The molecular mechanism and functional diversity of UPR signaling sensor IRE1
The endoplasmic reticulum is primarily responsible for protein folding and maturation. However, the organelle is subject to varied stress conditions from time to time, which lead to the activation of a signaling program known as the Unfolded Protein Response (UPR) pathway. This pathway, upon sensing...
Uloženo v:
| Vydáno v: | Life sciences (1973) Ročník 265; s. 118740 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Netherlands
Elsevier Inc
15.01.2021
Elsevier BV |
| Témata: | |
| ISSN: | 0024-3205, 1879-0631, 1879-0631 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The endoplasmic reticulum is primarily responsible for protein folding and maturation. However, the organelle is subject to varied stress conditions from time to time, which lead to the activation of a signaling program known as the Unfolded Protein Response (UPR) pathway. This pathway, upon sensing any disturbance in the protein-folding milieu sends signals to the nucleus and cytoplasm in order to restore homeostasis. One of the prime UPR signaling sensors is Inositol-requiring enzyme 1 (IRE1); an ER membrane embedded protein with dual enzyme activities, kinase and endoribonuclease. The ribonuclease activity of IRE1 results in Xbp1 splicing in mammals or Hac1 splicing in yeast. However, IRE1 can switch its substrate specificity to the mRNAs that are co-transnationally transported to the ER, a phenomenon known as Regulated IRE1 Dependent Decay (RIDD). IRE1 is also reported to act as a principal molecule that coordinates with other proteins and signaling pathways, which in turn might be responsible for its regulation. The current review highlights studies on IRE1 explaining the structural features and molecular mechanism behind its ribonuclease outputs. The emphasis is also laid on the molecular effectors, which directly or indirectly interact with IRE1 to either modulate its function or connect it to other pathways. This is important in understanding the functional pleiotropy of IRE1, by which it can switch its activity from pro-survival to pro-apoptotic, thus determining the fate of cells.
[Display omitted] |
|---|---|
| AbstractList | The endoplasmic reticulum is primarily responsible for protein folding and maturation. However, the organelle is subject to varied stress conditions from time to time, which lead to the activation of a signaling program known as the Unfolded Protein Response (UPR) pathway. This pathway, upon sensing any disturbance in the protein-folding milieu sends signals to the nucleus and cytoplasm in order to restore homeostasis. One of the prime UPR signaling sensors is Inositol-requiring enzyme 1 (IRE1); an ER membrane embedded protein with dual enzyme activities, kinase and endoribonuclease. The ribonuclease activity of IRE1 results in Xbp1 splicing in mammals or Hac1 splicing in yeast. However, IRE1 can switch its substrate specificity to the mRNAs that are co-transnationally transported to the ER, a phenomenon known as Regulated IRE1 Dependent Decay (RIDD). IRE1 is also reported to act as a principal molecule that coordinates with other proteins and signaling pathways, which in turn might be responsible for its regulation. The current review highlights studies on IRE1 explaining the structural features and molecular mechanism behind its ribonuclease outputs. The emphasis is also laid on the molecular effectors, which directly or indirectly interact with IRE1 to either modulate its function or connect it to other pathways. This is important in understanding the functional pleiotropy of IRE1, by which it can switch its activity from pro-survival to pro-apoptotic, thus determining the fate of cells. The endoplasmic reticulum is primarily responsible for protein folding and maturation. However, the organelle is subject to varied stress conditions from time to time, which lead to the activation of a signaling program known as the Unfolded Protein Response (UPR) pathway. This pathway, upon sensing any disturbance in the protein-folding milieu sends signals to the nucleus and cytoplasm in order to restore homeostasis. One of the prime UPR signaling sensors is Inositol-requiring enzyme 1 (IRE1); an ER membrane embedded protein with dual enzyme activities, kinase and endoribonuclease. The ribonuclease activity of IRE1 results in Xbp1 splicing in mammals or Hac1 splicing in yeast. However, IRE1 can switch its substrate specificity to the mRNAs that are co-transnationally transported to the ER, a phenomenon known as Regulated IRE1 Dependent Decay (RIDD). IRE1 is also reported to act as a principal molecule that coordinates with other proteins and signaling pathways, which in turn might be responsible for its regulation. The current review highlights studies on IRE1 explaining the structural features and molecular mechanism behind its ribonuclease outputs. The emphasis is also laid on the molecular effectors, which directly or indirectly interact with IRE1 to either modulate its function or connect it to other pathways. This is important in understanding the functional pleiotropy of IRE1, by which it can switch its activity from pro-survival to pro-apoptotic, thus determining the fate of cells.The endoplasmic reticulum is primarily responsible for protein folding and maturation. However, the organelle is subject to varied stress conditions from time to time, which lead to the activation of a signaling program known as the Unfolded Protein Response (UPR) pathway. This pathway, upon sensing any disturbance in the protein-folding milieu sends signals to the nucleus and cytoplasm in order to restore homeostasis. One of the prime UPR signaling sensors is Inositol-requiring enzyme 1 (IRE1); an ER membrane embedded protein with dual enzyme activities, kinase and endoribonuclease. The ribonuclease activity of IRE1 results in Xbp1 splicing in mammals or Hac1 splicing in yeast. However, IRE1 can switch its substrate specificity to the mRNAs that are co-transnationally transported to the ER, a phenomenon known as Regulated IRE1 Dependent Decay (RIDD). IRE1 is also reported to act as a principal molecule that coordinates with other proteins and signaling pathways, which in turn might be responsible for its regulation. The current review highlights studies on IRE1 explaining the structural features and molecular mechanism behind its ribonuclease outputs. The emphasis is also laid on the molecular effectors, which directly or indirectly interact with IRE1 to either modulate its function or connect it to other pathways. This is important in understanding the functional pleiotropy of IRE1, by which it can switch its activity from pro-survival to pro-apoptotic, thus determining the fate of cells. The endoplasmic reticulum is primarily responsible for protein folding and maturation. However, the organelle is subject to varied stress conditions from time to time, which lead to the activation of a signaling program known as the Unfolded Protein Response (UPR) pathway. This pathway, upon sensing any disturbance in the protein-folding milieu sends signals to the nucleus and cytoplasm in order to restore homeostasis. One of the prime UPR signaling sensors is Inositol-requiring enzyme 1 (IRE1); an ER membrane embedded protein with dual enzyme activities, kinase and endoribonuclease. The ribonuclease activity of IRE1 results in Xbp1 splicing in mammals or Hac1 splicing in yeast. However, IRE1 can switch its substrate specificity to the mRNAs that are co-transnationally transported to the ER, a phenomenon known as Regulated IRE1 Dependent Decay (RIDD). IRE1 is also reported to act as a principal molecule that coordinates with other proteins and signaling pathways, which in turn might be responsible for its regulation. The current review highlights studies on IRE1 explaining the structural features and molecular mechanism behind its ribonuclease outputs. The emphasis is also laid on the molecular effectors, which directly or indirectly interact with IRE1 to either modulate its function or connect it to other pathways. This is important in understanding the functional pleiotropy of IRE1, by which it can switch its activity from pro-survival to pro-apoptotic, thus determining the fate of cells. [Display omitted] |
| ArticleNumber | 118740 |
| Author | Nida-i-Fatima Bashir, Samirul Bashir, Arif Hilal, Nazia Rader, Stephen Qadri, Ozaira Banday, Mariam Fazili, Khalid Majid |
| Author_xml | – sequence: 1 givenname: Samirul surname: Bashir fullname: Bashir, Samirul organization: Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India – sequence: 2 givenname: Mariam surname: Banday fullname: Banday, Mariam organization: Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India – sequence: 3 givenname: Ozaira surname: Qadri fullname: Qadri, Ozaira organization: Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India – sequence: 4 givenname: Arif surname: Bashir fullname: Bashir, Arif organization: Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India – sequence: 5 givenname: Nazia surname: Hilal fullname: Hilal, Nazia organization: Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India – sequence: 6 surname: Nida-i-Fatima fullname: Nida-i-Fatima organization: Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India – sequence: 7 givenname: Stephen surname: Rader fullname: Rader, Stephen organization: Department of Chemistry, University of Northern British Columbia, Prince George, BC, Canada – sequence: 8 givenname: Khalid Majid surname: Fazili fullname: Fazili, Khalid Majid email: fazili@kashmiruniversity.ac.in organization: Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33188833$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1LHTEUxYNY9PnxB3RTAt24mdebz5mhqyK2FSwtousQMzeax0xikxnB_755PN24sKtLLr9zuDnniOzHFJGQjwzWDJj-slmPvqw58PpmXSthj6zq7BvQgu2TFQCXjeCgDslRKRsAUKoVB-RQCNZ1nRAr8uvmAemURnTLaDOd0D3YGMpEbRyoX6KbQ4p2pEN4wlzC_EyTp7d_rmkJ93Uf4j0tGEvK9PL6gp2QD96OBU9f5jG5_X5xc_6zufr94_L821XjJJNzg1qAFb63dz1I6ZRAVi8DhZ1ljrPB65Z72UuvudbYo0PNZOuHntlOcWjFMTnb-T7m9HfBMpspFIfjaCOmpRiuJCgA0er_o1JDqzlTfUU_v0E3acn1l1tDUC1nXLBKfXqhlrsJB_OYw2Tzs3nNtALtDnA5lZLRGxdmu81xzjaMhoHZtmc2prZntu2ZXXtVyd4oX83f03zdabDm_RQwm-ICRodDyOhmM6TwjvofIVauXw |
| CitedBy_id | crossref_primary_10_3389_fimmu_2022_951406 crossref_primary_10_1007_s11010_023_04780_6 crossref_primary_10_3390_jof9100989 crossref_primary_10_1007_s11064_025_04348_4 crossref_primary_10_1007_s12672_024_01262_z crossref_primary_10_1177_25152564241272245 crossref_primary_10_1007_s00253_022_12139_y crossref_primary_10_1016_j_etap_2022_104007 crossref_primary_10_1002_ccs3_12056 crossref_primary_10_1002_fbe2_70005 crossref_primary_10_1016_j_jnutbio_2025_109896 crossref_primary_10_3390_cancers17121972 crossref_primary_10_1016_j_cstres_2023_12_003 crossref_primary_10_1016_j_phrs_2022_106513 crossref_primary_10_3389_fmicb_2025_1648467 crossref_primary_10_1111_jpi_70072 crossref_primary_10_3390_jof10100719 crossref_primary_10_1371_journal_pone_0271695 crossref_primary_10_3389_fnins_2022_906651 crossref_primary_10_3389_fmicb_2024_1415417 crossref_primary_10_3390_genes13112033 crossref_primary_10_3390_biom11030354 crossref_primary_10_1016_j_celrep_2025_115282 crossref_primary_10_1007_s12035_023_03905_8 crossref_primary_10_1111_cpr_13133 crossref_primary_10_3389_fphar_2023_1273987 crossref_primary_10_7554_eLife_71656 crossref_primary_10_1186_s10020_025_01118_4 crossref_primary_10_3390_antiox11112242 crossref_primary_10_1016_j_envpol_2021_117814 crossref_primary_10_3389_fcvm_2022_815916 crossref_primary_10_3389_fphar_2023_1174415 crossref_primary_10_33483_jfpau_1662695 crossref_primary_10_3390_biology10050384 crossref_primary_10_1016_j_bbamcr_2024_119676 crossref_primary_10_3390_ijms24010185 crossref_primary_10_1007_s12032_025_02654_z crossref_primary_10_1016_j_tcb_2023_11_003 crossref_primary_10_1002_1873_3468_14593 crossref_primary_10_3390_biom14080919 crossref_primary_10_1186_s12906_024_04689_7 crossref_primary_10_1016_j_lfs_2023_121982 crossref_primary_10_3390_v14112486 crossref_primary_10_1155_2022_5695005 crossref_primary_10_1016_j_biopha_2022_113280 crossref_primary_10_1016_j_neuroscience_2022_10_014 crossref_primary_10_3390_cimb46050261 crossref_primary_10_3390_v17030360 crossref_primary_10_1016_j_aquaculture_2021_737401 crossref_primary_10_3390_cimb46030116 crossref_primary_10_3389_fendo_2022_1094394 crossref_primary_10_1016_j_envpol_2021_117134 crossref_primary_10_1186_s40104_024_01089_2 crossref_primary_10_1681_ASN_0000000000000164 crossref_primary_10_3892_etm_2021_10810 crossref_primary_10_1080_07391102_2024_2320252 crossref_primary_10_1080_22311866_2023_2220312 crossref_primary_10_1093_nar_gkad077 crossref_primary_10_1016_j_bcp_2022_114932 crossref_primary_10_1002_jcb_30250 crossref_primary_10_1016_j_tjnut_2024_09_013 |
