testis barrier: its biology and regulation
  publication-title: Endocr Rev
– volume: 6
  start-page: 1
  issue: 1
  year: 2017
  end-page: 6
  article-title: Zika virus genome biology and molecular pathogenesis
  publication-title: Emerg Microbes Infect
– volume: 145
  start-page: 33
  year: 2017
  end-page: 43
  article-title: Structure‐based discovery of clinically approved drugs as Zika virus NS2B‐NS3 protease inhibitors that potently inhibit Zika virus infection in vitro and in vivo
  publication-title: Antiviral Res
– volume: 9
  start-page: 3136
  issue: 1
  year: 2018
  article-title: Critical role of CD4+ T cells and IFNγ signaling in antibody‐mediated resistance to Zika virus infection
  publication-title: Nat Commun
– volume: 9
  start-page: 297
  issue: 10
  year: 2017
  article-title: MicroRNA and mRNA dysregulation in astrocytes infected with Zika virus
  publication-title: Viruses
– volume: 12
  issue: 4
  year: 2018
  article-title: Establishment of a mouse model for the complete mosquito‐mediated transmission cycle of Zika virus
  publication-title: PLoS Negl Trop Dis
– volume: 55
  start-page: 8
  year: 2018
  end-page: 16
  article-title: Brain organoids as models to study human neocortex development and evolution
  publication-title: Curr Opin Cell Biol
– volume: 10
  issue: 5
  year: 2016
  article-title: A susceptible mouse model for Zika virus infection
  publication-title: PLoS Negl Trop Dis
– volume: 5
  start-page: e93
  issue: 1
  year: 2016
  end-page: e12
  article-title: Differential cell line susceptibility to the emerging Zika virus: implications for disease pathogenesis, non‐vector‐borne human transmission and animal reservoirs
  publication-title: Emerg Microbes Infect
– volume: 183
  start-page: 3294
  issue: 5
  year: 2009
  end-page: 3301
  article-title: Original antigenic sin responses to influenza viruses
  publication-title: J Immunol
– volume: 8
  issue: 10
  year: 2017
  article-title: Zika virus infection dysregulates human neural stem cell growth and inhibits differentiation into neuroprogenitor cells
  publication-title: Cell Death Dis
– volume: 10
  start-page: 646
  issue: 11
  year: 2018
  article-title: Human fetal astrocytes infected with Zika virus exhibit delayed apoptosis and resistance to interferon: Implications for persistence
  publication-title: Viruses
– volume: 9
  start-page: 263
  issue: 1
  year: 2018
  article-title: Zika virus infection in pregnant rhesus macaques causes placental dysfunction and immunopathology
  publication-title: Nat Commun
– volume: 540
  start-page: 438
  issue: 7633
  year: 2016
  end-page: 442
  article-title: Zika virus infection damages the testes in mice
  publication-title: Nature
– volume: 2
  start-page: e92340
  issue: 4
  year: 2017
  article-title: Zika virus infects cells lining the blood‐retinal barrier and causes chorioretinal atrophy in mouse eyes
  publication-title: JCI Insight
– volume: 16
  start-page: 3208
  issue: 12
  year: 2016
  end-page: 3218
  article-title: Zika virus infection in mice causes panuveitis with shedding of virus in tears
  publication-title: Cell Rep
– volume: 534
  start-page: 267
  issue: 7606
  year: 2016
  end-page: 271
  article-title: The Brazilian Zika virus strain causes birth defects in experimental models
  publication-title: Nature
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 2
  article-title: Neural stem and progenitor cells in nervous system function and therapy
  publication-title: Stem Cells Int
– volume: 42
  start-page: 443
  issue: 6
  year: 2017
  end-page: 456
  article-title: Structural biology of the Zika virus
  publication-title: Trends Biochem Sci
– volume: 7
  start-page: 13410
  issue: 1
  year: 2016
  article-title: Structure of the NS2B‐NS3 protease from Zika virus after self‐cleavage
  publication-title: Nat Commun
– volume: 38
  start-page: 855
  issue: 5
  year: 2013
  end-page: 869
  article-title: Cytosolic sensing of viruses
  publication-title: Immunity
– volume: 53
  start-page: 252
  issue: 4
  year: 2017
  end-page: 257
  article-title: Clinical and laboratory diagnosis of Zika fever: an update
  publication-title: J Bras Patol Med Lab
– volume: 13
  issue: 3
  year: 2017
  article-title: A novel Zika virus mouse model reveals strain specific differences in virus pathogenesis and host inflammatory immune responses
  publication-title: PLoS Pathog
– volume: 21
  start-page: 134
  issue: 2
  year: 2017
  end-page: 142
  article-title: Zika virus pathogenesis and tissue tropism
  publication-title: Cell Host Microbe
