Topological recognition of critical transitions in time series of cryptocurrencies

We analyze four major cryptocurrencies (Bitcoin, Ethereum, Litecoin, and Ripple) before the digital asset market crash at the beginning of 2018. We also analyze Bitcoin before some of the mini-crashes that occurred during the period 2016–2018. All relevant time series exhibited a highly erratic beha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica A Jg. 548; S. 123843
Hauptverfasser: Gidea, Marian, Goldsmith, Daniel, Katz, Yuri, Roldan, Pablo, Shmalo, Yonah
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 15.06.2020
Schlagworte:
ISSN:0378-4371, 1873-2119
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analyze four major cryptocurrencies (Bitcoin, Ethereum, Litecoin, and Ripple) before the digital asset market crash at the beginning of 2018. We also analyze Bitcoin before some of the mini-crashes that occurred during the period 2016–2018. All relevant time series exhibited a highly erratic behavior. We introduce a methodology that combines topological data analysis with a machine learning technique – k-means clustering – in order to characterize the emerging chaotic regime in a complex system approaching a critical transition. We first test our methodology on the complex system dynamics of a Lorenz-type attractor. Then we apply it to the four major cryptocurrencies. We find early warning signals for critical transitions, i.e., crashes, in the cryptocurrency markets. •We use persistence homology and clustering to detect critical transitions.•Our approach can be applied to strongly non-linear and non-stationary time series.•We detect early warning signals for crashes in the cryptocurrency market.
ISSN:0378-4371
1873-2119
DOI:10.1016/j.physa.2019.123843