| Cites_doi | 10.1093/emboj/18.11.3119 10.1083/jcb.200405153 10.1016/j.molcel.2017.12.028 10.1038/35055065 10.1016/j.cell.2007.10.057 10.1371/journal.pgen.1006156 10.1046/j.1365-2443.1996.d01-274.x 10.1016/j.cmet.2012.07.007 10.1016/j.celrep.2014.09.016 10.1091/mbc.e03-11-0851 10.1128/MCB.06665-11 10.1038/ncb2593 10.1038/s41467-019-11824-3 10.1101/gad.992302 10.1534/genetics.104.032961 10.1016/S0092-8674(00)81360-4 10.1073/pnas.0911617107 10.1016/S0960-9822(06)00038-8 10.1016/j.molcel.2014.06.032 10.1038/emboj.2012.84 10.1038/ncb3518 10.4161/rna.8.4.15396 10.1038/ncb0311-184 10.3389/fgene.2014.00076 10.1038/ni.1831 10.1016/j.cmet.2012.09.004 10.1126/science.1209038 10.1074/jbc.REV119.007036 10.1016/j.tig.2013.09.002 10.1002/j.1460-2075.1992.tb05323.x 10.1126/science.1123480 10.18632/oncotarget.3864 10.15252/embj.201488208 10.1242/jcs.218107 10.1016/j.tcb.2007.10.003 10.1358/dnp.2009.22.5.1378631 10.1016/j.tcb.2013.06.005 10.1016/j.molcel.2018.06.038 10.1111/febs.13598 10.7554/eLife.44199 10.1126/scisignal.aai7814 10.1371/journal.pone.0076941 10.7554/eLife.00048 10.1038/nchembio.1664 10.1073/pnas.1107394108 10.1126/scisignal.2000514 10.1038/emboj.2011.18 10.1186/1741-7007-9-48 10.1074/jbc.M110.126870 10.1038/nature07661 10.1146/annurev.cellbio.21.122303.120200 10.1073/pnas.1915311117 10.1038/nrm2199 10.1038/nchembio.1094 10.1091/mbc.e12-06-0491 10.1038/sj.emboj.7600903 10.1016/j.molcel.2017.06.012 10.1016/0092-8674(93)90521-Q 10.1038/35014014 10.1073/pnas.1604435113 10.3390/ijms17091558 10.1038/s41467-017-00029-1 10.1091/mbc.8.10.1845 10.1016/S0092-8674(00)80369-4 10.1038/415092a 10.1073/pnas.0903197106 10.1016/j.molcel.2017.06.017 10.15252/embr.201439696 10.1101/gad.14.2.152 10.1084/jem.20111298 10.1093/nar/gkq452 10.1111/acel.12105 10.1146/annurev.biochem.73.011303.074134 10.1016/j.devcel.2012.11.006 10.1016/j.cmet.2017.03.018 10.1371/journal.pbio.1000410 10.1038/nature07641 10.1016/j.chom.2013.03.011 10.1074/jbc.273.3.1802 10.1016/0092-8674(93)90648-A 10.1126/science.1129631 10.1091/mbc.e02-11-0708 10.1073/pnas.0903775106 10.1194/jlr.M600299-JLR200 10.1128/MCB.00013-15 10.1111/boc.201100055 10.1038/s41556-019-0329-y 10.1038/sj.bjp.0707426 10.1016/j.bbrc.2020.03.027 10.1146/annurev-cellbio-101011-155826 10.1091/mbc.e11-12-0995 10.1038/332462a0 10.1083/jcb.201401059 10.1128/MCB.22.24.8506-8513.2002 10.1016/j.yexcr.2009.06.009 10.1083/jcb.200704166 10.1016/S0092-8674(00)81355-0 10.1016/j.molcel.2009.04.003 10.1016/j.cmet.2006.07.007 10.1002/eji.201343953 10.1091/mbc.E15-02-0074 10.1101/gad.12.12.1812 10.1093/emboj/17.19.5708 10.7554/eLife.30700 10.1074/jbc.M602030200 10.1016/0092-8674(89)90058-5 10.1016/j.yjmcc.2019.05.019 10.1074/jbc.M710557200 10.15252/embj.201490332 10.1126/science.1090031 10.1126/science.287.5453.664 10.1016/j.cell.2014.07.002 10.1016/0962-8924(92)90309-B 10.1073/pnas.1110589109 10.1016/S0092-8674(01)00611-0 10.1242/jcs.179127 10.1371/journal.pone.0075723 10.1073/pnas.0606480103 10.1242/jcs.002808 10.1074/jbc.C400261200 10.1083/jcb.201709137 10.1016/j.tibs.2011.03.001 10.1054/ceca.1999.0090 10.1083/jcb.200406136 10.1101/cshperspect.a003707 10.1016/j.cell.2009.07.017 10.1038/emboj.2009.117 10.1016/j.molcel.2012.08.016 10.1016/S0092-8674(01)00505-0 10.1186/s13073-018-0589-3 10.1074/jbc.M301107200 10.1093/jb/mvh122 10.1016/j.biochi.2017.04.018 10.1038/s41419-019-2128-6 10.1016/S0092-8674(00)81361-6 10.1073/pnas.1010580107 10.1371/journal.pone.0004170 10.1074/jbc.M114.562868 10.1016/j.cell.2017.10.040 10.1073/pnas.1217611110 10.1073/pnas.1115623109 10.1073/pnas.1212484110 10.1083/jcb.200903014 10.1016/j.molcel.2009.02.033 10.1126/science.1209126 10.7554/eLife.07426 10.1074/jbc.M112.368829 10.1093/nar/gkr132 10.1091/mbc.e05-07-0685 10.1038/s41467-020-15844-2 10.1016/j.biopha.2015.07.036 10.1016/j.celrep.2018.09.013 10.1016/j.tibs.2014.02.008 10.1016/j.molcel.2009.08.021 10.1091/mbc.e11-04-0295 10.1152/physrev.00001.2011 10.1111/j.1365-2958.1992.tb00864.x 10.1073/pnas.0509487102 10.1042/BSR20160574 10.1016/j.molcel.2012.05.021 10.1083/jcb.153.5.1011 10.1016/j.celrep.2019.02.057 10.1126/science.1197142 10.1126/science.1226191 10.1073/pnas.1921799117 10.1096/fj.202000734R 10.1084/jem.20070525 10.1074/jbc.M115.704619 10.1126/sciadv.1701383 10.1371/journal.pone.0208396 10.1158/0008-5472.CAN-12-3989 10.1091/mbc.e10-08-0693 10.1016/j.bbrc.2007.11.040 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. Copyright Elsevier BV Jan 15, 2021 |
| Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier BV Jan 15, 2021 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7U7 7U9 8FD C1K FR3 H94 P64 RC3 7X8 7S9 L.6 |
| DOI | 10.1016/j.lfs.2020.118740 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Toxicology Abstracts AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Genetics Abstracts MEDLINE - Academic MEDLINE AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Biology |
| EISSN | 1879-0631 |
| ExternalDocumentID | 33188833 10_1016_j_lfs_2020_118740 S0024320520314934 |
| Genre | Journal Article Review |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 4.4 457 5GY 5RE 5VS 6TJ 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATCM AAXUO ABFNM ABFRF ABJNI ABLJU ABLVK ABMAC ABMZM ABYKQ ABZDS ACDAQ ACGFO ACGFS ACIUM ACIWK ACPRK ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV AJRQY ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AXJTR BKOJK BLXMC BNPGV C45 CNWQP CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IH2 IHE J1W K-O KOM L7B LCYCR M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPCBC SSH SSP SSZ T5K TEORI YZZ ~G- .55 .GJ 29L 3O- 53G 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ABXDB ACIEU ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGHFR AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HMG HMT HVGLF HZ~ H~9 J5H MVM R2- SEW SIN SPT WUQ X7M Y6R YYP ZGI ZKB ZXP ZY4 ~HD CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7U7 7U9 8FD AGCQF C1K FR3 H94 P64 RC3 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c414t-e630a3f9ab9044c53e105505e8a1c21df672f494f6266e9ece6147fd91a852073 |
| ISICitedReferencesCount | 70 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604430800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0024-3205 1879-0631 |
| IngestDate | Thu Oct 02 12:06:13 EDT 2025 Thu Oct 02 11:21:56 EDT 2025 Wed Aug 13 08:01:17 EDT 2025 Wed Feb 19 02:29:59 EST 2025 Tue Nov 18 22:17:17 EST 2025 Sat Nov 29 07:26:59 EST 2025 Fri Feb 23 02:41:35 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Unfolded Protein Response (UPR) X-box protein 1 (Xbp1) Divergent cell fates ER-stress Inositol-requiring enzyme 1(IRE1) Regulated IRE1 Dependent Decay (RIDD) |
| Language | English |
| License | Copyright © 2020 Elsevier Inc. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c414t-e630a3f9ab9044c53e105505e8a1c21df672f494f6266e9ece6147fd91a852073 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| PMID | 33188833 |
| PQID | 2505721231 |
| PQPubID | 2045439 |
| ParticipantIDs | proquest_miscellaneous_2540500376 proquest_miscellaneous_2460762159 proquest_journals_2505721231 pubmed_primary_33188833 crossref_citationtrail_10_1016_j_lfs_2020_118740 crossref_primary_10_1016_j_lfs_2020_118740 elsevier_sciencedirect_doi_10_1016_j_lfs_2020_118740 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-15 |
| PublicationDateYYYYMMDD | 2021-01-15 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands – name: New York |
| PublicationTitle | Life sciences (1973) |
| PublicationTitleAlternate | Life Sci |
| PublicationYear | 2021 |
| Publisher | Elsevier Inc Elsevier BV |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
| References | Yanagitani, Kimata, Kadokura, Kohno (bb0435) 2011; 331 Benhamron, Hadar, Iwawaky, So, Lee, Tirosh (bb0580) 2014; 44 Reimold, Etkin, Clauss, Perkins, Friend, Zhang, Horton, Scott, Orkin, Byrne, Grusby, Glimcher (bb0685) 2000; 14 Nishitoh, Matsuzawa, Tobiume, Saegusa, Takeda, Inoue, Hori, Kakizuka, Ichijo (bb0745) 2002; 16 Kozutsumi, Segal, Normington, Gething, Sambrook (bb0120) 1988; 332 Yamamoto, Endo, Kataoka, Matsuhashi, Katsumata, Shirakawa, Isobe, Moriyama, Goto, Shimanaka, Kono, Arai, Shinmura, Fukuda, Sano (bb0270) 2020; 526 Karam, Lou, Kroeger, Huang, Lin, Wilkinson (bb0605) 2015; 16 Rodriguez, Zamorano, Lisbona, Rojas-Rivera, Urra, Cubillos-Ruiz, Armisen, Henriquez, Cheng, Letek, Vaisar, Irrazabal, Gonzalez-Billault, Letai, Pimentel-Muiños, Kroemer, Hetz (bb0780) 2012; 31 Sidrauski, Cox, Walter (bb0355) 1996; 87 Oikawa, Tokuda, Hosoda, Iwawaki (bb0480) 2010; 38 Shajahan, Riggins, Clarke (bb0080) 2009; 22 Moore, Hollien (bb0495) 2015; 26 Iurlaro, Muñoz-Pinedo (bb5100) 2016; 283 Marcu, Doyle, Bertolotti, Ron, Hendershot, Neckers (bb0800) 2002; 22 Han, Upton, Hagen, Callahan, Oakes, Papa (bb0555) 2008; 365 Rose, Misra, Vogel (bb0125) 1989; 57 Rosbash (bb0335) 1996; 87 Ma, Hendershot (bb0535) 2003; 278 Calfon, Zeng, Urano, Till, Hubbard, Harding, Clark, Ron (bb0040) 2002; 415 Will, Luhrmann (bb0305) 2011; 3 Zhou, Tardivel, Thorens, Choi, Tschopp (bb0670) 2010; 11 Lu, Liang, Wang (bb0390) 2014; 55 Jäger, Bertrand, Gorman, Vandenabeele, Samali (bb0025) 2012; 104 Ghosh, Wang, Wang (bb0565) 2014; 158 Hollien, Lin, Li, Stevens, Walter, Weissman (bb0055) 2009; 186 Arshad, Ye, Gu, Wong, Liu, Li, Zhou, Zhang, Bay, Yu, Li (bb0755) 2013; 288 Tsuru, Fujimoto, Takahashi, Saito, Nakamura, Iwano, Iwawaki, Kadokura, Ron, Kohno (bb0150) 2013; 110 Poothong, Tirasophon, Kaufmann (bb0405) 2017; 37 Taylor, Genazzani, Morris (bb5015) 1999; 26 Tang, Chang, Paton, Paton, Gabrilovich, Ploegh, DelValle, Hu (bb0590) 2018; 217 Kimmig, Diaz, Zheng, Williams, Lang, Aragon, Li, Walter (bb0455) 2012; 1 Mori, Sant, Kohno, Normington, Gething, Sambrook (bb0330) 1992; 11 Hetz, Papa (bb0600) 2018; 18 Qiu, Mao, Zhang, Shao, You, Ding, Chen, Wu, Xie, Lin, Gao, Kaufman, Li, Liu (bb0820) 2010; 3 Shinya, Kadokura, Imagawa, Inoue, Yanagitani, Kohno (bb0385) 2011; 39 Luo, He, Zhang, Yu, Chen, Xu, Tang, Urano, Min (bb0740) 2008; 283 Upton, Wang, Han, Wang, Huskey, Lim, Truitt, Mcmanus, Ruggero, Goga, Papa, Oakes (bb0490) 2012; 338 Brown, Strudwick, Suwara, Sutcliffe, Mihai, Ali, Watson, Schroder (bb0730) 2016; 129 Helenius, Marquardt, Braakman (bb0005) 1992; 2 Rüegsegger, Leber, Walter (bb0350) 2001; 107 Mori, Hayashi, Hayashi, Su (bb0845) 2013; 8 Ron, Walter (bb0095) 2007; 8 Gardner, Walter (bb0175) 2011; 333 Fink, Jayewickreme, Molony, Iwawaki, Landis, Lindenbach, Iwasaki (bb0655) 2017; 10 Nguyên, Kebache, Fazel, Wong, Jenna, Emadali, Lee, Bergeron, Kaufman, Larose, Chevet (bb0765) 2004; 15 Yanagitani, Imagawa, Iwawaki, Hosoda, Saito, Kimata, Kohno (bb0415) 2009; 34 Hetz, Glimcher (bb0595) 2008; 18 Kanda, Yanagitani, Yokota, Esaki, Kohno (bb0445) 2016; 113 Jiang, Wang, Liu, Lin, Wang, Xie, Li, Zhang, Zhang (bb0675) 2020 Moore, Plant, Gaddam, Craft, Hollien (bb0470) 2013; 8 Song, Shen, Du, Goldstein (bb0725) 2013; 12 Cox, Shamu, Walter (bb0130) 1993; 73 Han, Lone, Schneiter, Chang (bb0250) 2010; 107 Kawahara, Yanagi, Yura, Mori (bb0360) 1998; 273 Zeng, Zampetaki, Margariti, Pepe, Alam, Martin, Xia, Wang, Jin, Cockerill, Mori, Li, Hu, Chien, Xu (bb0715) 2009; 106 Ali, Bagratuni, Davenport, Nowak, Silva-Santisteban, Hardcastle, McAndrews, Rowlands, Morgan, Aherne, Collins, Davies, Pearl (bb0210) 2011; 30 Stephens, Dodd, Brewer, Lager, Keene, Nicchitta (bb0410) 2005; 16 Mao, Shao, Qiu, Huang, Zhang, Song, Wang, Jiang, Liu, Han, Cao, Li, Gao, Rui, Qi, Li, Liu (bb0815) 2011 Rainbolt, Frydman (bb0035) 2020; 117 Thibault, Shui, Kim, McAlister, Ismail, Gygi, Wenk, Ng (bb0265) 2012; 48 Korennykh, Egea, Korostelev, Finer-Moore, Zhang, Shokat, Stroud, Walter (bb0205) 2009; 457 Huang, Wu, Ji, Yan, Xie, Murai, Zhao, Miyagishi, Kasim (bb0850) 2017; 3 Walter, Ron (bb0020) 2011; 334 Baltz, Munschauer, Schwanhäusser, Vasile, Murakawa, Schueler, Youngs, Penfold-Brown, Drew, Milek, Wyler, Bonneau, Selbach, Dieterich, Landthaler (bb0395) 2012; 46 Aragon, Van Anken, Pincus, Serafimova, Korennykh, Rubio, Walter (bb0370) 2009; 457 Fink, Moparthy, Bagati (bb0695) 2018; 25 Wang, Harding, Zhang, Jolicoeur, Kuroda, Ron (bb0145) 1998; 17 Iwakoshi, Pypaert, Glimcher (bb0690) 2007; 204 Huang, Xing, Liu (bb0075) 2019; 294 Ron (bb0420) 2009; 34 Hetz, Glimcher (bb0550) 2009; 35 Papa, Zhang, Shokat, Walter (bb0560) 2003; 302 Gu, Nguyên, Stuible, Dubé, Tremblay, Chevet (bb0735) 2004; 279 Borradaile, Han, Harp, Gale, Ory, Schaffer (bb0275) 2006 Dec; 47 Yücel, Stelzer, Lorenzoni, Wozny, Langosch, Lemberg (bb0430) 2019; 26 Roy, Jacobson (bb0515) 2013; 29 Shamu (bb0340) 1997; 7 Back, Lee, Vink, Kaufman (bb0375) 2006; 281 Yoshida, Matsui, Yamamoto, Okada, Mori (bb0320) 2001; 107 Pinkaew, Chattopadhyay, King, Chunhacha, Liu, Stevenson, Chen, Sinthujaroen, McDougal, Fujise (bb0785) 2017; 8 Woehlbier, Hetz (bb0545) 2011; 36 Yamamoto, Endo, Kataoka, Matsuhashi, Katsumata, Shirakawa, Yoshida, Isobe, Moriyama, Goto, Yamashita, Nakanishi, Shimanaka, Kono, Shinmura, Arai, Fukuda, Sano (bb0280) 2018; 13 