– volume: 82
  start-page: 4731
  issue: 10
  year: 2008
  end-page: 4741
  article-title: Role of nonstructural protein NS2A in assembly
  publication-title: J Virol
– volume: 533
  start-page: 425
  issue: 7603
  year: 2016
  end-page: 428
  article-title: Structure of the thermally stable Zika virus
  publication-title: Nature
– volume: 140
  start-page: 805
  issue: 6
  year: 2010
  end-page: 820
  article-title: Pattern recognition receptors and inflammation
  publication-title: Cell
– year: 1987
– volume: 32
  start-page: 15012
  issue: 43
  year: 2012
  end-page: 15026
  article-title: Mammalian target of rapamycin signaling is a key regulator of the transit‐amplifying progenitor pool in the adult and aging forebrain
  publication-title: J Neurosci
– volume: 167
  start-page: 1511
  issue: 6
  year: 2016
  end-page: 1524.e10
  article-title: Zika virus causes testis damage and leads to male infertility in mice
  publication-title: Cell
– volume: 6
  start-page: e6
  issue: 2
  year: 2017
  end-page: e4
  article-title: Neonatal pigs are susceptible to experimental Zika virus infection
  publication-title: Emerg Microbes Infect
– volume: 83
  start-page: 12
  year: 2017
  end-page: 21
  article-title: Original antigenic sin: a comprehensive review
  publication-title: J Autoimmun
– volume: 7
  start-page: 66
  issue: 3
  year: 2018
  article-title: An update on sexual transmission of Zika virus
  publication-title: Pathogens
– volume: 9
  start-page: 1338
  issue: 1
  year: 2018
  end-page: 1343
  article-title: Persistent Zika virus infection in porcine conceptuses is associated with elevated in utero cortisol levels
  publication-title: Virulence
– volume: 10
  start-page: 530
  issue: 10
  year: 2018
  article-title: Ocular manifestations of emerging and the blood‐retinal barrier
  publication-title: Viruses
– volume: 6
  start-page: 989
  issue: 12
  year: 2016
  end-page: 994
  article-title: Zika virus: a review of literature
  publication-title: Asian Pac J Trop Biomed
– volume: 66
  start-page: 1120
  issue: 7
  year: 2018
  end-page: 1121
  article-title: Evidence for mother‐to‐child transmission of Zika virus through breast milk
  publication-title: Clin Infect Dis
– volume: 13
  issue: 5
  year: 2017
  article-title: Highly efficient maternal‐fetal Zika virus transmission in pregnant rhesus macaques
  publication-title: PLoS Pathog
– volume: 18
  start-page: 295
  issue: 5
  year: 2016
  end-page: 301
  article-title: Zika virus—an overview
  publication-title: Microbes Infect
– volume: 7
  start-page: 203
  year: 2018
  article-title: The immunology of Zika virus
  publication-title: F1000Research
– volume: 507
  start-page: 89
  year: 2017
  end-page: 95
  article-title: Zika virus infection of adult and fetal STAT2 knock‐out hamsters
  publication-title: Virology
– volume: 545
  start-page: 482
  issue: 7655
  year: 2017
  end-page: 486
  article-title: Evolutionary enhancement of Zika virus infectivity in mosquitoes
  publication-title: Nature
– volume: 24
  start-page: 118
  issue: 3‐4
  year: 2015
  end-page: 126
  article-title: Predicting Zika virus structural biology: Challenges and opportunities for intervention
  publication-title: Antivir Chem Chemother
– volume: 20
  start-page: 635
  issue: 11‐12
  year: 2018
  end-page: 645
  article-title: Zika virus: from an obscurity to a priority
  publication-title: Microbes Infect
– volume: 14
  issue: 9
  year: 2018
  article-title: CD4 + T cells mediate protection against Zika associated severe disease in a mouse model of infection
  publication-title: PLoS Pathog
– volume: 29
  start-page: 114
  issue: 1
  year: 2019
  end-page: 125
  article-title: A clinical and histopathological study of malformations observed in fetuses infected by the Zika virus
  publication-title: Brain Pathol
– volume: 19
  start-page: 936
  issue: 4
  year: 2018
  article-title: Disease modeling using 3D organoids derived from human induced pluripotent stem cells
  publication-title: Int J Mol Sci
– volume: 35
  start-page: 2631
  issue: 24
  year: 2016
  end-page: 2633
  article-title: Zika virus NS1, a pathogenicity factor with many faces
  publication-title: EMBO J
– volume: 23
  start-page: 692
  issue: 3
  year: 2018
  end-page: 700
  article-title: Zika virus can strongly infect and disrupt secondary organizers in the ventricular zone of the embryonic chicken brain
  publication-title: Cell Rep
– volume: 31
  start-page: 849
  issue: 9
  year: 2017
  end-page: 861
  article-title: How does Zika virus cause microcephaly?
