A Worst-Case Robust MMSE Transceiver Design for Nonregenerative MIMO Relaying

Transceiver designs have been a key issue in guaranteeing the performance of multiple-input multiple-output (MIMO) relay systems, which are, however, often subject to imperfect channel state information (CSI). In this paper, we aim to design a robust MIMO transceiver for nonregenerative MIMO relay s...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on wireless communications Vol. 13; no. 2; pp. 695 - 709
Main Authors: Shen, Hong, Wang, Jiaheng, Xu, Wei, Rong, Yue, Zhao, Chunming
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.02.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1536-1276, 1558-2248
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Transceiver designs have been a key issue in guaranteeing the performance of multiple-input multiple-output (MIMO) relay systems, which are, however, often subject to imperfect channel state information (CSI). In this paper, we aim to design a robust MIMO transceiver for nonregenerative MIMO relay systems against imperfect CSI from a worst-case robust perspective. Specifically, we formulate the robust transceiver design, under the minimum mean-squared error (MMSE) criterion, as a minimax problem. Then, by decomposing the minimax problem into two subproblems with respect to the relay precoder and destination equalizer, respectively, we show that the optimal solution to each subproblem has a favorable channel-diagonalizing structure under some mild conditions. Based on this finding, we transform the two complex-matrix subproblems into their equivalent scalar forms, both of which are proven to be convex and can be efficiently solved by our proposed methods. We further propose an alternating algorithm to jointly optimize the precoder and equalizer that only requires scalar operations. Finally, the effectiveness of the proposed robust design is verified by simulation results.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2013.120413.130009