Chan, Zhao, Elfowiris, Ratnam, Herbert (bb0285) 2017; 138 Tirasophon, Welihinda, Kaufman (bb0140) 1998; 12 Chang, Jesch, Gaspar, Henry (bb0245) 2004; 168 Cross, Bond, Sadowski, Jha, Zak, Goodman, Silverman, Neubert, Baxendale, Ron, Harding (bb0450) 2012; 109 Mori, Ogasawara, Inada, Englert, Beier, Takezawa, Endo, Yoshihisa (bb0365) 2010; 21 Korennykh, Egea, Korostelev, Finer-Moore, Zhang, Shokat, Stroud, Walter (bb0230) 2011; 9 Kawahara, Yanagi, Yura, Mori (bb0345) 1997; 8 Han, Lerner, Vande Walle, Upton, Xu, Hagen, Backes, Oakes, Papa (bb0460) 2009; 138 Jwa, Chang (bb0825) 2012; 14 Plumb, Zhang, Appathurai, Mariappan (bb0440) 2015; 4 Mori, Kawahara, Yoshida, Yanagi, Yura (bb0315) 1996; 1 Wang, Perera, Hari, Bhhatarai, Backes, Seeliger, Schurer, Oakes, Papa, Maly (bb0570) 2012; 8 Bertolotti, Zhang, Hendershot, Harding, Ron (bb0185) 2000; 2 Pramanik, Chen, Kar, Henriksson, Gomes, Park, Natarajan, Meyer, Miao, McKenzie, Mahata, Teichmann (bb0855) 2018; 10 Amin-Wetzel, Saunders, Kamphuis, Rato, Preissler, Harding, Ron (bb5000) 2017; 171 Safra, Ben-Hamo, Kenyon, Henis-Korenblit (bb0640) 2013; 126 Tam, Koong, Niwa (bb0575) 2014; 9 Tong, Liu, Lin, Guo, Yang, Zhang (bb0660) 2015; 75 Schroder, Kaufman (bb0015) 2005; 74 Cho, Lee, Platzer, Cross, Gardner, De Luca, Luong, Harding, Glimcher, Walter, Fiebiger, Ron, Kagan, Lencer (bb0090) 2013; 13 Karagöz, Acosta-Alvear, Nguyen, Lee, Chu, Walter (bb0195) 2017; 6 Maly, Papa (bb0220) 2014; 10 Sakaki, Yoshina, Shen, Han, DeSantis, Xiong, Mitani, Kaufman (bb0610) 2012; 109 Oikawa, Kimata, Kohno, Iwawaki (bb0115) 2009; 315 Oikawa, Kimata, Kohno (bb0180) 2007; 120 Papaioannou, Metais, Maurel, Negroni, Gonzalez-Quiroz, Golchesmeh, Blondel, Koong, Hetx, Pedeux, Tremblay, Eriksson, Chevet (bb0615) 2020 Lerner, Upton, Praveen, Ghosh, Nakagawa, Igbaria, Shen, Nguyen, Backes, Heiman, Heintz, Greengard, Hui, Tang, Trusina, Oakes, Papa (bb0665) 2012; 16 Nikawa, Yamashita (bb0235) 1992; 6 So, Hur, Tarrio, Ruda, Frank-Kamenetsky, Fitzgerald, Koteliansky, Lichtman, Iwawaki, Glimcher, Lee (bb0505) 2012; 16 Pluquet, Dejeans, Bouchecareilh, Lhomond, Pineau, Higa, Delugin Combe, Loriot, Cubel, Dugot-Senant, Vital, Loiseau, Gosline, Taouji, Hallett, Sarkaria, Anderson, Wu, Rodriguez, Rosenbaum, Saltel, Fernandez-Zapico, Chevet (bb0630) 2013; 73 Urra, Piha, Hetz (bb0835) 2020; 133 Cox, Walter (bb0310) 1996; 87 Novoa, Zeng, Harding, Ron (bb0540) 2001; 153 Prasad, Suomalainen, Jasiqi, Hemmi, Hearing, Hosie, Burgert, Greber (bb0085) 2020; 11 Hooks, Griffiths-Jones (bb0380) 2011; 8 Belyy, Tran, Walter (bb0030) 2020; 117 Gaddam, Stevens, Hollien (bb0465) 2013; 24 Credle, Finer-Moore, Papa, Stroud, Walter (bb0100) 2005; 102 Sepulveda, Rojas-Rivera, Rodríguez, Groenendyk, Köhler, Lebeaupin, Ito, Urra, Carreras-Sureda, Hazari, Vasseur-Cognet, Ali, Chevet, Campos, Godoy, Vaisar, Bailly-Maitre, Nagata, Michalak, Sierralta, Hetz (bb0810) 2018; 69 Brozzi, Gerlo, Grieco, Juusola, Balhuizen, Lievens, Gysemans, Bugliani, Mathieu, Marchetti, Tavernier, Eizirik (bb0760) 2016; 291 Zhou, Liu, Back, Clark, Peisach, Xu, Kaufman (bb0110) 2006; 103 Korennykh, Walter (bb0225) 2012; 28 Yamamoto, Yoshida, Kokame, Kaufman, Mori (bb0700) 2004; 136 Kimata, Ishiwata-Kimata, Ito, HirataA, Oikawa, Takeuchi, Kohno (bb0170) 2007; 179 Iwawaki, Akai, Yamanaka, Kohno (bb0875) 2009; 106 Tabas, Ron (bb5005) 2011; 13 Halbleib, Pesek, Covino, Hofbauer, Wunnicke, Hanelt, Hummer, Ernst (bb0300) 2017; 67 Hetz, Martinon, Rodriguez, Glimcher (bb0155) 2011; 91 Lajoie, Moir, Willis, Snapp (bb0255) 2012; 23 Li, Jiang, Niu, Sun, Meng, Tan, Song, Qiu, Liao, Ding (bb0710) 2019; 10 Shin, Moon, Kang, Choi, Han, Kim (bb0790) 2019; 10 Lee, Dey, Neculai, Cao, Dever, Sicheri (bb0200) 2008; 132 Morita S, Villalta SA, Feldman HC, Register AC, Rosenthal W4, Hoffmann-Petersen IT, Mehdizadeh M, Ghosh R, Wang L, Colon-Negron K1, Meza-Acevedo R, Backes BJ, Maly DJ, Bluestone JA, Papa FR (2017). Targeting ABL-IRE1α signaling spares ER-stressed pancreatic β cells to reverse autoimmune diabetes. Cell Metab. 25(4):883–897.e8. Mori (bb0010) 2015; 91 Gupta, Deepti, Deegan, Lisbona, Hetz, Samali (bb0795) 2010; 8 Urano, Wang, Bertolotti, Zhang, Chung, Harding, Ron (bb0750) 2000; 287 Dejeans, Pluquet, Lhomond, Grise, Bouchecareilh, Juin, Meynard-Cadars, Bidaud-Meynard, Gentil, Moreau, Saltel, Chevet (bb0625) 2012; 125 Hu, Dougan, McGehee, Love, Ploegh (bb0585) 2009; 28 Majumder, Huang, Snider, Komar, Tanaka, Kaufman, Krokowski, Hatzoglou (bb0530) 2012; 32 Sidrauski, Walter (bb0050) 1997; 90 Peschek, Walter (bb0620) 2019; 8 Hollien, Weissman (bb0060) 2006; 313 Zhu, Zhang, Sun, Jiang, Dong, Shan, Su, Xie, Xu, Lou, Liu (bb0830) 2014; 289 Kimata, Oikawa, Shimizu, Ishiwata-Kimata, Kohno (bb0165) 2004; 167 Ariyama, Kono, Matsuda, Inoue, Arai (bb0240) 2010; 285 Jurkin, Henkel, Nielsen, Minnich, Popow, Kau Lipson (10.1016/j.lfs.2020.118740_bb0645) 2006; 4 Hu (10.1016/j.lfs.2020.118740_bb0585) 2009; 28 Tavernier (10.1016/j.lfs.2020.118740_bb0650) 2017; 19 Lu (10.1016/j.lfs.2020.118740_bb0390) 2014; 55 Zhu (10.1016/j.lfs.2020.118740_bb0830) 2014; 289 Hetz (10.1016/j.lfs.2020.118740_bb0600) 2018; 18 Wang (10.1016/j.lfs.2020.118740_bb0145) 1998; 17 Sidrauski (10.1016/j.lfs.2020.118740_bb0050) 1997; 90 Han (10.1016/j.lfs.2020.118740_bb0555) 2008; 365 Back (10.1016/j.lfs.2020.118740_bb0375) 2006; 281 Moore (10.1016/j.lfs.2020.118740_bb0470) 2013; 8 Urra (10.1016/j.lfs.2020.118740_bb0835) 2020; 133 Gupta (10.1016/j.lfs.2020.118740_bb0795) 2010; 8 Fink (10.1016/j.lfs.2020.118740_bb0655) 2017; 10 Chan (10.1016/j.lfs.2020.118740_bb0285) 2017; 138 Coelho (10.1016/j.lfs.2020.118740_bb0070) 2014; 5 Papaioannou (10.1016/j.lfs.2020.118740_bb0615) 2020 Zhou (10.1016/j.lfs.2020.118740_bb0110) 2006; 103 Pramanik (10.1016/j.lfs.2020.118740_bb0855) 2018; 10 Ali (10.1016/j.lfs.2020.118740_bb0210) 2011; 30 Han (10.1016/j.lfs.2020.118740_bb0250) 2010; 107 Iwawaki (10.1016/j.lfs.2020.118740_bb0635) 2001; 3 Sriburi (10.1016/j.lfs.2020.118740_bb0160) 2004; 167 Hetz (10.1016/j.lfs.2020.118740_bb0550) 2009; 35 Gonzalez (10.1016/j.lfs.2020.118740_bb0045) 1999; 18 Chang (10.1016/j.lfs.2020.118740_bb0245) 2004; 168 Nguyên (10.1016/j.lfs.2020.118740_bb0765) 2004; 15 Walter (10.1016/j.lfs.2020.118740_bb0020) 2011; 334 Sepulveda (10.1016/j.lfs.2020.118740_bb0810) 2018; 69 Safra (10.1016/j.lfs.2020.118740_bb0640) 2013; 126 Benhamron (10.1016/j.lfs.2020.118740_bb0580) 2014; 44 Mori (10.1016/j.lfs.2020.118740_bb0330) 1992; 11 Martinet (10.1016/j.lfs.2020.118740_bb0720) 2007; 152 Oikawa (10.1016/j.lfs.2020.118740_bb0115) 2009; 315 Plumb (10.1016/j.lfs.2020.118740_bb0440) 2015; 4 Mori (10.1016/j.lfs.2020.118740_bb0010) 2015; 91 Tsuru (10.1016/j.lfs.2020.118740_bb0150) 2013; 110 Yamamoto (10.1016/j.lfs.2020.118740_bb0700) 2004; 136 Papa (10.1016/j.lfs.2020.118740_bb0560) 2003; 302 Rainbolt (10.1016/j.lfs.2020.118740_bb0035) 2020; 117 Jwa (10.1016/j.lfs.2020.118740_bb0825) 2012; 14 Hur (10.1016/j.lfs.2020.118740_bb0475) 2012; 209 Kimata (10.1016/j.lfs.2020.118740_bb0170) 2007; 179 Yücel (10.1016/j.lfs.2020.118740_bb0430) 2019; 26 Joshi (10.1016/j.lfs.2020.118740_bb0215) 2015; 6 Li (10.1016/j.lfs.2020.118740_bb0710) 2019; 10 Shajahan (10.1016/j.lfs.2020.118740_bb0080) 2009; 22 Maly (10.1016/j.lfs.2020.118740_bb0220) 2014; 10 Chen (10.1016/j.lfs.2020.118740_bb0425) 2014; 33 Urano (10.1016/j.lfs.2020.118740_bb0750) 2000; 287 Poothong (10.1016/j.lfs.2020.118740_bb0405) 2017; 37 Cho (10.1016/j.lfs.2020.118740_bb0090) 2013; 13 Wang (10.1016/j.lfs.2020.118740_bb0570) 2012; 8 Schroder (10.1016/j.lfs.2020.118740_bb0015) 2005; 74 Rose (10.1016/j.lfs.2020.118740_bb0125) 1989; 57 Hooks (10.1016/j.lfs.2020.118740_bb0380) 2011; 8 Majumder (10.1016/j.lfs.2020.118740_bb0530) 2012; 32 Lee (10.1016/j.lfs.2020.118740_bb0680) 2005; 24 Sakaki (10.1016/j.lfs.2020.118740_bb0610) 2012; 109 Ariyama (10.1016/j.lfs.2020.118740_bb0240) 2010; 285 Gaddam (10.1016/j.lfs.2020.118740_bb0465) 2013; 24 Nishitoh (10.1016/j.lfs.2020.118740_bb0745) 2002; 16 Reimold (10.1016/j.lfs.2020.118740_bb0685) 2000; 14 Korennykh (10.1016/j.lfs.2020.118740_bb0230) 2011; 9 Woehlbier (10.1016/j.lfs.2020.118740_bb0545) 2011; 36 Will (10.1016/j.lfs.2020.118740_bb0305) 2011; 3 Korennykh (10.1016/j.lfs.2020.118740_bb0205) 2009; 457 Mori (10.1016/j.lfs.2020.118740_bb0315) 1996; 1 Walters (10.1016/j.lfs.2020.118740_bb0520) 2014; 204 Lin (10.1016/j.lfs.2020.118740_bb0525) 2009; 4 Arshad (10.1016/j.lfs.2020.118740_bb0755) 2013; 288 Kimata (10.1016/j.lfs.2020.118740_bb0165) 2004; 167 Mori (10.1016/j.lfs.2020.118740_bb0365) 2010; 21 Roy (10.1016/j.lfs.2020.118740_bb0515) 2013; 29 Rodriguez (10.1016/j.lfs.2020.118740_bb0780) 2012; 31 Carreras-Sureda (10.1016/j.lfs.2020.118740_bb0840) 2019; 21 Korennykh (10.1016/j.lfs.2020.118740_bb0225) 2012; 28 Hetz (10.1016/j.lfs.2020.118740_bb0595) 2008; 18 Lajoie (10.1016/j.lfs.2020.118740_bb0255) 2012; 23 Bright (10.1016/j.lfs.2020.118740_bb0500) 2015; 35 Hollien (10.1016/j.lfs.2020.118740_bb0055) 2009; 186 Yanagitani (10.1016/j.lfs.2020.118740_bb0415) 2009; 34 Pluquet (10.1016/j.lfs.2020.118740_bb0630) 2013; 73 Credle (10.1016/j.lfs.2020.118740_bb0100) 2005; 102 Zeng (10.1016/j.lfs.2020.118740_bb0715) 2009; 106 Mori (10.1016/j.lfs.2020.118740_bb0845) 2013; 8 Qiu (10.1016/j.lfs.2020.118740_bb0820) 2010; 3 Cabral (10.1016/j.lfs.2020.118740_bb5010) 2016; 12 Prasad (10.1016/j.lfs.2020.118740_bb0085) 2020; 11 Oikawa (10.1016/j.lfs.2020.118740_bb0480) 2010; 38 Hetz (10.1016/j.lfs.2020.118740_bb0775) 2006; 312 Ma (10.1016/j.lfs.2020.118740_bb0535) 2003; 278 Tong (10.1016/j.lfs.2020.118740_bb0660) 2015; 75 Hetz (10.1016/j.lfs.2020.118740_bb0155) 2011; 91 Bahar (10.1016/j.lfs.2020.118740_bb0705) 2016; 17 Marcu (10.1016/j.lfs.2020.118740_bb0800) 2002; 22 10.1016/j.lfs.2020.118740_bb0770 Lee (10.1016/j.lfs.2020.118740_bb0200) 2008; 132 Lerner (10.1016/j.lfs.2020.118740_bb0665) 2012; 16 Li (10.1016/j.lfs.2020.118740_bb0190) 2010; 107 Stephens (10.1016/j.lfs.2020.118740_bb0410) 2005; 16 Shin (10.1016/j.lfs.2020.118740_bb0790) 2019; 10 Rosbash (10.1016/j.lfs.2020.118740_bb0335) 1996; 87 Borradaile (10.1016/j.lfs.2020.118740_bb0275) 2006; 47 Kawahara (10.1016/j.lfs.2020.118740_bb0360) 1998; 273 Yamamoto (10.1016/j.lfs.2020.118740_bb0270) 2020; 526 Volmer (10.1016/j.lfs.2020.118740_bb0295) 2013; 110 Luo (10.1016/j.lfs.2020.118740_bb0740) 2008; 283 Bernales (10.1016/j.lfs.2020.118740_bb0325) 2006; 22 Novoa (10.1016/j.lfs.2020.118740_bb0540) 2001; 153 Kanda (10.1016/j.lfs.2020.118740_bb0445) 2016; 113 Song (10.1016/j.lfs.2020.118740_bb0725) 2013; 12 Mao (10.1016/j.lfs.2020.118740_bb0815) 2011 Yamamoto (10.1016/j.lfs.2020.118740_bb0290) 2019; 133 Huang (10.1016/j.lfs.2020.118740_bb0075) 2019; 294 Rüegsegger (10.1016/j.lfs.2020.118740_bb0350) 2001; 107 Gu (10.1016/j.lfs.2020.118740_bb0735) 2004; 279 Mori (10.1016/j.lfs.2020.118740_bb0135) 1993; 74 Cox (10.1016/j.lfs.2020.118740_bb0310) 1996; 87 Tam (10.1016/j.lfs.2020.118740_bb0575) 2014; 9 Calfon (10.1016/j.lfs.2020.118740_bb0040) 2002; 415 Iwawaki (10.1016/j.lfs.2020.118740_bb0875) 2009; 106 Yoshida (10.1016/j.lfs.2020.118740_bb0320) 2001; 107 Kawahara (10.1016/j.lfs.2020.118740_bb0345) 1997; 8 Baltz (10.1016/j.lfs.2020.118740_bb0395) 2012; 46 Amin-Wetzel (10.1016/j.lfs.2020.118740_bb5000) 2017; 171 Tang (10.1016/j.lfs.2020.118740_bb0590) 2018; 217 Cross (10.1016/j.lfs.2020.118740_bb0450) 2012; 109 Ron (10.1016/j.lfs.2020.118740_bb0095) 2007; 8 Karagöz (10.1016/j.lfs.2020.118740_bb0195) 2017; 6 Sidrauski (10.1016/j.lfs.2020.118740_bb0355) 1996; 87 Halbleib (10.1016/j.lfs.2020.118740_bb0300) 2017; 67 Moore (10.1016/j.lfs.2020.118740_bb0495) 2015; 26 Iwakoshi (10.1016/j.lfs.2020.118740_bb0690) 2007; 204 Maurel (10.1016/j.lfs.2020.118740_bb0485) 2014; 39 Tabas (10.1016/j.lfs.2020.118740_bb5005) 2011; 13 Yanagitani (10.1016/j.lfs.2020.118740_bb0435) 2011; 331 Brown (10.1016/j.lfs.2020.118740_bb0730) 2016; 129 Thibault (10.1016/j.lfs.2020.118740_bb0265) 2012; 48 Pinkaew (10.1016/j.lfs.2020.118740_bb0785) 2017; 8 Hollien (10.1016/j.lfs.2020.118740_bb0060) 2006; 313 Chen (10.1016/j.lfs.2020.118740_bb0065) 2013; 23 Shamu (10.1016/j.lfs.2020.118740_bb0340) 1997; 7 Brozzi (10.1016/j.lfs.2020.118740_bb0760) 2016; 291 Bertolotti (10.1016/j.lfs.2020.118740_bb0185) 2000; 2 Belyy (10.1016/j.lfs.2020.118740_bb0030) 2020; 117 Tirasophon (10.1016/j.lfs.2020.118740_bb0140) 1998; 12 10.1016/j.lfs.2020.118740_bb0510 He (10.1016/j.lfs.2020.118740_bb0805) 2012; 23 Karam (10.1016/j.lfs.2020.118740_bb0605) 2015; 16 Promlek (10.1016/j.lfs.2020.118740_bb0260) 2011; 22 Gardner (10.1016/j.lfs.2020.118740_bb0175) 2011; 333 Helenius (10.1016/j.lfs.2020.118740_bb0005) 1992; 2 Kozutsumi (10.1016/j.lfs.2020.118740_bb0120) 1988; 332 Jiang (10.1016/j.lfs.2020.118740_bb0675) 2020 Huang (10.1016/j.lfs.2020.118740_bb0850) 2017; 3 Shinya (10.1016/j.lfs.2020.118740_bb0385) 2011; 39 Oikawa (10.1016/j.lfs.2020.118740_bb0180) 2007; 120 Cox (10.1016/j.lfs.2020.118740_bb0130) 1993; 73 Upton (10.1016/j.lfs.2020.118740_bb0490) 2012; 338 Taylor (10.1016/j.lfs.2020.118740_bb5015) 1999; 26 Kimmig (10.1016/j.lfs.2020.118740_bb0455) 2012; 1 Peschek (10.1016/j.lfs.2020.118740_bb0620) 2019; 8 Fink (10.1016/j.lfs.2020.118740_bb0695) 2018; 25 Yamamoto (10.1016/j.lfs.2020.118740_bb0280) 2018; 13 Jurkin (10.1016/j.lfs.2020.118740_bb0400) 2014; 33 Zhou (10.1016/j.lfs.2020.118740_bb0670) 2010; 11 Iurlaro (10.1016/j.lfs.2020.118740_bb5100) 2016; 283 Jäger (10.1016/j.lfs.2020.118740_bb0025) 2012; 104 Ron (10.1016/j.lfs.2020.118740_bb0420) 2009; 34 Dejeans (10.1016/j.lfs.2020.118740_bb0625) 2012; 125 Aragon (10.1016/j.lfs.2020.118740_bb0370) 2009; 457 Han (10.1016/j.lfs.2020.118740_bb0460) 2009; 138 Ghosh (10.1016/j.lfs.2020.118740_bb0565) 2014; 158 Kimata (10.1016/j.lfs.2020.118740_bb0105) 2003; 14 So (10.1016/j.lfs.2020.118740_bb0505) 2012; 16 Nikawa (10.1016/j.lfs.2020.118740_bb0235) 1992; 6 |