  publication-title: Genes Dev
– volume: 5
  start-page: 392
  issue: 5
  year: 2002
  end-page: 394
  article-title: Neural stem cells: form and function
  publication-title: Nat Neurosci
– volume: 59
  start-page: 445
  issue: 3
  year: 1986
  end-page: 450
  article-title: Immunological defects in SJL mice
  publication-title: Immunology
– volume: 6
  start-page: 35296
  issue: 1
  year: 2016
  article-title: ZIKA virus reveals broad tissue and cell tropism during the first trimester of pregnancy
  publication-title: Sci Rep
– volume: 171
  start-page: 288
  issue: 3
  year: 2017
  end-page: 295
  article-title: Characterizing the pattern of anomalies in congenital Zika syndrome for pediatric clinicians
  publication-title: JAMA Pediatr
– volume: 9
  start-page: 1350
  year: 2018
  article-title: Zika virus non‐structural protein 4A blocks the RLR‐MAVS signaling
  publication-title: Front Microbiol
– volume: 198
  start-page: 3526
  issue: 9
  year: 2017
  end-page: 3535
  article-title: Adaptive immune responses to Zika virus are important for controlling virus infection and preventing infection in brain and testes
  publication-title: J Immunol
– volume: 89
  start-page: 8880
  issue: 17
  year: 2015
  end-page: 8896
  article-title: Biology of Zika virus infection in human skin cells
  publication-title: J Virol
– volume: 82
  start-page: 10776
  issue: 21
  year: 2008
  end-page: 10791
  article-title: Differential modulation of prM cleavage, extracellular particle distribution, and virus infectivity by conserved residues at nonfurin consensus positions of the dengue virus pr‐M junction
  publication-title: J Virol
– volume: 141
  start-page: S167
  issue: Supplement 2
  year: 2018
  end-page: S179
  article-title: Motor abnormalities and epilepsy in infants and children with evidence of congenital Zika virus infection
  publication-title: Pediatrics
– volume: 75
  start-page: 1723
  issue: 10
  year: 2018
  end-page: 1736
  article-title: Structure and function of Zika virus NS5 protein: perspectives for drug design
  publication-title: Cell Mol Life Sci
– volume: 28
  start-page: 138
  issue: 3
  year: 2007
  end-page: 145
  article-title: Astrocytes are active players in cerebral innate immunity
  publication-title: Trends Immunol
– volume: 7
  start-page: 2028
  year: 2016
  article-title: Development of a Zika virus infection model in cynomolgus macaques
  publication-title: Front Microbiol
– volume: 19
  start-page: 258
  issue: 2
  year: 2016
  end-page: 265
  article-title: Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3
  publication-title: Cell Stem Cell
– volume: 9
  start-page: 383
  issue: 12
  year: 2017
  article-title: Zika virus exhibits lineage‐specific phenotypes in cell culture, in mosquitoes, and in an embryo model
  publication-title: Viruses
– volume: 91
  issue: 22
  year: 2017
  article-title: Zika virus infects human Sertoli cells and modulates the integrity of in vitro blood‐testis barrier model
  publication-title: J Virol
– volume: 387
  start-page: 1587
  issue: 10027
  year: 2016
  end-page: 1590
  article-title: Teratogenic effects of the Zika virus and the role of the placenta
  publication-title: Lancet
– volume: 7
  start-page: 3741
  issue: 7
  year: 2015
  end-page: 3767
  article-title: Tissue barriers to arbovirus infection in mosquitoes
  publication-title: Viruses
– volume: 363
  year: 2018
  article-title: Maternal‐fetal transmission and adverse perinatal outcomes in pregnant women infected with Zika virus: prospective cohort study in French Guiana
  publication-title: BMJ
– volume: 21
  start-page: 1180
  issue: 5
  year: 2017
  end-page: 1190
  article-title: Functional analysis of glycosylation of Zika virus envelope protein
  publication-title: Cell Rep
– volume: 308
  start-page: 50
  year: 2017
  end-page: 64
