An intelligent multi-restart memetic algorithm for box constrained global optimisation

In this paper, we propose a multi-restart memetic algorithm framework for box constrained global continuous optimisation. In this framework, an evolutionary algorithm (EA) and a local optimizer are employed as separated building blocks. The EA is used to explore the search space for very promising s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Evolutionary computation Ročník 21; číslo 1; s. 107
Hlavní autoři: Sun, J, Garibaldi, J M, Krasnogor, N, Zhang, Q
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.03.2013
Témata:
ISSN:1530-9304, 1530-9304
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we propose a multi-restart memetic algorithm framework for box constrained global continuous optimisation. In this framework, an evolutionary algorithm (EA) and a local optimizer are employed as separated building blocks. The EA is used to explore the search space for very promising solutions (e.g., solutions in the attraction basin of the global optimum) through its exploration capability and previous EA search history, and local search is used to improve these promising solutions to local optima. An estimation of distribution algorithm (EDA) combined with a derivative free local optimizer, called NEWUOA (M. Powell, Developments of NEWUOA for minimization without derivatives. Journal of Numerical Analysis, 28:649-664, 2008), is developed based on this framework and empirically compared with several well-known EAs on a set of 40 commonly used test functions. The main components of the specific algorithm include: (1) an adaptive multivariate probability model, (2) a multiple sampling strategy, (3) decoupling of the hybridisation strategy, and (4) a restart mechanism. The adaptive multivariate probability model and multiple sampling strategy are designed to enhance the exploration capability. The restart mechanism attempts to make the search escape from local optima, resorting to previous search history. Comparison results show that the algorithm is comparable with the best known EAs, including the winner of the 2005 IEEE Congress on Evolutionary Computation (CEC2005), and significantly better than the others in terms of both the solution quality and computational cost.
AbstractList In this paper, we propose a multi-restart memetic algorithm framework for box constrained global continuous optimisation. In this framework, an evolutionary algorithm (EA) and a local optimizer are employed as separated building blocks. The EA is used to explore the search space for very promising solutions (e.g., solutions in the attraction basin of the global optimum) through its exploration capability and previous EA search history, and local search is used to improve these promising solutions to local optima. An estimation of distribution algorithm (EDA) combined with a derivative free local optimizer, called NEWUOA (M. Powell, Developments of NEWUOA for minimization without derivatives. Journal of Numerical Analysis, 28:649-664, 2008), is developed based on this framework and empirically compared with several well-known EAs on a set of 40 commonly used test functions. The main components of the specific algorithm include: (1) an adaptive multivariate probability model, (2) a multiple sampling strategy, (3) decoupling of the hybridisation strategy, and (4) a restart mechanism. The adaptive multivariate probability model and multiple sampling strategy are designed to enhance the exploration capability. The restart mechanism attempts to make the search escape from local optima, resorting to previous search history. Comparison results show that the algorithm is comparable with the best known EAs, including the winner of the 2005 IEEE Congress on Evolutionary Computation (CEC2005), and significantly better than the others in terms of both the solution quality and computational cost.In this paper, we propose a multi-restart memetic algorithm framework for box constrained global continuous optimisation. In this framework, an evolutionary algorithm (EA) and a local optimizer are employed as separated building blocks. The EA is used to explore the search space for very promising solutions (e.g., solutions in the attraction basin of the global optimum) through its exploration capability and previous EA search history, and local search is used to improve these promising solutions to local optima. An estimation of distribution algorithm (EDA) combined with a derivative free local optimizer, called NEWUOA (M. Powell, Developments of NEWUOA for minimization without derivatives. Journal of Numerical Analysis, 28:649-664, 2008), is developed based on this framework and empirically compared with several well-known EAs on a set of 40 commonly used test functions. The main components of the specific algorithm include: (1) an adaptive multivariate probability model, (2) a multiple sampling strategy, (3) decoupling of the hybridisation strategy, and (4) a restart mechanism. The adaptive multivariate probability model and multiple sampling strategy are designed to enhance the exploration capability. The restart mechanism attempts to make the search escape from local optima, resorting to previous search history. Comparison results show that the algorithm is comparable with the best known EAs, including the winner of the 2005 IEEE Congress on Evolutionary Computation (CEC2005), and significantly better than the others in terms of both the solution quality and computational cost.