| References_xml | – volume: 107 start-page: 881 year: 2001 end-page: 891 ident: bb0320 article-title: XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor publication-title: Cell – volume: 204 start-page: 863 year: 2014 end-page: 868 ident: bb0520 article-title: Quality control: is there quality control of localized mRNAs? publication-title: J. Cell Biol. – volume: 17 start-page: 1558 year: 2016 ident: bb0705 article-title: ER stress-mediated signaling: action potential and Ca(2+) as key players publication-title: Int. J. Mol. Sci. – volume: 313 start-page: 104 year: 2006 end-page: 107 ident: bb0060 article-title: Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response publication-title: Science – volume: 10 start-page: 76 year: 2018 ident: bb0855 article-title: Genome-wide analyses reveal the IRE1a-XBP1 pathway promotes T helper cell differentiation by resolving secretory stress and accelerating proliferation publication-title: Genome Med. – volume: 87 start-page: 391 year: 1996 end-page: 404 ident: bb0310 article-title: A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response publication-title: Cell – volume: 138 start-page: 562 year: 2009 end-page: 575 ident: bb0460 article-title: Ire1 alpha kinase activation modes control alternate endoribonuclese outputs to determine divergent cell fates publication-title: Cell – volume: 8 year: 2010 ident: bb0795 article-title: HSP72 protects cells from ER stress induced apoptosis via enhancement of IRE1α–XBP1 signalling through a physical interaction publication-title: PLoS Biol. – volume: 22 start-page: 487 year: 2006 end-page: 508 ident: bb0325 article-title: Intracellular signaling by the unfolded protein response publication-title: Annu. Rev. Cell Dev. Biol. – volume: 22 start-page: 3520 year: 2011 end-page: 3532 ident: bb0260 article-title: Membrane aberrancy and unfolded proteins activate the endoplasmic reticulum stress sensor Ire1 in different ways publication-title: Mol. Biol. Cell – volume: 21 start-page: 3722 year: 2010 end-page: 3734 ident: bb0365 article-title: Dual functions of yeast tRNA ligase in the unfolded protein response: unconventional cytoplasmic splicing of HAC1 pre-mRNA is not sufficient to release translational attenuation publication-title: Mol. Biol. Cell – volume: 8 year: 2019 ident: bb0620 article-title: tRNA ligase structure reveals kinetic competition between non-conventional mRNA splicing and mRNA decay publication-title: Elife. – volume: 285 start-page: 22027 year: 2010 end-page: 22035 ident: bb0240 article-title: Decrease in membrane phospholipid unsaturation induces unfolded protein response publication-title: J. Biol. Chem. – volume: 312 start-page: 572 year: 2006 end-page: 576 ident: bb0775 article-title: Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha publication-title: Science – volume: 132 start-page: 89 year: 2008 end-page: 100 ident: bb0200 article-title: Structure of the dual enzyme Ire1 reveals the basis for catalysis and regulation in nonconventional RNA splicing publication-title: Cell – volume: 9 start-page: 850 year: 2014 end-page: 858 ident: bb0575 article-title: Ire1 has distinct catalytic mechanisms for XBP1/HAC1 splicing and RIDD publication-title: Cell Rep. – volume: 19 start-page: 698 year: 2017 end-page: 710 ident: bb0650 article-title: Regulated IRE1-dependent mRNA decay sets the threshold for dendritic cell survival publication-title: Nat. Cell Biol. – volume: 25 start-page: 212 year: 2018 end-page: 223.e4 ident: bb0695 article-title: XBP1-KLF9 axis acts as a molecular rheostat to control the transition from adaptive to cytotoxic unfolded protein response publication-title: Cell Rep. – volume: 6 year: 2017 ident: bb0195 article-title: An unfolded protein-induced conformational switch activates mammalian IRE1 publication-title: Elife – volume: 283 start-page: 11905 year: 2008 end-page: 11912 ident: bb0740 article-title: AIP1 is critical in transducing IRE1-mediated endoplasmic reticulum stress response publication-title: J. Biol. Chem. – volume: 55 start-page: 758 year: 2014 end-page: 770 ident: bb0390 article-title: A synthetic biology approach identifies the mammalian UPR RNA ligase RtcB publication-title: Mol. Cell – volume: 7 start-page: R67 year: 1997 end-page: R70 ident: bb0340 article-title: Signal transduction: splicing together the unfolded-protein response publication-title: Curr. Biol. – volume: 179 start-page: 75 year: 2007 end-page: 86 ident: bb0170 article-title: Two regulatory steps of ER-stress sensor Ire1 involving its cluster formation and interaction with unfolded proteins publication-title: J. Cell Biol. – volume: 168 start-page: 1899 year: 2004 end-page: 1913 ident: bb0245 article-title: Role of the unfolded protein response pathway in secretory stress and regulation of INO1 expression in Saccharomyces cerevisiae publication-title: Genetics – volume: 331 start-page: 586 year: 2011 end-page: 589 ident: bb0435 article-title: Translational pausing ensures membrane targeting and cytoplasmic splicing of XBP1u mRNA publication-title: Science – volume: 110 start-page: 2864 year: 2013 end-page: 2869 ident: bb0150 article-title: Negative feedback by IRE1beta optimizes mucin production in goblet cells publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 117 start-page: 1533 year: 2020 end-page: 1542 ident: bb0030 article-title: Quantitative microscopy reveals dynamics and fate of clustered IRE1α publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 171 start-page: 1625 year: 2017 end-page: 1637.e13 ident: bb5000 article-title: A J-Protein Co-chaperone Recruits BiP to Monomerize IRE1 and Repress the Unfolded Protein Response publication-title: Cell – volume: 8 year: 2013 ident: bb0845 article-title: Sigma-1 receptor chaperone at the ER-mitochondrion interface mediates the mitochondrion-ER-nucleus signaling for cellular survival publication-title: PLoS One – volume: 39 start-page: 245 year: 2014 end-page: 254 ident: bb0485 article-title: Getting RIDD of RNA: IRE1 in cell fate regulation publication-title: Trends Biochem. Sci. – volume: 4 year: 2015 ident: bb0440 article-title: A functional link between the co-translational protein translocation pathway and the UPR publication-title: Elife – volume: 14 start-page: 2559 year: 2003 end-page: 2569 ident: bb0105 article-title: Genetic evidence for a role of BiP/Kar2 that regulates Ire1 in response to accumulation of unfolded proteins publication-title: Mol. Biol. Cell – volume: 32 start-page: 992 year: 2012 end-page: 1003 ident: bb0530 article-title: A novel feedback loop regulates the response to endoplasmic reticulum stress via the cooperation of cytoplasmic splicing and mRNA translation publication-title: Mol. Cell. Biol. – volume: 48 start-page: 16 year: 2012 end-page: 27 ident: bb0265 article-title: The membrane stress response buffers lethal effects of lipid disequilibrium by reprogramming the protein homeostasis network publication-title: Mol. Cell – volume: 291 start-page: 12040 year: 2016 end-page: 12056 ident: bb0760 article-title: Ubiquitin D regulates IRE1α/c-Jun N-terminal kinase (JNK) protein-dependent apoptosis in pancreatic beta cells publication-title: J. Biol. Chem. – volume: 16 start-page: 599 year: 2015 end-page: 609 ident: bb0605 article-title: The unfolded protein response is shaped by the NMD pathway publication-title: EMBO Rep. – volume: 21 start-page: 755 year: 2019 end-page: 767 ident: bb0840 article-title: Non-canonical function of IRE1α determines mitochondria-associated endoplasmic reticulum composition to control calcium transfer and bioenergetics publication-title: Nat. Cell Biol. – volume: 90 start-page: 1031 year: 1997 end-page: 1039 ident: bb0050 article-title: The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response publication-title: Cell – volume: 8 start-page: 519 year: 2007 end-page: 529 ident: bb0095 article-title: Signal integration in the endoplasmic reticulum unfolded protein response publication-title: Nat Rev Mol Cell Biol. – volume: 120 start-page: 1681 year: 2007 end-page: 1688 ident: bb0180 article-title: Self-association and BiP dissociation are not sufficient for activation of the ER stress sensor Ire1 publication-title: J. Cell Sci. – year: 2020 ident: bb0615 article-title: Stress-induced tyrosine phosphorylation of RtcB modulates IRE1 activity and signaling outputs. bioRxiv – volume: 23 start-page: 955 year: 2012 end-page: 964 ident: bb0255 article-title: Kar2p availability de- fines distinct forms of endoplasmic reticulum stress in living cells publication-title: Mol. Biol. Cell – volume: 2 start-page: 227 year: 1992 end-page: 231 ident: bb0005 article-title: The endoplasmic reticulum as a protein-folding compartment publication-title: Trends Cell Biol. – volume: 107 start-page: 16113 year: 2010 end-page: 16118 ident: bb0190 article-title: Mammalian endoplasmic reticulum stress sensor IRE1 signals by dynamic clustering publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 8 start-page: 552 year: 2011 end-page: 556 ident: bb0380 article-title: Conserved RNA structures in the non-canonical Hac1/Xbp1 intron publication-title: RNA Biol. – volume: 106 start-page: 16657 year: 2009 end-page: 16662 ident: bb0875 article-title: Function of IRE1 alpha in the placenta is essential for placental development and embryonic viability publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 91 start-page: 469 year: 2015 end-page: 480 ident: bb0010 article-title: The unfolded protein response: the dawn of a new field publication-title: The Proceedings of the Japan Academy – volume: 2 start-page: 326 year: 2000 end-page: 332 ident: bb0185 article-title: Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response publication-title: Nat. Cell Biol. – volume: 109 start-page: 8079 year: 2012 end-page: 8084 ident: bb0610 article-title: RNA surveillance is required for endoplasmic reticulum homeostasis publication-title: Proc. Natl. Acad. Sci. U. S. A. – reference: Morita S, Villalta SA, Feldman HC, Register AC, Rosenthal W4, Hoffmann-Petersen IT, Mehdizadeh M, Ghosh R, Wang L, Colon-Negron K1, Meza-Acevedo R, Backes BJ, Maly DJ, Bluestone JA, Papa FR (2017). Targeting ABL-IRE1α signaling spares ER-stressed pancreatic β cells to reverse autoimmune diabetes. Cell Metab. 