  article-title: Zika virus: History, epidemiology, transmission, and clinical presentation
  publication-title: J Neuroimmunol
– volume: 4
  issue: 4
  year: 2016
  article-title: Complete genome sequences of three historically important, spatiotemporally distinct, and genetically divergent strains of Zika virus: MR‐766, P6‐740 and PRVABC‐59
  publication-title: Genome Announc
– volume: 28
  start-page: 13978
  issue: 51
  year: 2008
  end-page: 13984
  article-title: Toll‐like receptor 3 is a negative regulator of embryonic neural progenitor cell proliferation
  publication-title: J Neurosci
– volume: 144
  start-page: 223
  year: 2017
  end-page: 246
  article-title: Zika in the Americas, year 2: What have we learned? What gaps remain? A report from the Global Virus Network
  publication-title: Antiviral Res
– volume: 7
  start-page: 12204
  issue: 1
  year: 2016
  article-title: A rhesus macaque model of Asian‐lineage Zika virus infection
  publication-title: Nat Commun
– volume: 19
  start-page: 663
  issue: 5
  year: 2016
  end-page: 671
  article-title: Zika virus NS4A and NS4B proteins deregulate Akt‐mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy
  publication-title: Cell Stem Cell
– volume: 2
  year: 2010
– volume: 379
  start-page: 1234
  issue: 13
  year: 2018
  end-page: 1243
  article-title: Persistence of Zika virus in body fluids—final report
  publication-title: N Engl J Med
– volume: 20
  start-page: 155
  issue: 2
  year: 2016
  end-page: 166
  article-title: Zika virus targets different primary human placental cells, suggesting two routes for vertical transmission
  publication-title: Cell Host Microbe
– volume: 22
  start-page: 9
  issue: 1
  year: 2017
  end-page: 11
  article-title: Dual blades: The role of Musashi 1 in Zika replication and microcephaly
  publication-title: Cell Host Microbe
– volume: 430
  start-page: 948
  issue: 7
  year: 2018
  end-page: 962
  article-title: Crystal structure of the capsid protein from Zika virus
  publication-title: J Mol Biol
– volume: 6
  start-page: e1477
  issue: 2
  year: 2012
  article-title: Genetic characterization of Zika virus strains: geographic expansion of the Asian lineage
  publication-title: PLoS Negl Trop Dis
– volume: 25
  start-page: 1691
  issue: 22
  year: 2016
  end-page: 1697
  article-title: Zika virus induced mortality and microcephaly in chicken embryos
  publication-title: Stem Cells Dev
– volume: 10
  start-page: 593
  issue: 11
  year: 2018
  article-title: Research models and tools for the identification of antivirals and therapeutics against Zika virus infection
  publication-title: Viruses
– volume: 25
  start-page: 205
  issue: 4
  year: 2015
  end-page: 223
  article-title: Flaviviral NS4b, chameleon and jack‐in‐the‐box roles in viral replication and pathogenesis, and a molecular target for antiviral intervention
  publication-title: Rev Med Virol
– volume: 254
  start-page: 41
  year: 2018
  end-page: 53
  article-title: Functional RNA during Zika virus infection
  publication-title: Virus Res
– volume: 29
  start-page: 487
  issue: 3
  year: 2016
  end-page: 524
  article-title: Zika virus
  publication-title: Clin Microbiol Rev
– volume: 47
  start-page: 6
  issue: 1
  year: 2016
  end-page: 7
  article-title: Zika virus intrauterine infection causes fetal abnormality and microcephaly: tip of the iceberg?
  publication-title: Ultrasound Obstet Gynecol
– volume: 17
  start-page: 1200
  issue: 11
  year: 2017
  end-page: 1208
  article-title: Effect of acute Zika virus infection on sperm and virus clearance in body fluids: a prospective observational study
  publication-title: Lancet Infect Dis
– volume: 19
  start-page: 696
  issue: 5
  year: 2016
  end-page: 704
  article-title: Structures of the Zika virus envelope protein and its complex with a broadly protective antibody
  publication-title: Cell Host Microbe
– volume: 36
  start-page: 279