In this paper, we propose a multi-restart memetic algorithm framework for box constrained global continuous optimisation. In this framework, an evolutionary algorithm (EA) and a local optimizer are employed as separated building blocks. The EA is used to explore the search space for very promising solutions (e.g., solutions in the attraction basin of the global optimum) through its exploration capability and previous EA search history, and local search is used to improve these promising solutions to local optima. An estimation of distribution algorithm (EDA) combined with a derivative free local optimizer, called NEWUOA (M. Powell, Developments of NEWUOA for minimization without derivatives. Journal of Numerical Analysis, 28:649-664, 2008), is developed based on this framework and empirically compared with several well-known EAs on a set of 40 commonly used test functions. The main components of the specific algorithm include: (1) an adaptive multivariate probability model, (2) a multiple sampling strategy, (3) decoupling of the hybridisation strategy, and (4) a restart mechanism. The adaptive multivariate probability model and multiple sampling strategy are designed to enhance the exploration capability. The restart mechanism attempts to make the search escape from local optima, resorting to previous search history. Comparison results show that the algorithm is comparable with the best known EAs, including the winner of the 2005 IEEE Congress on Evolutionary Computation (CEC2005), and significantly better than the others in terms of both the solution quality and computational cost.
Author Garibaldi, J M
Zhang, Q
Krasnogor, N
Sun, J
Author_xml – sequence: 1
  givenname: J
  surname: Sun
  fullname: Sun, J
  email: J.Sun@abertay.ac.uk
  organization: CPIB, School of Bioscience, The University of Nottingham, Sutton Bonington, LE12 5RD, United Kingdom. J.Sun@abertay.ac.uk
– sequence: 2
  givenname: J M
  surname: Garibaldi
  fullname: Garibaldi, J M
– sequence: 3
  givenname: N
  surname: Krasnogor
  fullname: Krasnogor, N
– sequence: 4
  givenname: Q
  surname: Zhang
  fullname: Zhang, Q
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22335546$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLAzEURoNU7EN3riVLN6N5zCNdltKqUOhGux3u5FEjM0lNMqD_3oAVXN3vwuFyvjtHE-edRuiWkgdKa_a4Oaz3LbSEkFpcoBmtOCmWnJSTf3mK5jF-EEI5I_QKTRnjvKrKeoYOK4etS7rv7VG7hIexT7YIOiYIedODTlZi6I8-2PQ-YOMD7vwXlt7FFMA6rfCx9x302J-SHWyEZL27RpcG-qhvznOB3rab1_Vzsds_vaxXu0KWtEyFEZpKo0DwTkqSRZmqhIalrABUx5hsGsmM6oQUBmoldWaWhhhWgTFCcbZA9793T8F_jtm6zQYytwGn_RhbymlTkobXIqN3Z3TsBq3aU7ADhO_27xfsB0bmZUk
CitedBy_id crossref_primary_10_1109_TCYB_2014_2360752
crossref_primary_10_1109_TITS_2023_3309822
crossref_primary_10_1007_s00500_013_1183_7
crossref_primary_10_1007_s11047_016_9551_8
crossref_primary_10_1007_s10489_017_1118_6
crossref_primary_10_1016_j_ins_2014_11_023
crossref_primary_10_1109_TEVC_2014_2387433
crossref_primary_10_1007_s11075_024_01768_1
crossref_primary_10_1007_s00521_019_04439_8
crossref_primary_10_1155_2017_1395025
crossref_primary_10_1111_coin_12053
crossref_primary_10_1016_j_ins_2016_01_003
crossref_primary_10_1016_j_swevo_2024_101726
crossref_primary_10_1109_TCYB_2018_2789930
crossref_primary_10_1016_j_ejor_2015_12_018
crossref_primary_10_1109_JSEN_2014_2359744
crossref_primary_10_1007_s00500_018_3662_3
crossref_primary_10_1016_j_neucom_2015_07_057