25(4):883–897.e8. – volume: 1 year: 2012 ident: bb0455 article-title: The unfolded protein response in fission yeast modulates stability of select mRNAs to maintain protein homeostasis publication-title: Elife – volume: 136 start-page: 343 year: 2004 end-page: 350 ident: bb0700 article-title: Differential contributions of ATF6 and XBP1 to the activation of endoplasmic reticulum stress-responsive cis-acting elements ERSE, UPRE and ERSE-II publication-title: J. Biochem. – volume: 47 start-page: 2726 year: 2006 Dec end-page: 2737 ident: bb0275 article-title: Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death publication-title: J. Lipid Res. – volume: 35 start-page: 2186 year: 2015 end-page: 2202 ident: bb0500 article-title: Cleavage of BLOC1S1 mRNA by IRE1 is sequence specific, temporally separate from XBP1 splicing, and dispensable for cell viability under acute endoplasmic reticulum stress publication-title: Mol. Cell. Biol. – volume: 278 start-page: 34864 year: 2003 end-page: 34873 ident: bb0535 article-title: Delineation of a negative feedback regulatory loop that controls protein translation during endoplasmic reticulum stress publication-title: J. Biol. Chem. – volume: 12 start-page: 1812 year: 1998 end-page: 1824 ident: bb0140 article-title: A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells publication-title: Genes Dev. – volume: 17 start-page: 5708 year: 1998 end-page: 5717 ident: bb0145 article-title: Cloning of mammalian Ire1 reveals diversity in the ER stress responses publication-title: EMBO J. – volume: 16 start-page: 5819 year: 2005 end-page: 5831 ident: bb0410 article-title: Stable ribosome binding to the endoplasmic reticulum enables compartment-specific regulation of mRNA translation publication-title: Mol. Biol. Cell – volume: 36 start-page: 329 year: 2011 end-page: 337 ident: bb0545 article-title: Modulating stress responses by the UPRosome: a matter of life and death publication-title: Trends Biochem. Sci. – volume: 129 start-page: 2317 year: 2016 end-page: 2328 ident: bb0730 article-title: An initial phase of JNK activation inhibits cell death early in the endoplasmic reticulum stress response publication-title: J. Cell Sci. – volume: 31 start-page: 2322 year: 2012 end-page: 2335 ident: bb0780 article-title: BH3-only proteins are part of a regulatory network that control the sustained signalling of the unfolded protein response sensor IRE1alpha publication-title: EMBO J. – volume: 526 start-page: 122 year: 2020 end-page: 127 ident: bb0270 article-title: Palmitate induces cardiomyocyte death via inositol requiring enzyme-1 (IRE1)-mediated signaling independent of X-box binding protein 1 (XBP1) publication-title: Biochem. Biophys. Res. Commun. – volume: 73 start-page: 4732 year: 2013 end-page: 4743 ident: bb0630 article-title: Posttranscriptional regulation of PER1 underlies the oncogenic function of IREα publication-title: Cancer Res. – volume: 338 start-page: 818 year: 2012 end-page: 822 ident: bb0490 article-title: IRE1alpha cleaves select microRNAs during ER stress to derepress translation of proapoptotic caspase-2 publication-title: Science – volume: 110 start-page: 4628 year: 2013 end-page: 4633 ident: bb0295 article-title: Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 102 start-page: 18773 year: 2005 end-page: 18784 ident: bb0100 article-title: On the mechanism of sensing unfolded protein in the endoplasmic reticulum publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 22 start-page: 241 year: 2009 end-page: 246 ident: bb0080 article-title: The role of X-box binding protein-1 in tumorigenicity publication-title: Drug News Perspect. – volume: 69 start-page: 238 year: 2018 end-page: 252 ident: bb0810 article-title: Interactome screening identifies the ER luminal chaperone Hsp47 as a regulator of the unfolded protein response transducer IRE1α publication-title: Mol. Cell – volume: 1 start-page: 803 year: 1996 end-page: 817 ident: bb0315 article-title: Signalling from endoplasmic reticulum to nucleus: transcription factor with a basic-leucine zipper motif is required for the unfolded protein-response pathway publication-title: Genes Cells – volume: 186 start-page: 323 year: 2009 end-page: 331 ident: bb0055 article-title: Regulated Ire1-dependent decay of messenger RNAs in mammalian cells publication-title: J. Cell Biol. – volume: 10 start-page: 3776 year: 2019 ident: bb0790 article-title: PRKCSH contributes to tumorigenesis by selective boosting of IRE1 signaling pathway publication-title: Nat Commun. – volume: 46 start-page: 674 year: 2012 end-page: 690 ident: bb0395 article-title: The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts publication-title: Mol. Cell – volume: 209 start-page: 307 year: 2012 end-page: 318 ident: bb0475 article-title: IRE1alpha activation protects mice against acetaminophen-induced hepatotoxicity publication-title: J. Exp. Med. – volume: 281 start-page: 18691 year: 2006 end-page: 18706 ident: bb0375 article-title: Cytoplasmic IRE1-mediated XBP1 mRNA splicing in the absence of nuclear processing and endoplasmic reticulum stress publication-title: J. Biol. Chem. – volume: 14 start-page: 152 year: 2000 end-page: 157 ident: bb0685 article-title: An essential role in liver development for transcription factor XBP-1 publication-title: Genes Dev. – volume: 204 start-page: 2267 year: 2007 end-page: 2275 ident: bb0690 article-title: The transcription factor XBP-1 is essential for the development and survival of dendritic cells publication-title: J. Exp. Med. – volume: 74 start-page: 743 year: 1993 end-page: 756 ident: bb0135 article-title: A transmembrane protein with a cdc2D/CDC28-related kinase activity is required for signaling from the ER to the nucleus publication-title: Cell – volume: 18 start-page: 3119 year: 1999 end-page: 3132 ident: bb0045 article-title: Mechanism of non-spliceosomal mRNA splicing in the unfolded protein response pathway publication-title: EMBO J. – volume: 24 start-page: 4368 year: 2005 end-page: 4380 ident: bb0680 article-title: XBP-1 is required for biogenesis of cellular secretory machinery of exocrine glands publication-title: EMBO J. – volume: 18 start-page: 38 year: 2008 end-page: 44 ident: bb0595 article-title: The daily job of night killers: alternative roles of the BCL-2 family in organelle physiology publication-title: Trends Cell Biol. – year: 2020 ident: bb0675 article-title: Endoplasmic reticulum stress-dependent activation of iNOS/NO-NF-κB signaling and NLRP3 inflammasome contributes to endothelial inflammation and apoptosis associated with microgravity publication-title: FASEB J. – volume: 73 start-page: 1197 year: 1993 end-page: 1206 ident: bb0130 article-title: Transcriptional induction of genes encoding endoendoplasmic reticulum resident proteins requires a transmembrane protein kinase publication-title: Cell – volume: 153 start-page: 1011 year: 2001 end-page: 1022 ident: bb0540 article-title: Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha publication-title: J. Cell Biol. – volume: 11 start-page: 1997 year: 2020 ident: bb0085 article-title: The UPR sensor IRE1α and the adenovirus E3-19K glycoprotein sustain persistent and lytic infections publication-title: Nat. Commun. – volume: 26 start-page: 3087 year: 2019 end-page: 3099.e11 ident: bb0430 article-title: The metastable XBP1u transmembrane domain defines determinants for intramembrane proteolysis by signal peptide peptidase publication-title: Cell Rep. – volume: 109 start-page: 869 year: 2012 end-page: 878 ident: bb0450 article-title: The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 3 year: 2017 ident: bb0850 article-title: Identification of XBP1-u as a novel regulator of the MDM2/p53 axis using an shRNA library publication-title: Sci. Adv. – volume: 24 start-page: 14 year: 2013 end-page: 20 ident: bb0465 article-title: Comparison of mRNA localization and regulation during endoplasmic reticulum stress in Drosophila cells publication-title: Mol. Biol. Cell – volume: 57 start-page: 1211 year: 1989 end-page: 1221 ident: bb0125 article-title: KAR2, a karyogamy gene, is the yeast homolog of the mammalian BiP/GRP78 gene publication-title: Cell – volume: 288 start-page: 8726 year: 2013 end-page: 8736 ident: bb0755 article-title: RNF13, a RING finger protein, mediates endoplasmic reticulum stress-induced apoptosis through the inositol-requiring enzyme (IRE1alpha)/c-Jun NH2-terminal kinase pathway publication-title: J. Biol. Chem. – volume: 14 start-page: 1223 year: 2012 end-page: 1230 ident: bb0825 article-title: PARP16 is a tail-anchored endoplasmic reticulum protein required for the PERK- and IRE1alpha mediated unfolded protein response publication-title: Nat. Cell Biol. – volume: 113 start-page: 5886 year: 2016 end-page: 5895 ident: bb0445 article-title: Autonomous translational pausing is required for XBP1u mRNA recruitment to the ER via the SRP pathway publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 5 start-page: 76 year: 2014 ident: bb0070 article-title: Physiological roles of regulated Ire1 dependent decay publication-title: Front. Genet. – volume: 13 start-page: 558 year: 2013 end-page: 569 ident: bb0090 article-title: The unfolded protein response element IRE1α senses bacterial proteins invading the ER to activate RIG-I and innate immune signaling publication-title: Cell Host Microbe – volume: 11 start-page: 2583 year: 1992 end-page: 2593 ident: bb0330 article-title: A 22 bp publication-title: EMBO J. – volume: 10 start-page: 892 year: 2014 end-page: 901 ident: bb0220 article-title: Druggable sensors of the unfolded protein response publication-title: Nat. Chem. Biol. – volume: 38 start-page: 6265 year: 2010 end-page: 6273 ident: bb0480 article-title: Identification of a consensus element recognized and cleaved by IRE1 publication-title: Nucleic Acids Res. – volume: 289 start-page: 30567 year: 2014 end-page: 30577 ident: bb0830 article-title: Ubiquitination of inositol-requiring enzyme 1 (IRE1) by the E3 ligase CHIP mediates the IRE1/TRAF2/JNK pathway publication-title: J. Biol. Chem. – volume: 273 start-page: 1802 year: 1998 end-page: 1807 ident: bb0360 article-title: Unconventional splicing of HAC1/ERN4 mRNA required for the unfolded protein response: sequence-specific and non-sequential cleavage of the splice sites publication-title: J. Biol. Chem. – volume: 287 start-page: 664 year: 2000 end-page: 666 ident: bb0750 article-title: Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1 publication-title: Science – volume: 133 start-page: 1 year: 2019 end-page: 11 ident: bb0290 article-title: Sirt1 counteracts decrease in membrane phospholipid unsaturation and diastolic dysfunction during saturated fatty acid overload publication-title: J. Mol. Cell. Cardiol. – volume: 8 start-page: 1845 year: 1997 end-page: 1862 ident: bb0345 article-title: Endoplasmic reticulum stress-induced mRNA splicing permits synthesis of transcription factor Hac1p/Ern4p that activates the unfolded protein response publication-title: Mol. Biol. Cell – volume: 107 start-page: 5851 year: 2010 end-page: 5856 ident: bb0250 article-title: Orm1 and Orm2 are conserved endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein quality control publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 8 start-page: 982 year: 2012 end-page: 989 ident: bb0570 article-title: Divergent allosteric control of the IRE1alpha endoribonuclease using kinase inhibitors publication-title: Nat. Chem. Biol. – volume: 37 year: 2017 ident: bb0405 article-title: Functional analysis of the mammalian RNA ligase for the IRE1 in the unfolded protein response publication-title: Bioscience Rep. – volume: 283 start-page: 2640 year: 2016 end-page: 2652 ident: bb5100 article-title: Cell death induced by endoplasmic reticulum stress publication-title: FEBS J. – volume: 138 start-page: 156 year: 2017 end-page: 167 ident: bb0285 article-title: The role of de novo protein synthesis and SIRT1 in ER stress-induced Atf4 and Chop mRNA expression in mammalian cells publication-title: Biochimie. – volume: 33 start-page: 2492 year: 2014 end-page: 2506 ident: bb0425 article-title: Signal peptide peptidase functions in ERAD to cleave the unfolded protein response regulator XBP1u publication-title: EMBO J. – volume: 302 start-page: 1533 year: 2003 end-page: 1537 ident: bb0560 article-title: Bypassing a kinase activity with an ATP-competitive drug publication-title: Science – volume: 279 start-page: 49689 year: 2004 end-page: 49693 ident: bb0735 article-title: Proteintyrosine phosphatase 1B potentiates IRE1 signalling during endoplasmic reticulum stress publication-title: J. Biol. Chem. – volume: 457 start-page: 687 year: 2009 end-page: 693 ident: bb0205 article-title: The unfolded protein response signals through high-order assembly of Ire1 publication-title: Nature – volume: 167 start-page: 35 year: 2004 end-page: 41 ident: bb0160 article-title: XBP1: a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum publication-title: J. Cell Biol. – volume: 13 year: 2018 ident: bb0280 article-title: Decrease in membrane phospholipids unsaturation correlates with myocardial diastolic dysfunction publication-title: PLoS One – volume: 67 start-page: 673 year: 2017 end-page: 684.e8 ident: bb0300 article-title: Activation of the unfolded protein response by lipid bilayer stress publication-title: Mol Cell. – volume: 107 start-page: 103 year: 2001 end-page: 114 ident: bb0350 article-title: Block of HAC1 mRNA translation by long-range base pairing is released by cytoplasmic splicing upon induction of the unfolded protein response publication-title: Cell. – volume: 9 start-page: 48 year: 2011 ident: bb0230 article-title: Cofactor-mediated conformational control in the bifunctional kinase/RNase Ire1 publication-title: BMC Biol. – volume: 29 start-page: 691 year: 2013 end-page: 699 ident: bb0515 article-title: The intimate relationships of mRNA decay and translation publication-title: Trends Genet. – volume: 18 start-page: 169 year: 2018 end-page: 181 ident: bb0600 article-title: The unfolded protein response and cell fate control publication-title: Mol Cell. – volume: 133 year: 2020 ident: bb0835 article-title: The UPRosome–decoding novel biological outputs of IRE1α function publication-title: J Cell Sci. – volume: 103 start-page: 14343 year: 2006 end-page: 14348 ident: bb0110 article-title: The crystal structure of human IRE1 luminal domain reveals a conserved dimerization interface required for activation of the unfolded protein response publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 4 start-page: 4170 year: 2009 