  issue: 1
  year: 2018
  end-page: 308
  article-title: Immune response to dengue and Zika
  publication-title: Annu Rev Immunol
– volume: 21
  start-page: 349
  issue: 3
  year: 2017
  end-page: 358.e6
  article-title: Zika‐virus‐encoded NS2A disrupts mammalian cortical neurogenesis by degrading adherens junction proteins
  publication-title: Cell Stem Cell
– volume: 36
  start-page: 1716
  issue: 4
  year: 2015
  end-page: 1726
  article-title: The proliferation of amplifying neural progenitor cells is impaired in the aging brain and restored by the mTOR pathway activation
  publication-title: Neurobiol Aging
– volume: 7
  start-page: 327
  year: 2017
  article-title: An integrative analysis reveals a central role of P53 activation via MDM2 in Zika virus infection induced cell death
  publication-title: Front Cell Infect Microbiol
– volume: 34
  start-page: 266
  issue: 05
  year: 2016
  end-page: 272
  article-title: Pathogenesis and molecular mechanisms of Zika virus
  publication-title: Semin Reprod Med
– volume: 14
  issue: 4
  year: 2018
  article-title: Zika virus infection in immunocompetent pregnant mice causes fetal damage and placental pathology in the absence of fetal infection
  publication-title: PLoS Pathog
– volume: 91
  start-page: e00009‐17
  issue: 8
  year: 2017
  article-title: Animal models of Zika virus infection, pathogenesis, and immunity
  publication-title: J Virol
– volume: 7
  start-page: 10
  issue: 1
  year: 2018
  end-page: 20
  article-title: Identification of various cell culture models for the study of Zika virus
  publication-title: World J Virology
– volume: 98
  start-page: 192
  issue: 2
  year: 2013
  end-page: 208
  article-title: The NS1 protein: molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker
  publication-title: Antiviral Res
– volume: 19
  start-page: 593
  issue: 5
  year: 2016
  end-page: 598
  article-title: Zika virus infects neural progenitors in the adult mouse brain and alters proliferation
  publication-title: Cell Stem Cell
– volume: 7
  start-page: 1
  issue: 1
  year: 2018
  end-page: 11
  article-title: Microencephaly in fetal piglets following in utero inoculation of Zika virus
  publication-title: Emerg Microbes Infect
– volume: 357
  start-page: 83
  issue: 6346
  year: 2017
  end-page: 88
  article-title: Neurodevelopment protein Musashi‐1 interacts with the Zika genome and promotes viral replication
  publication-title: Science
– volume: 29
  start-page: 659
  issue: 3
  year: 2016
  end-page: 694
  article-title: Emerging role of Zika virus in adverse fetal and neonatal outcomes
  publication-title: Clin Microbiol Rev
– volume: 28
  start-page: 595
  issue: 6
  year: 2017
  end-page: 599
  article-title: Zika virus and the eye
  publication-title: Curr Opin Ophthamol
– volume: 165
  start-page: 1081
  issue: 5
  year: 2016
  end-page: 1091
  article-title: Zika virus infection during pregnancy in mice causes placental damage and fetal demise
  publication-title: Cell
– volume: 54
  start-page: 860
  issue: 4
  year: 2016
  end-page: 867
  article-title: Zika virus: Diagnostics for an emerging pandemic threat
  publication-title: J Clin Microbiol
– volume: 352
  start-page: i657
  year: 2016
  article-title: Zika virus is a global public health emergency, declares WHO
  publication-title: BMJ
– volume: 363
  start-page: fnw202
  issue: 18
  year: 2016
  article-title: Zika virus: from pathogenesis to disease control
  publication-title: FEMS Microbiol Lett
– volume: 1
  start-page: 97
  year: 2018
  end-page: 111
  article-title: High‐throughput fitness profiling of Zika virus E protein reveals different roles for glycosylation during infection of mammalian and mosquito cells
  publication-title: iScience
– ident: e_1_2_8_36_1
  doi: 10.1016/j.jmb.2018.02.006
– ident: e_1_2_8_89_1
  doi: 10.1016/j.cell.2010.01.022
– ident: e_1_2_8_106_1