crossref_primary_10_1515_jisys_2015_0103
crossref_primary_10_1007_s10489_022_03429_z
crossref_primary_10_1109_TCYB_2015_2447574
crossref_primary_10_1109_TMECH_2019_2916990
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1162/EVCO_a_00068
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1530-9304
ExternalDocumentID 22335546
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/D019613/1
GroupedDBID ---
.4S
.DC
0R~
36B
4.4
53G
5GY
5VS
6IK
AAJGR
AAKMM
AALFJ
AALMD
AAYFX
ABAZT
ABDBF
ABJNI
ABVLG
ACM
ACUHS
ADL
AEBYY
AEFXT
AEJOY
AENEX
AENSD
AFWIH
AFWXC
AIKLT
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
AZFZN
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAG
CCLIF
CGR
COF
CS3
CUY
CVF
DU5
EAP
EAS
EBC
EBD
EBS
ECM
ECS
EDO
EIF
EJD
EMB
EMK
EMOBN
EPL
EST
ESX
F5P
FEDTE
FNEHJ
GUFHI
HGAVV
HZ~
I-F
I07
IPLJI
JAVBF
LHSKQ
MCG
MINIK
NPM
O9-
OCL
P2P
PK0
RMI
SV3
TUS
ZWS
7X8
ID FETCH-LOGICAL-c414t-f8e1cfda83bcc03042d58ea9c5aadb22c77c2fdb8c8fa6dce0309f0f25aff8d32
IEDL.DBID 7X8
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000316061600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-9304
IngestDate Tue Aug 05 10:43:47 EDT 2025
Mon Jul 21 06:02:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-f8e1cfda83bcc03042d58ea9c5aadb22c77c2fdb8c8fa6dce0309f0f25aff8d32
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22335546
PQID 1317407368
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1317407368
pubmed_primary_22335546
PublicationCentury 2000
PublicationDate 2013-03-01
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Evolutionary computation
PublicationTitleAlternate Evol Comput
PublicationYear 2013
SSID ssj0013201
Score 2.1346111
Snippet In this paper, we propose a multi-restart memetic algorithm framework for box constrained global continuous optimisation. In this framework, an evolutionary...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 107
SubjectTerms Algorithms
Models, Theoretical
Title An intelligent multi-restart memetic algorithm for box constrained global optimisation
URI https://www.ncbi.nlm.nih.gov/pubmed/22335546
https://www.proquest.com/docview/1317407368
Volume 21
WOSCitedRecordID wos000316061600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLWAMsBAobzKS0ZitZo4ceJMqKpasVA6QNUt8hOQSFJoQHw-vkkKXZCQWLJZsezr62Pf43MQuhLSaJ8rTphnQhLKmBIpmSUOatgQEApnsjKbiMdjPpslk-bCbdHQKpc5sUrUulBwR97z3UbnDh9BxK_nrwRco6C62lhorKNW4AccrBvi2WoVwWv0Uj2SuHP7kvge0d5wOrhLBZReI_47uKw2mVH7v93bRTsNvMT9Oh720JrJO6i9tG7AzUruoO0VHcJ9NO3n-Plbm7PEFcuQgGuHCyycmQxeOmLx8uj-WD5l2AFdLItPrABcgseE0bhWFsGFS0FZQxE6QA-j4f3ghjSGC0SFflgSy42vrBY8kEpBzZRqxo1IFBNCS0pVHCtqtXRza0WkwWrMS6xnKRPWch3QQ7SRF7k5RthTPhDg4kQlHDTQEp_ZRCoZBbFnmC-76HI5jqnrFVQpRG6K90X6M5JddFRPRjqvlTdSh2UAH0Unf2h9irZoZV0BfLEz1LJuOZtztKk-yufF20UVKe47ntx-ARcyy0U
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+intelligent+multi-restart+memetic+algorithm+for+box+constrained+global+optimisation&rft.jtitle=Evolutionary+computation&rft.au=Sun%2C+J&rft.au=Garibaldi%2C+J+M&rft.au=Krasnogor%2C+N&rft.au=Zhang%2C+Q&rft.date=2013-03-01&rft.eissn=1530-9304&rft.volume=21&rft.issue=1&rft.spage=107&rft_id=info:doi/10.1162%2FEVCO_a_00068&rft_id=info%3Apmid%2F22335546&rft_id=info%3Apmid%2F22335546&rft.externalDocID=22335546
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-9304&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-9304&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-9304&client=summon