ident: bb0525 article-title: Divergent effects of PERK and IRE1 signaling on cell viability publication-title: PLoS One – volume: 294 start-page: 18726 year: 2019 end-page: 18741 ident: bb0075 article-title: Emerging roles for the ER stress sensor IRE1α in metabolic regulation and disease publication-title: J. Biol. Chem. – volume: 126 start-page: 4136 year: 2013 end-page: 4146 ident: bb0640 article-title: The IRE1 ER stress-response pathway is required for normal secretory-protein metabolism in C. elegans publication-title: J. Cell Sci. – volume: 91 start-page: 1219 year: 2011 end-page: 1243 ident: bb0155 article-title: The unfolded protein response: integrating stress signals through the stress sensor IRE1α publication-title: Physiol. Rev. – volume: 10 start-page: 891 year: 2019 ident: bb0710 article-title: eIF2α-CHOP-BCl-2/JNK and IRE1α-XBP1/JNK signaling promote apoptosis and inflammation and support the proliferation of Newcastle disease virus publication-title: Cell Death Dis. – volume: 12 start-page: e1006156 year: 2016 ident: bb5010 article-title: Absence of the ER Cation Channel TMEM38B/TRIC-B Disrupts Intracellular Calcium Homeostasis and Dysregulates Collagen Synthesis in Recessive Osteogenesis Imperfecta publication-title: PLoS Genet. – volume: 13 start-page: 184 year: 2011 end-page: 190 ident: bb5005 article-title: Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress publication-title: Nat. Cell Biol. – volume: 106 start-page: 8326 year: 2009 end-page: 8331 ident: bb0715 article-title: Sustained activation of XBP1 splicing leads to endothelial apoptosis and atherosclerosis development in response to disturbed flow publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 39 start-page: 5245 year: 2011 end-page: 5254 ident: bb0385 article-title: Reconstitution and characterization of the unconventional splicing of XBP1u mRNA in vitro publication-title: Nucleic Acids Res. – volume: 28 start-page: 251 year: 2012 end-page: 277 ident: bb0225 article-title: Structural basis of the unfolded protein response publication-title: Annu. Rev. Cell Dev. Biol. – volume: 28 start-page: 1624 year: 2009 end-page: 1636 ident: bb0585 article-title: XBP-1 regulates signal transduction, transcription factors and bone marrow colonization in B cells publication-title: EMBO J. – volume: 16 start-page: 250 year: 2012 end-page: 264 ident: bb0665 article-title: IRE1α induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress publication-title: Cell Metab. – volume: 365 start-page: 777 year: 2008 end-page: 783 ident: bb0555 article-title: A kinase inhibitor activates the IRE1alpha RNase to confer cytoprotection against ER stress publication-title: Biochem. Biophys. Res. Commun. – volume: 332 start-page: 462 year: 1988 end-page: 464 ident: bb0120 article-title: The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins publication-title: Nature – volume: 3 start-page: 158 year: 2001 end-page: 164 ident: bb0635 article-title: Translational control by the ER transmembrane kinase/ribonuclease IRE1 under ER stress publication-title: Nat. Cell Biol. – volume: 87 start-page: 405 year: 1996 end-page: 413 ident: bb0355 article-title: tRNA ligase is required for regulated mRNA splicing in the unfolded protein response publication-title: Cell – volume: 3 start-page: ra7 year: 2010 ident: bb0820 article-title: A crucial role for RACK1 in the regulation of glucose-stimulated IRE1α activation in pancreatic β-cells publication-title: Sci Signal. – volume: 23 start-page: 547 year: 2013 end-page: 555 ident: bb0065 article-title: IRE1: ER stress sensor and cell fate executor publication-title: Trends Cell Biol. – volume: 457 start-page: 736 year: 2009 end-page: 740 ident: bb0370 article-title: Messenger RNA targeting to endoplasmic reticulum stress signalling sites publication-title: Nature – volume: 30 start-page: 894 year: 2011 end-page: 905 ident: bb0210 article-title: Structure of the Ire1 autophosphorylation complex and implications for the unfolded protein response publication-title: EMBO J. – reference: Chang TK, Lawrence DA, Lu M, tan J, Harnoss JM, Marsters SA, Liu P, Sandoval W, Martin SE, Ashkenazi A (2018). Coordination between two branches of the unfolded protein response determines apoptotic cell fate. Mol Cell. 71(4):629–636.e5. – volume: 315 start-page: 2496 year: 2009 end-page: 2504 ident: bb0115 article-title: Activation of mammalian IRE1alpha upon ER stress depends on dissociation of BiP rather than on direct interaction with unfolded proteins publication-title: Exp. Cell Res. – volume: 8 start-page: 18 year: 2017 ident: bb0785 article-title: Fortilin binds IRE1α and prevents ER stress from signaling apoptotic cell death publication-title: Nat. Commun. – volume: 104 start-page: 259 year: 2012 end-page: 270 ident: bb0025 article-title: The unfolded protein response at the crossroads of cellular life and death during endoplasmic reticulum stress publication-title: Biol. Cell. – volume: 26 start-page: 2873 year: 2015 end-page: 2884 ident: bb0495 article-title: Ire1-mediated decay in mammalian cells relies on mRNA sequence, structure, and translational status publication-title: Mol. Biol. Cell – volume: 74 start-page: 739 year: 2005 end-page: 789 ident: bb0015 article-title: The mammalian unfolded protein response publication-title: Annu. Rev. Biochem. – volume: 12 start-page: 794 year: 2013 end-page: 801 ident: bb0725 article-title: Inhibition of x-box binding protein 1 reduces tunicamycin-induced apoptosis in aged murine macrophages publication-title: Aging Cell – volume: 334 start-page: 1081 year: 2011 end-page: 1086 ident: bb0020 article-title: The unfolded protein response: from stress pathway to homeostatic regulation publication-title: Science – volume: 8 start-page: 75723 year: 2013 ident: bb0470 article-title: Regulation of Sumo mRNA during endoplasmic reticulum stress publication-title: PLoS One – volume: 158 start-page: 534 year: 2014 end-page: 548 ident: bb0565 article-title: Allosteric inhibition of the IRE1α RNase preserves cell viability and function during endoplasmic reticulum stress publication-title: Cell. – volume: 75 start-page: 129 year: 2015 end-page: 136 ident: bb0660 article-title: miR-125a-5p inhibits cell proliferation and induces apoptosis in colon cancer via targeting BCL2, BCL2L12 and MCL1 publication-title: Biomed. Pharmacother. – volume: 15 start-page: 4248 year: 2004 end-page: 4260 ident: bb0765 article-title: Nck-dependent activation of extracellular signal-regulated kinase-1 and regulation of cell survival during endoplasmic reticulum stress publication-title: Mol. Biol. Cell – volume: 87 start-page: 357 year: 1996 end-page: 359 ident: bb0335 article-title: Mixed mechanisms in yeast pre-mRNA splicing? publication-title: Cell. – volume: 34 start-page: 133 year: 2009 end-page: 134 ident: bb0420 article-title: Targeting of mRNAs to their sites of unconventional splicing in the unfolded protein response publication-title: Mol. Cell – volume: 415 start-page: 92 year: 2002 end-page: 96 ident: bb0040 article-title: IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA publication-title: Nature – volume: 34 start-page: 191 year: 2009 end-page: 200 ident: bb0415 article-title: Cotranslational targeting of XBP1 protein to the membrane promotes cytoplasmic splicing of its own mRNA publication-title: Mol. Cell – start-page: 15852 year: 2011 end-page: 15857 ident: bb0815 article-title: PKA phosphorylation couples hepatic inositol-requiring enzyme 1alpha to glucagon signaling in glucose metabolism publication-title: Proc Natl Acad Sci U S A – volume: 10 year: 2017 ident: bb0655 article-title: IRE1α promotes viral infection by conferring resistance to apoptosis publication-title: Sci Signal. – volume: 125 start-page: 4278 year: 2012 end-page: 4287 ident: bb0625 article-title: Autocrine control of glioma cells adhesion and migration through IRE1alpha-mediated cleavage of SPARC mRNA publication-title: J. Cell Sci. – volume: 22 start-page: 8506 year: 2002 end-page: 8513 ident: bb0800 article-title: Heat shock protein 90 modulates the unfolded protein response by stabilizing IRE1alpha publication-title: Mol. Cell. Biol. – volume: 3 year: 2011 ident: bb0305 article-title: Spliceosome, structure and function publication-title: Cold Spring Harb Perspect Biol. – volume: 4 start-page: 245 year: 2006 end-page: 254 ident: bb0645 article-title: Regulation of insulin biosynthesis in pancreatic beta cells by an endoplasmic reticulum-resident protein kinase IRE1 publication-title: Cell Metab. – volume: 152 start-page: 493 year: 2007 end-page: 500 ident: bb0720 article-title: Nitric oxide selectively depletes macrophages in atherosclerotic plaques via induction of endoplasmic reticulum stress publication-title: Br. J. Pharmacol. – volume: 44 start-page: 867 year: 2014 end-page: 876 ident: bb0580 article-title: Regulated IRE1-dependent decay participates in curtailing immunoglobulin secretion from plasma cells publication-title: Eur. J. Immunol. – volume: 23 start-page: 1141 year: 2012 end-page: 1152 ident: bb0805 article-title: Nonmuscle myosin IIB links cytoskeleton to IRE1α signaling during ER stress publication-title: Dev. Cell – volume: 167 start-page: 445 year: 2004 end-page: 456 ident: bb0165 article-title: A role for BiP as an adjustor for the endoplasmic reticulum stress-sensing protein Ire1 publication-title: J. Cell Biol. – volume: 333 start-page: 1891 year: 2011 end-page: 1894 ident: bb0175 article-title: Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response publication-title: Science – volume: 217 start-page: 1739 year: 2018 end-page: 1755 ident: bb0590 article-title: Phosphorylation of IRE1 at S729 regulates RIDD in B cells and antibody production after immunization publication-title: J. Cell Biol. – volume: 11 start-page: 136 year: 2010 end-page: 140 ident: bb0670 article-title: Thioredoxin-interacting protein links oxidative stress to inflammasome activation publication-title: Nat. Immunol. – volume: 33 start-page: 2922 year: 2014 end-page: 2936 ident: bb0400 article-title: The mammalian tRNA ligase complex mediates splicing of XBP1 mRNA and controls antibody secretion in plasma cells publication-title: EMBO J. – volume: 117 start-page: 3352 year: 2020 end-page: 3354 ident: bb0035 article-title: Dynamics and clustering of IRE1α during ER stress publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 26 start-page: 237 year: 1999 end-page: 251 ident: bb5015 article-title: Expression of inositol trisphosphate receptors publication-title: Cell Calcium – volume: 6 start-page: 13019 year: 2015 end-page: 13035 ident: bb0215 article-title: Molecular mechanisms of human IRE1 activation through dimerization and ligand binding publication-title: Oncotarget – volume: 6 start-page: 1441 year: 1992 end-page: 1446 ident: bb0235 article-title: IRE1 encodes a putative protein kinase containing a membrane-spanning domain and is required for inositol phototrophy in Saccharomyces cerevisiae publication-title: Mol. Microbiol. – volume: 16 start-page: 487 year: 2012 end-page: 499 ident: bb0505 article-title: Silencing of lipid metabolism genes through IRE1α-mediated mRNA decay lowers plasma lipids in mice publication-title: Cell Metab. – volume: 16 start-page: 1345 year: 2002 end-page: 1355 ident: bb0745 article-title: ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats publication-title: Genes Dev. – volume: 35 start-page: 551 year: 2009 end-page: 561 ident: bb0550 article-title: Fine-tuning of the unfolded protein response: assembling the IRE1α interactome publication-title: Mol. Cell – volume: 18 start-page: 3119 issue: 11 year: 1999 ident: 10.1016/j.lfs.2020.118740_bb0045 article-title: Mechanism of non-spliceosomal mRNA splicing in the unfolded protein response pathway publication-title: EMBO J. doi: 10.1093/emboj/18.11.3119 – volume: 167 start-page: 445 issue: 3 year: 2004 ident: 10.1016/j.lfs.2020.118740_bb0165 article-title: A role for BiP as an adjustor for the endoplasmic reticulum stress-sensing protein Ire1 publication-title: J. Cell Biol. doi: 10.1083/jcb.200405153 – volume: 69 start-page: 238 issue: 2 year: 2018 ident: 10.1016/j.lfs.2020.118740_bb0810 article-title: Interactome screening identifies the ER luminal chaperone Hsp47 as a regulator of the unfolded protein response transducer IRE1α publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.12.028 – volume: 3 start-page: 158 issue: 2 year: 2001 ident: 10.1016/j.lfs.2020.118740_bb0635 article-title: Translational control by the ER transmembrane kinase/ribonuclease IRE1 under ER stress publication-title: Nat. Cell Biol. doi: 10.1038/35055065 – volume: 132 start-page: 89 issue: 1 year: 2008 ident: 10.1016/j.lfs.2020.118740_bb0200 article-title: Structure of the dual enzyme Ire1 reveals the basis for catalysis and regulation in nonconventional RNA splicing publication-title: Cell