  doi: 10.3390/v9100297
– ident: e_1_2_8_18_1
  doi: 10.5501/wjv.v7.i1.10
– ident: e_1_2_8_61_1
  doi: 10.1016/j.cell.2016.05.008
– ident: e_1_2_8_41_1
  doi: 10.1016/j.celrep.2017.10.016
– ident: e_1_2_8_68_1
  doi: 10.1016/j.celrep.2018.03.080
– ident: e_1_2_8_78_1
  doi: 10.1038/nature17994
– ident: e_1_2_8_104_1
  doi: 10.1007/s12035-018-1263-x
– ident: e_1_2_8_7_1
  doi: 10.1093/cid/cix968
– ident: e_1_2_8_46_1
  doi: 10.1128/JVI.00002-08
– ident: e_1_2_8_4_1
  doi: 10.1128/CMR.00072-15
– ident: e_1_2_8_55_1
  doi: 10.1016/j.chom.2018.04.003
– ident: e_1_2_8_26_1
  doi: 10.1016/j.ceb.2018.06.006
– ident: e_1_2_8_130_1
  doi: 10.1038/nature20556
– ident: e_1_2_8_93_1
  doi: 10.1371/journal.ppat.1007237
– ident: e_1_2_8_108_1
  doi: 10.1073/pnas.1707513114
– ident: e_1_2_8_76_1
  doi: 10.1136/bmj.k4431
– ident: e_1_2_8_64_1
  doi: 10.1038/nature18296
– ident: e_1_2_8_111_1
  doi: 10.1016/j.chom.2016.07.002
– ident: e_1_2_8_70_1
  doi: 10.1080/21505594.2018.1504558
– ident: e_1_2_8_38_1
  doi: 10.1016/j.tibs.2017.02.009
– ident: e_1_2_8_86_1
  doi: 10.1128/JVI.01180-08
– ident: e_1_2_8_50_1
  doi: 10.1177/2040206616653873
– ident: e_1_2_8_49_1
  doi: 10.1038/ncomms13410
– ident: e_1_2_8_96_1
  doi: 10.1016/j.jaut.2017.04.008
– ident: e_1_2_8_83_1
  doi: 10.1128/JVI.00354-15
– ident: e_1_2_8_9_1
  doi: 10.1016/j.micinf.2016.03.003
– ident: e_1_2_8_59_1
  doi: 10.1371/journal.pntd.0006417
– ident: e_1_2_8_21_1
  doi: 10.3390/v9120383
– ident: e_1_2_8_60_1
  doi: 10.1371/journal.ppat.1006258
– ident: e_1_2_8_117_1
  doi: 10.1101/gad.298216.117
– ident: e_1_2_8_62_1
  doi: 10.1016/j.ebiom.2017.04.029
– ident: e_1_2_8_56_1
  doi: 10.1016/j.chom.2016.05.009
– volume-title: An Atlas for Staging Mammalian and Chick Embryos
  year: 1987
  ident: e_1_2_8_67_1
– ident: e_1_2_8_85_1
  doi: 10.1016/j.meegid.2019.01.018
– ident: e_1_2_8_119_1
  doi: 10.1016/j.stem.2016.04.014
– ident: e_1_2_8_110_1
  doi: 10.1038/srep35296
– ident: e_1_2_8_66_1
  doi: 10.1089/scd.2016.0231
– ident: e_1_2_8_102_1
  doi: 10.1523/JNEUROSCI.2248-12.2012
– ident: e_1_2_8_65_1
  doi: 10.1016/j.virol.2017.04.013
– ident: e_1_2_8_28_1
  doi: 10.1128/mSystems.00219-17
– ident: e_1_2_8_125_1
  doi: 10.1172/jci.insight.92340
– ident: e_1_2_8_57_1
  doi: 10.1371/journal.pntd.0004658
– ident: e_1_2_8_109_1
  doi: 10.1016/S0140-6736(16)00650-4
– ident: e_1_2_8_74_1
  doi: 10.3389/fmicb.2016.02028
– volume: 6
  start-page: 1
  issue: 1
  year: 2017
  ident: e_1_2_8_2_1
  article-title: Zika virus genome biology and molecular pathogenesis
  publication-title: Emerg Microbes Infect
  doi: 10.1038/emi.2016.141
– ident: e_1_2_8_8_1
  doi: 10.1016/j.apjtb.2016.09.007
– ident: e_1_2_8_24_1
  doi: 10.1371/journal.pntd.0001477
– ident: e_1_2_8_123_1
  doi: 10.3390/v10110646
– volume: 59
  start-page: 445
  issue: 3
  year: 1986
  ident: e_1_2_8_63_1
  article-title: Immunological defects in SJL mice
  publication-title: Immunology
– ident: e_1_2_8_133_1
  doi: 10.1038/s41598-018-23899-x
– ident: e_1_2_8_131_1
  doi: 10.1016/j.cell.2016.11.016
– ident: e_1_2_8_32_1
  doi: 10.1128/JVI.00009-17
– ident: e_1_2_8_129_1
  doi: 10.3390/pathogens7030066
– ident: e_1_2_8_87_1
  doi: 10.12688/f1000research.12695.1
– ident: e_1_2_8_69_1
  doi: 10.1016/j.ebiom.2017.09.021
– ident: e_1_2_8_37_1
  doi: 10.3389/fcimb.2017.00327
– ident: e_1_2_8_43_1
  doi: 10.15252/embj.201695871
– ident: e_1_2_8_22_1
  doi: 10.1016/j.vaccine.2017.03.018
– ident: e_1_2_8_115_1
  doi: 10.1038/s41467-017-02499-9
– ident: e_1_2_8_112_1
  doi: 10.1016/j.ijid.2016.07.015
– ident: e_1_2_8_94_1
  doi: 10.1038/s41467-018-05519-4
– ident: e_1_2_8_107_1
  doi: 10.4199/C00016ED1V01Y201008ISP009
– ident: e_1_2_8_105_1
  doi: 10.1016/j.it.2007.01.005
– ident: e_1_2_8_34_1
  doi: 10.1016/j.virusres.2017.08.015
– ident: e_1_2_8_54_1
  doi: 10.1007/s00018-018-2751-x
– volume: 6
  start-page: e6
  issue: 2
  year: 2017
  ident: e_1_2_8_71_1
  article-title: Neonatal pigs are susceptible to experimental Zika virus infection
  publication-title: Emerg Microbes Infect
– ident: e_1_2_8_126_1
  doi: 10.1038/s41426-018-0096-z
– ident: e_1_2_8_100_1
  doi: 10.1016/j.stem.2016.08.005
– ident: e_1_2_8_44_1
  doi: 10.1038/nature22365
– ident: e_1_2_8_77_1
  doi: 10.1016/j.chom.2017.01.004
– ident: e_1_2_8_51_1
  doi: 10.3389/fmicb.2018.01350
– ident: e_1_2_8_113_1
  doi: 10.1371/journal.ppat.1006994
– ident: e_1_2_8_116_1
  doi: 10.1111/bpa.12644
– ident: e_1_2_8_11_1
  doi: 10.1542/peds.2017-2038F
– ident: e_1_2_8_42_1
  doi: 10.1016/j.antiviral.2017.07.007
– ident: e_1_2_8_79_1
  doi: 10.1016/j.jneuroim.2017.03.001
– ident: e_1_2_8_118_1
  doi: 10.1055/s-0036-1592071
– ident: e_1_2_8_13_1
  doi: 10.1097/ICU.0000000000000420
– ident: e_1_2_8_53_1
  doi: 10.1002/rmv.1835
– ident: e_1_2_8_27_1
  doi: 10.1016/j.stem.2016.12.005
– ident: e_1_2_8_134_1
  doi: 10.1038/s41467-018-04444-w
– ident: e_1_2_8_92_1
  doi: 10.1016/j.chom.2016.12.010
– ident: e_1_2_8_58_1
  doi: 10.1016/j.chom.2016.03.010
– ident: e_1_2_8_80_1
  doi: 10.3390/v7072795
– ident: e_1_2_8_20_1
  doi: 10.1128/JCM.00279-16
– ident: e_1_2_8_29_1
  doi: 10.1056/NEJMoa1613108
– ident: e_1_2_8_75_1
  doi: 10.1016/j.micinf.2018.02.009
– ident: e_1_2_8_3_1
  doi: 10.1371/journal.pntd.0005933
– ident: e_1_2_8_90_1
  doi: 10.4049/jimmunol.1601949
– ident: e_1_2_8_88_1
  doi: 10.1016/j.immuni.2013.05.007
– ident: e_1_2_8_5_1
  doi: 10.5935/1676-2444.20170039
– ident: e_1_2_8_30_1
  doi: 10.1016/S1473-3099(17)30444-9
– ident: e_1_2_8_81_1
  doi: 10.3390/pathogens7020049
– ident: e_1_2_8_72_1
  doi: 10.1038/s41426-018-0044-y
– ident: e_1_2_8_97_1
  doi: 10.4049/jimmunol.0900398
– ident: e_1_2_8_17_1
– ident: e_1_2_8_73_1
  doi: 10.1038/ncomms12204
– ident: e_1_2_8_124_1
  doi: 10.1016/j.celrep.2016.08.079
– ident: e_1_2_8_103_1
  doi: 10.1016/j.neurobiolaging.2015.01.003
– ident: e_1_2_8_39_1
– ident: e_1_2_8_95_1
  doi: 10.1016/j.chom.2016.04.013
– ident: e_1_2_8_16_1
  doi: 10.1016/j.antiviral.2017.06.001
– ident: e_1_2_8_127_1
  doi: 10.3390/v10100530
– ident: e_1_2_8_10_1
  doi: 10.1128/CMR.00014-16
– ident: e_1_2_8_98_1
  doi: 10.1038/nn0502-392
– ident: e_1_2_8_120_1
  doi: 10.1523/JNEUROSCI.2140-08.2008
– ident: e_1_2_8_121_1
  doi: 10.1126/science.aam9243
– ident: e_1_2_8_23_1
  doi: 10.3390/v10110593
– ident: e_1_2_8_35_1
  doi: 10.1128/genomeA.00800-16
– ident: e_1_2_8_19_1
  doi: 10.1038/emi.2016.99
– ident: e_1_2_8_84_1
  doi: 10.1093/infdis/jix515
– ident: e_1_2_8_91_1
  doi: 10.12688/f1000research.12271.1
– ident: e_1_2_8_99_1
  doi: 10.1155/2016/1890568
– ident: e_1_2_8_128_1
  doi: 10.1210/er.2014-1101
– ident: e_1_2_8_31_1
  doi: 10.1038/s41426-018-0080-7
– ident: e_1_2_8_48_1
  doi: 10.1093/femsle/fnw202
– ident: e_1_2_8_33_1
  doi: 10.1099/jgv.0.001153
– ident: e_1_2_8_132_1
  doi: 10.1128/JVI.00623-17
– ident: e_1_2_8_114_1
  doi: 10.1371/journal.ppat.1006378
– ident: e_1_2_8_47_1
  doi: 10.1016/j.stem.2017.07.014
– ident: e_1_2_8_45_1
  doi: 10.1016/j.antiviral.2013.03.008
– ident: e_1_2_8_52_1
  doi: 10.1016/j.stem.2016.07.019
– ident: e_1_2_8_15_1
  doi: 10.1136/bmj.i657
– ident: e_1_2_8_14_1
  doi: 10.1001/jamapediatrics.2016.3982
– ident: e_1_2_8_40_1
  doi: 10.1016/j.isci.2018.02.005
– ident: e_1_2_8_12_1
  doi: 10.15585/mmwr.mm6731e1
– ident: e_1_2_8_82_1
  doi: 10.1146/annurev-immunol-042617-053142
– ident: e_1_2_8_6_1
  doi: 10.1002/uog.15831
– ident: e_1_2_8_122_1
  doi: 10.1016/j.chom.2017.06.015
– ident: e_1_2_8_101_1
  doi: 10.1038/cddis.2017.517
– ident: e_1_2_8_25_1
  doi: 10.3390/ijms19040936
SSID ssj0010104
Score 2.308174
SecondaryResourceType review_article
Snippet Summary Zika virus (ZIKV) outbreaks have raised alarm because of reports of congenital Zika virus syndrome in infants. The virus is also known to cause the...
Zika virus (ZIKV) outbreaks have raised alarm because of reports of congenital Zika virus syndrome in infants. The virus is also known to cause the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2050
SubjectTerms Animal models
Animals
Disease Models, Animal
Host-Pathogen Interactions
Humans
Infants
Infectivity
Mammals
Models, Theoretical
Outbreaks
pathophysiology
Placenta
research models
Teratogenicity
tissue tropism
Tropism
Viral Tropism
Zika virus
Zika Virus - growth & development
Zika Virus Infection - pathology
Zika Virus Infection - virology
Title Zika virus: Molecular responses and tissue tropism in the mammalian host
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frmv.2050
https://www.ncbi.nlm.nih.gov/pubmed/31095819
https://www.proquest.com/docview/2256027348
https://www.proquest.com/docview/2232045113
Volume 29
WOSCitedRecordID wos000484264800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010104
  issn: 1052-9276
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50V8WL70d9EUH0VDZN26TxJuqyh10RUVm8lLRNYdF2l3Z3wX9v0peICoKnHjJtSiaT-ZKZfANwFkiHCH0EFilnYTqeG5sBp9xkHNsksmIpRFG1pM_u7rzhkN9XWZX6LkzJD9EcuGnLKNZrbeAiyDufpKFZMlfbO71dbxM1bd0WtG8euk_9JoagdxpFrNMlJieM1tSzmHTqd786o28I8ytgLTxOd_0__7oBaxXORFflxNiEBZluwXJZefJ9C1YGVUx9G3ovo1eB5qNsll-iQV0tF2Vl8qzMkUgjNC30g6bZeDLKEzRKkQKOKBFJUpyTIH1XZAeeureP1z2zqq9ghsptY5MIlzpYUDu0hbLjMHQiT1AnsFgQMI9G1I4E5lGs0xAp4QHjNFYt2ONU2JFS5i600nEq9wEps44llp6MJXMkjdWqwHDo2Q52JCdUGHBRD7QfVuTjugbGm1_SJhNfDZGvh8iA00ZyUhJu_CBzVOvKr0wu94kGbwVZj_pE06yMRUdARCrHMy1ja_p9y7IN2Ct13HSiKVJdhY8MOC9U-Wvv_sPgWT8P_ip4CKsKZvEyyfcIWtNsJo9hKZwr3WUnsMiG3kk1eT8AADHvaw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB7E-8X7WM8Iok_FbJpNG30SdVlxdxFREV9K2qawaLvSPcB_76SXiAqCT33ItClzZCYzyTcAh77mTJkUWIjOwuJuI7J8KaTlSGqzsB5ppbKuJW2n23WfnuTtBJyVd2FyfIgq4WYsI1uvjYGbhPTJJ2poGo9xf2f261MctQjVe-ryrvnQrooIZquRFTsbzJLMESX2LGUn5btfvdG3EPNrxJq5nObiv352CRaKSJOc56qxDBM6WYGZvPfk-wrMdoqq-iq0nnsviox76WhwSjplv1yS5sdn9YCoJCTDTEJkmPbfeoOY9BKCoSOJVRxnmRJibouswUPz6v6iZRUdFqwAHTe1mGoITpWwA1uhJQcBD10luF93fN9xRSjsUFEZRuYgomDSd6SIcIS6Uig7RHGuw2TST_QmEDTsSFPt6kg7XIsI1wWHBq7NKdeSCVWD45LTXlDAj5suGK9eDpzMPGSRZ1hUg4OK8i2H3PiBZqcUllcY3cBjJnzL4HrwE9UwmoupgahE90eGxjYA_PW6XYONXMjVJAYktYERUg2OMln-Ort313k0z62_Eu7DXOu-0_ba192bbZjHoEvmR353YHKYjvQuTAdjlGO6V-jwB7Wm8nM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7IpuKL98u8RhB9KsvSLG30SZxDcRsiTsSXkjYpDG03ugv47016E1FB8KkPOW1KTk7Ol3OS7wCc-IoSYUJgUjsLi7rN0PI545bDsU1kI1RCpFVLOk6v5z4_8_s5uCjuwmT8EGXAzVhGul4bA1cjGdY_WUOTaKb3d2a_XqWmhkwFqq2Hdr9TJhHMViNNdjaJxYnDCu5ZTOrFu1-90TeI-RWxpi6nvfKvn12F5RxpostsaqzBnIrXYSGrPfm-DovdPKu-ATcvg1eBZoNkOj5H3aJeLkqy47NqjEQs0STVEJokw9FgHKFBjDR0RJGIojRSgsxtkU3ot68fr26svMKCFWjHjS0imoxiwezAFtqSg4BKVzDqNxzfd1wmmS0F5jI0BxEZ4b7DWahbsMuZsKVW5xZU4mGsdgBpww4VVq4KlUMVC_W64ODAtSmmihMmanBWjLQX5PTjpgrGm5cRJxNPD5FnhqgGx6XkKKPc-EFmv1CWlxvd2CMGvqV0PfoTZbM2F5MDEbEaTo2MbQj4Gw27BtuZkstODElqUyOkGpymuvy1d--h-2Seu38VPILF-1bb69z27vZgSWMunp343YfKJJmqA5gPZlqNyWE-hT8AVFTx7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zika+virus%3A+Molecular+responses+and+tissue+tropism+in+the+mammalian+host&rft.jtitle=Reviews+in+medical+virology&rft.au=Shaily%2C+Sangya&rft.au=Upadhya%2C+Archana&rft.date=2019-07-01&rft.issn=1099-1654&rft.eissn=1099-1654&rft.volume=29&rft.issue=4&rft.spage=e2050&rft_id=info:doi/10.1002%2Frmv.2050&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1052-9276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1052-9276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1052-9276&client=summon