doi: 10.1016/j.cell.2007.10.057 – volume: 12 start-page: e1006156 issue: 7 year: 2016 ident: 10.1016/j.lfs.2020.118740_bb5010 article-title: Absence of the ER Cation Channel TMEM38B/TRIC-B Disrupts Intracellular Calcium Homeostasis and Dysregulates Collagen Synthesis in Recessive Osteogenesis Imperfecta publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1006156 – volume: 1 start-page: 803 issue: 9 year: 1996 ident: 10.1016/j.lfs.2020.118740_bb0315 article-title: Signalling from endoplasmic reticulum to nucleus: transcription factor with a basic-leucine zipper motif is required for the unfolded protein-response pathway publication-title: Genes Cells doi: 10.1046/j.1365-2443.1996.d01-274.x – volume: 16 start-page: 250 issue: 2 year: 2012 ident: 10.1016/j.lfs.2020.118740_bb0665 article-title: IRE1α induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress publication-title: Cell Metab. doi: 10.1016/j.cmet.2012.07.007 – volume: 9 start-page: 850 issue: 3 year: 2014 ident: 10.1016/j.lfs.2020.118740_bb0575 article-title: Ire1 has distinct catalytic mechanisms for XBP1/HAC1 splicing and RIDD publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.09.016 – volume: 15 start-page: 4248 issue: 9 year: 2004 ident: 10.1016/j.lfs.2020.118740_bb0765 article-title: Nck-dependent activation of extracellular signal-regulated kinase-1 and regulation of cell survival during endoplasmic reticulum stress publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e03-11-0851 – volume: 32 start-page: 992 issue: 5 year: 2012 ident: 10.1016/j.lfs.2020.118740_bb0530 article-title: A novel feedback loop regulates the response to endoplasmic reticulum stress via the cooperation of cytoplasmic splicing and mRNA translation publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.06665-11 – volume: 14 start-page: 1223 issue: 11 year: 2012 ident: 10.1016/j.lfs.2020.118740_bb0825 article-title: PARP16 is a tail-anchored endoplasmic reticulum protein required for the PERK- and IRE1alpha mediated unfolded protein response publication-title: Nat. Cell Biol. doi: 10.1038/ncb2593 – volume: 10 start-page: 3776 issue: 1 year: 2019 ident: 10.1016/j.lfs.2020.118740_bb0790 article-title: PRKCSH contributes to tumorigenesis by selective boosting of IRE1 signaling pathway publication-title: Nat Commun. doi: 10.1038/s41467-019-11824-3 – volume: 16 start-page: 1345 issue: 11 year: 2002 ident: 10.1016/j.lfs.2020.118740_bb0745 article-title: ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats publication-title: Genes Dev. doi: 10.1101/gad.992302 – volume: 168 start-page: 1899 issue: 4 year: 2004 ident: 10.1016/j.lfs.2020.118740_bb0245 article-title: Role of the unfolded protein response pathway in secretory stress and regulation of INO1 expression in Saccharomyces cerevisiae publication-title: Genetics doi: 10.1534/genetics.104.032961 – volume: 87 start-page: 391 issue: 3 year: 1996 ident: 10.1016/j.lfs.2020.118740_bb0310 article-title: A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response publication-title: Cell doi: 10.1016/S0092-8674(00)81360-4 – volume: 107 start-page: 5851 issue: 13 year: 2010 ident: 10.1016/j.lfs.2020.118740_bb0250 article-title: Orm1 and Orm2 are conserved endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein quality control publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0911617107 – volume: 7 start-page: R67 issue: 2 year: 1997 ident: 10.1016/j.lfs.2020.118740_bb0340 article-title: Signal transduction: splicing together the unfolded-protein response publication-title: Curr. Biol. doi: 10.1016/S0960-9822(06)00038-8 – volume: 55 start-page: 758 issue: 5 year: 2014 ident: 10.1016/j.lfs.2020.118740_bb0390 article-title: A synthetic biology approach identifies the mammalian UPR RNA ligase RtcB publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.06.032 – volume: 31 start-page: 2322 issue: 10 year: 2012 ident: 10.1016/j.lfs.2020.118740_bb0780 article-title: BH3-only proteins are part of a regulatory network that control the sustained signalling of the unfolded protein response sensor IRE1alpha publication-title: EMBO J. doi: 10.1038/emboj.2012.84 – volume: 19 start-page: 698 issue: 6 year: 2017 ident: 10.1016/j.lfs.2020.118740_bb0650 article-title: Regulated IRE1-dependent mRNA decay sets the threshold for dendritic cell survival publication-title: Nat. Cell Biol. doi: 10.1038/ncb3518 – volume: 8 start-page: 552 issue: 4 year: 2011 ident: 10.1016/j.lfs.2020.118740_bb0380 article-title: Conserved RNA structures in the non-canonical Hac1/Xbp1 intron publication-title: RNA Biol. doi: 10.4161/rna.8.4.15396 – volume: 13 start-page: 184 issue: 3 year: 2011 ident: 10.1016/j.lfs.2020.118740_bb5005 article-title: Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress publication-title: Nat. Cell Biol. doi: 10.1038/ncb0311-184 – volume: 5 start-page: 76 year: 2014 ident: 10.1016/j.lfs.2020.118740_bb0070 article-title: Physiological roles of regulated Ire1 dependent decay publication-title: Front. Genet. doi: 10.3389/fgene.2014.00076 – volume: 11 start-page: 136 issue: 2 year: 2010 ident: 10.1016/j.lfs.2020.118740_bb0670 article-title: Thioredoxin-interacting protein links oxidative stress to inflammasome activation publication-title: Nat. Immunol. doi: 10.1038/ni.1831 – volume: 16 start-page: 487 issue: 4 year: 2012 ident: 10.1016/j.lfs.2020.118740_bb0505 article-title: Silencing of lipid metabolism genes through IRE1α-mediated mRNA decay lowers plasma lipids in mice publication-title: Cell Metab. doi: 10.1016/j.cmet.2012.09.004 – volume: 334 start-page: 1081 issue: 6059 year: 2011 ident: 10.1016/j.lfs.2020.118740_bb0020 article-title: The unfolded protein response: from stress pathway to homeostatic regulation publication-title: Science doi: 10.1126/science.1209038 – volume: 294 start-page: 18726 issue: 49 year: 2019 ident: 10.1016/j.lfs.2020.118740_bb0075 article-title: Emerging roles for the ER stress sensor IRE1α in metabolic regulation and disease publication-title: J. Biol. Chem. doi: 10.1074/jbc.REV119.007036 – volume: 29 start-page: 691 issue: 12 year: 2013 ident: 10.1016/j.lfs.2020.118740_bb0515 article-title: The intimate relationships of mRNA decay and translation publication-title: Trends Genet. doi: 10.1016/j.tig.2013.09.002 – volume: 11 start-page: 2583 year: 1992 ident: 10.1016/j.lfs.2020.118740_bb0330 article-title: A 22 bp cis-acting element is necessary and sufficient for the induction of the yeast KAR2 (BiP) gene by unfolded proteins publication-title: EMBO J. doi: 10.1002/j.1460-2075.1992.tb05323.x – volume: 312 start-page: 572 issue: 5773 year: 2006 ident: 10.1016/j.lfs.2020.118740_bb0775 article-title: Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha publication-title: Science doi: 10.1126/science.1123480 – volume: 6 start-page: 13019 issue: 15 year: 2015 ident: 10.1016/j.lfs.2020.118740_bb0215 article-title: Molecular mechanisms of human IRE1 activation through dimerization and ligand binding publication-title: Oncotarget doi: 10.18632/oncotarget.3864 – volume: 33 start-page: 2492 issue: 21 year: 2014 ident: 10.1016/j.lfs.2020.118740_bb0425 article-title: Signal peptide peptidase functions in ERAD to cleave the unfolded protein response regulator XBP1u publication-title: EMBO J. doi: 10.15252/embj.201488208 – volume: 133 issue: 15 year: 2020 ident: 10.1016/j.lfs.2020.118740_bb0835 article-title: The UPRosome–decoding novel biological outputs of IRE1α function publication-title: J Cell Sci. doi: 10.1242/jcs.218107 – volume: 18 start-page: 38 issue: 1 year: 2008 ident: 10.1016/j.lfs.2020.118740_bb0595 article-title: The daily job of night killers: alternative roles of the BCL-2 family in organelle physiology publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2007.10.003 – volume: 22 start-page: 241 issue: 5 year: 2009 ident: 10.1016/j.lfs.2020.118740_bb0080 article-title: The role of X-box binding protein-1 in tumorigenicity publication-title: Drug News Perspect. doi: 10.1358/dnp.2009.22.5.1378631 – volume: 23 start-page: 547 issue: 11 year: 2013 ident: 10.1016/j.lfs.2020.118740_bb0065 article-title: IRE1: ER stress sensor and cell fate executor publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2013.06.005 – ident: 10.1016/j.lfs.2020.118740_bb0510 doi: 10.1016/j.molcel.2018.06.038 – volume: 283 start-page: 2640 issue: 14 year: 2016 ident: 10.1016/j.lfs.2020.118740_bb5100 article-title: Cell death induced by endoplasmic reticulum stress publication-title: FEBS J. doi: 10.1111/febs.13598 – volume: 8 year: 2019 ident: 10.1016/j.lfs.2020.118740_bb0620 article-title: tRNA ligase structure reveals kinetic competition between non-conventional mRNA splicing and mRNA decay publication-title: Elife. doi: 10.7554/eLife.44199 – volume: 10 issue: 482 year: 2017 ident: 10.1016/j.lfs.2020.118740_bb0655 article-title: IRE1α promotes viral infection by conferring resistance to apoptosis publication-title: Sci Signal. doi: 10.1126/scisignal.aai7814 – volume: 8 year: 2013 ident: 10.1016/j.lfs.2020.118740_bb0845 article-title: Sigma-1 receptor chaperone at the ER-mitochondrion interface mediates the mitochondrion-ER-nucleus signaling for cellular survival publication-title: PLoS One doi: 10.1371/journal.pone.0076941 – volume: 1 year: 2012 ident: 10.1016/j.lfs.2020.118740_bb0455 article-title: The unfolded protein response in fission yeast modulates stability of select mRNAs to maintain protein homeostasis publication-title: Elife doi: 10.7554/eLife.00048 – volume: 10 start-page: 892 issue: 11 year: 2014 ident: 10.1016/j.lfs.2020.118740_bb0220 article-title: Druggable sensors of the unfolded protein response publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1664 – start-page: 15852 issue: 38 year: 2011 ident: 10.1016/j.lfs.2020.118740_bb0815 article-title: PKA phosphorylation couples hepatic inositol-requiring enzyme 1alpha to glucagon signaling in glucose metabolism publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1107394108 – volume: 3 start-page: ra7 issue: 106 year: 2010 ident: 10.1016/j.lfs.2020.118740_bb0820 article-title: A crucial role for RACK1 in the regulation of glucose-stimulated IRE1α activation in pancreatic β-cells publication-title: Sci Signal. doi: 10.1126/scisignal.2000514 – volume: 30 start-page: 894 issue: 5 year: 2011 ident: 10.1016/j.lfs.2020.118740_bb0210 article-title: Structure of the Ire1 autophosphorylation complex and implications for the unfolded protein response publication-title: EMBO J. doi: 10.1038/emboj.2011.18 – volume: 9 start-page: 48 year: 2011 ident: 10.1016/j.lfs.2020.118740_bb0230 article-title: Cofactor-mediated conformational control in the bifunctional kinase/RNase Ire1 publication-title: BMC Biol. doi: 10.1186/1741-7007-9-48 – volume: 285 start-page: 22027 issue: 29 year: 2010 ident: 10.1016/j.lfs.2020.118740_bb0240 article-title: Decrease in membrane phospholipid unsaturation induces unfolded protein response publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.126870 – volume: 457 start-page: 687 issue: 7230 year: 2009 ident: 10.1016/j.lfs.2020.118740_bb0205 article-title: The unfolded protein response signals through high-order assembly of Ire1 publication-title: Nature doi: 10.1038/nature07661 – volume: 22 start-page: 487 year: 2006 ident: 10.1016/j.lfs.2020.118740_bb0325 article-title: Intracellular signaling by the unfolded protein response publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.21.122303.120200 – volume: 117 start-page: 1533 issue: 3 year: 2020 ident: 10.1016/j.lfs.2020.118740_bb0030 article-title: Quantitative microscopy reveals dynamics and fate of clustered IRE1α publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1915311117 – volume: 8 start-page: 519 issue: 7 year: 2007 ident: 10.1016/j.lfs.2020.118740_bb0095 article-title: Signal integration in the endoplasmic reticulum unfolded protein response publication-title: Nat Rev Mol Cell Biol. doi: 10.1038/nrm2199 – volume: 8 start-page: 982 year: 2012 ident: 10.1016/j.lfs.2020.118740_bb0570 article-title: Divergent allosteric control of the IRE1alpha endoribonuclease using kinase inhibitors publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1094 – volume: 24 start-page: 14 issue: 1 year: 2013 ident: 10.1016/j.lfs.2020.118740_bb0465 article-title: Comparison of mRNA localization and regulation during endoplasmic reticulum stress in Drosophila cells publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e12-06-0491 – volume: 24 start-page: 4368 year: 2005 ident: 10.1016/j.lfs.2020.118740_bb0680 article-title: XBP-1 is required for biogenesis of cellular secretory machinery of exocrine glands publication-title: EMBO J. doi: 10.1038/sj.emboj.7600903 – volume: 67 start-page: 673 issue: 4 year: 2017 ident: 10.1016/j.lfs.2020.118740_bb0300 article-title: Activation of the unfolded protein response by lipid bilayer stress publication-title: Mol Cell. doi: 10.1016/j.molcel.2017.06.012 – volume: 74 start-page: 743 issue: 4 year: 1993 ident: 10.1016/j.lfs.2020.118740_bb0135 article-title: A transmembrane protein with a cdc2D/CDC28-related kinase activity is required for signaling from the ER to the nucleus publication-title: Cell doi: 10.1016/0092-8674(93)90521-Q – volume: 2 start-page: 326 issue: 6 year: 2000 ident: 10.1016/j.lfs.2020.118740_bb0185 article-title: Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response publication-title: Nat. Cell Biol. doi: 10.1038/35014014 – volume: 113 start-page: 5886 issue: 40 year: 2016 ident: 10.1016/j.lfs.2020.118740_bb0445 article-title: Autonomous translational pausing is required for XBP1u mRNA recruitment to the ER via the SRP pathway publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1604435113 – volume: 17 start-page: 1558 issue: 9 year: 2016 ident: 10.1016/j.lfs.2020.118740_bb0705 article-title: ER stress-mediated signaling: action potential and Ca(2+) as key players publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms17091558 – volume: 8 start-page: 18 issue: 1 year: 2017 ident: 10.1016/j.lfs.2020.118740_bb0785 article-title: Fortilin binds IRE1α and prevents ER stress from signaling apoptotic cell death publication-title: Nat. Commun. doi: 10.1038/s41467-017-00029-1 – volume: 8 start-page: 1845 issue: 10 year: 1997 ident: 10.1016/j.lfs.2020.118740_bb0345 article-title: Endoplasmic reticulum stress-induced mRNA splicing permits synthesis of transcription factor Hac1p/Ern4p that activates the unfolded protein response publication-title: Mol. Biol. Cell doi: 10.1091/mbc.8.10.1845 – volume: 90 start-page: 1031 issue: 6 year: 1997 ident: 10.1016/j.lfs.2020.118740_bb0050 article-title: The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response publication-title: Cell doi: 10.1016/S0092-8674(00)80369-4 – volume: 415 start-page: 92 issue: 6867 year: 2002 ident: 10.1016/j.lfs.2020.118740_bb0040 article-title: IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA publication-title: Nature doi: 10.1038/415092a – volume: 106 start-page: 8326 issue: 20 year: 2009 ident: 10.1016/j.lfs.2020.118740_bb0715 article-title: Sustained activation of XBP1 splicing leads to endothelial apoptosis and atherosclerosis development in response to disturbed flow publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0903197106 – volume: 18 start-page: 169 issue: 69(2) year: 2018 ident: 10.1016/j.lfs.2020.118740_bb0600 article-title: The unfolded protein response and cell fate control publication-title: Mol Cell. doi: 10.1016/j.molcel.2017.06.017 – volume: 16 start-page: 599 issue: 5 year: 2015 ident: 10.1016/j.lfs.2020.118740_bb0605 article-title: The unfolded protein response is shaped by the NMD pathway publication-title: EMBO Rep. doi: 10.15252/embr.201439696 – volume: 14 start-page: 152 year: 2000 ident: 10.1016/j.lfs.2020.118740_bb0685 article-title: An essential role in liver development for transcription factor XBP-1 publication-title: Genes Dev. doi: 10.1101/gad.14.2.152 – volume: 209 start-page: 307 issue: 2 year: 2012 ident: 10.1016/j.lfs.2020.118740_bb0475 article-title: IRE1alpha activation protects mice against acetaminophen-induced hepatotoxicity publication-title: J. Exp. Med. doi: 10.1084/jem.20111298 – volume: 38 start-page: 6265 issue: 18 year: 2010 ident: 10.1016/j.lfs.2020.118740_bb0480 article-title: Identification of a consensus element recognized and cleaved by IRE1 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq452 – volume: 12 start-page: 794 issue: 5 year: 2013 ident: 10.1016/j.lfs.2020.118740_bb0725 article-title: Inhibition of x-box binding protein 1 reduces tunicamycin-induced apoptosis in aged murine macrophages publication-title: Aging Cell doi: 10.1111/acel.12105 – volume: 74 start-page: 739 year: 2005 ident: 10.1016/j.lfs.2020.118740_bb0015 article-title: The mammalian unfolded protein response publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.73.011303.074134 – volume: 23 start-page: 1141 issue: 6 year: 2012 ident: 10.1016/j.lfs.2020.118740_bb0805 article-title: Nonmuscle myosin IIB links cytoskeleton to IRE1α signaling during ER stress publication-title: Dev. Cell doi: 10.1016/j.devcel.2012.11.006 – ident: 10.1016/j.lfs.2020.118740_bb0770 doi: 10.1016/j.cmet.2017.03.018 – volume: 8 issue: 7 year: 2010 ident: 10.1016/j.lfs.2020.118740_bb0795 article-title: HSP72 protects cells from ER stress induced apoptosis via enhancement of IRE1α–XBP1 signalling through a physical interaction publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000410 – volume: 457 start-page: 736 issue: 7230 year: 2009 ident: 10.1016/j.lfs.2020.118740_bb0370 article-title: Messenger RNA targeting to endoplasmic reticulum stress signalling sites publication-title: Nature doi: 10.1038/nature07641 – volume: 13 start-page: 558 issue: 5 year: 2013 ident: 10.1016/j.lfs.2020.118740_bb0090 article-title: The unfolded protein response element IRE1α senses bacterial proteins invading the ER to activate RIG-I and innate immune signaling publication-title: Cell Host Microbe doi: 10.1016/j.chom.2013.03.011 – volume: 273 start-page: 1802 issue: 3 year: 1998 ident: 10.1016/j.lfs.2020.118740_bb0360 article-title: Unconventional splicing of HAC1/ERN4 mRNA required for the unfolded protein response: sequence-specific and non-sequential cleavage of the splice sites publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.3.1802 – volume: 73 start-page: 1197 issue: 6 year: 1993 ident: 10.1016/j.lfs.2020.118740_bb0130 article-title: Transcriptional induction of genes encoding endoendoplasmic reticulum resident proteins requires a transmembrane protein kinase publication-title: Cell doi: 10.1016/0092-8674(93)90648-A – volume: 313 start-page: 104 issue: 5783 year: 2006 ident: 10.1016/j.lfs.2020.118740_bb0060 article-title: Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response publication-title: Science doi: 10.1126/science.1129631 – volume: 14 start-page: 2559 issue: 6 year: 2003 ident: 10.1016/j.lfs.2020.118740_bb0105 article-title: Genetic evidence for a role of BiP/Kar2 that regulates Ire1 in response to accumulation of unfolded proteins publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e02-11-0708 – volume: 106 start-page: 16657 issue: 39 year: 2009 ident: 10.1016/j.lfs.2020.118740_bb0875 article-title: Function of IRE1 alpha in the placenta is essential for placental development and embryonic viability publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0903775106 – volume: 47 start-page: 2726 issue: 12 year: 2006 ident: 10.1016/j.lfs.2020.118740_bb0275 article-title: Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death publication-title: J. Lipid Res. doi: 10.1194/jlr.M600299-JLR200 – volume: 35 start-page: 2186 issue: 12 year: 2015 ident: 10.1016/j.lfs.2020.118740_bb0500 article-title: Cleavage of BLOC1S1 mRNA by IRE1 is sequence specific, temporally separate from XBP1 splicing, and dispensable for cell viability under acute endoplasmic reticulum stress publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00013-15 – volume: 104 start-page: 259 issue: 5 year: 2012 ident: 10.1016/j.lfs.2020.118740_bb0025 article-title: The unfolded protein response at the crossroads of cellular life and death during endoplasmic reticulum stress publication-title: Biol. Cell. doi: 10.1111/boc.201100055 – volume: 21 start-page: 755 issue: 6 year: 2019 ident: 10.1016/j.lfs.2020.118740_bb0840 article-title: Non-canonical function of IRE1α determines mitochondria-associated endoplasmic reticulum composition to control calcium transfer and bioenergetics publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0329-y – year: 2020 ident: 10.1016/j.lfs.2020.118740_bb0615 – volume: 152 start-page: 493 issue: 4 year: 2007 ident: 10.1016/j.lfs.2020.118740_bb0720 article-title: Nitric oxide selectively depletes macrophages in atherosclerotic plaques via induction of endoplasmic reticulum stress publication-title: Br. J. Pharmacol. doi: 10.1038/sj.bjp.0707426 – volume: 526 start-page: 122 issue: 1 year: 2020 ident: 10.1016/j.lfs.2020.118740_bb0270 article-title: Palmitate induces cardiomyocyte death via inositol requiring enzyme-1 (IRE1)-mediated signaling independent of X-box binding protein 1 (XBP1) publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2020.03.027 – volume: 28 start-page: 251 year: 2012 ident: 10.1016/j.lfs.2020.118740_bb0225 article-title: Structural basis of the unfolded protein response publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-101011-155826 – volume: 23 start-page: 955 year: 2012 ident: 10.1016/j.lfs.2020.118740_bb0255 article-title: Kar2p availability de- fines distinct forms of endoplasmic reticulum stress in living cells publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e11-12-0995 – volume: 332 start-page: 462 year: 1988 ident: 10.1016/j.lfs.2020.118740_bb0120 article-title: The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins publication-title: Nature doi: 10.1038/332462a0 – volume: 204 start-page: 863 issue: 6 year: 2014 ident: 10.1016/j.lfs.2020.118740_bb0520 article-title: Quality control: is there quality control of localized mRNAs? publication-title: J. Cell Biol. doi: 10.1083/jcb.201401059 – volume: 22 start-page: 8506 issue: 24 year: 2002 ident: 10.1016/j.lfs.2020.118740_bb0800 article-title: Heat shock protein 90 modulates the unfolded protein response by stabilizing IRE1alpha publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.22.24.8506-8513.2002 – volume: 315 start-page: 2496 issue: 15 year: 2009 ident: 10.1016/j.lfs.2020.118740_bb0115 article-title: Activation of mammalian IRE1alpha upon ER stress depends on dissociation of BiP rather than on direct interaction with unfolded proteins publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2009.06.009 – volume: 179 start-page: 75 issue: 1 year: 2007 ident: 10.1016/j.lfs.2020.118740_bb0170 article-title: Two regulatory steps of ER-stress sensor Ire1 involving its cluster formation and interaction with unfolded proteins publication-title: J. Cell Biol. doi: 10.1083/jcb.200704166 – volume: 87 start-page: 357 issue: 3 year: 1996 ident: 10.1016/j.lfs.2020.118740_bb0335 article-title: Mixed mechanisms in yeast pre-mRNA splicing? publication-title: Cell. doi: 10.1016/S0092-8674(00)81355-0 – volume: 34 start-page: 133 issue: 2 year: 2009 ident: 10.1016/j.lfs.2020.118740_bb0420 article-title: Targeting of mRNAs to their sites of unconventional splicing in the unfolded protein response publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.04.003 – volume: 4 start-page: 245 issue: 3 year: 2006 ident: 10.1016/j.lfs.2020.118740_bb0645 article-title: Regulation of insulin biosynthesis in pancreatic beta cells by an endoplasmic reticulum-resident protein kinase IRE1 publication-title: Cell Metab. doi: 10.1016/j.cmet.2006.07.007 – volume: 44 start-page: 867 issue: 3 year: 2014 ident: 10.1016/j.lfs.2020.118740_bb0580 article-title: Regulated IRE1-dependent decay participates in curtailing immunoglobulin secretion from plasma cells publication-title: Eur. J. Immunol. doi: 10.1002/eji.201343953 – volume: 26 start-page: 2873 issue: 16 year: 2015 ident: 10.1016/j.lfs.2020.118740_bb0495 article-title: Ire1-mediated decay in mammalian cells relies on mRNA sequence, structure, and translational status publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E15-02-0074 – volume: 12 start-page: 1812 issue: 12 year: 1998 ident: 10.1016/j.lfs.2020.118740_bb0140 article-title: A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells publication-title: Genes Dev. doi: 10.1101/gad.12.12.1812 – volume: 17 start-page: 5708 issue: 19 year: 1998 ident: 10.1016/j.lfs.2020.118740_bb0145 article-title: Cloning of mammalian Ire1 reveals diversity in the ER stress responses publication-title: EMBO J. doi: 10.1093/emboj/17.19.5708 – volume: 6 year: 2017 ident: 10.1016/j.lfs.2020.118740_bb0195 article-title: An unfolded protein-induced conformational switch activates mammalian IRE1 publication-title: Elife doi: 10.7554/eLife.30700 – volume: 281 start-page: 18691 issue: 27 year: 2006 ident: 10.1016/j.lfs.2020.118740_bb0375 article-title: Cytoplasmic IRE1-mediated XBP1 mRNA splicing in the absence of nuclear processing and endoplasmic reticulum stress publication-title: J. Biol. Chem. doi: 10.1074/jbc.M602030200 – volume: 57 start-page: 1211 year: 1989 ident: 10.1016/j.lfs.2020.118740_bb0125 article-title: KAR2, a karyogamy gene, is the yeast homolog of the mammalian BiP/GRP78 gene publication-title: Cell doi: 10.1016/0092-8674(89)90058-5 – volume: 133 start-page: 1 year: 2019 ident: 10.1016/j.lfs.2020.118740_bb0290 article-title: Sirt1 counteracts decrease in membrane phospholipid unsaturation and diastolic dysfunction during saturated fatty acid overload publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2019.05.019 – volume: 283 start-page: 11905 issue: 18 year: 2008 ident: 10.1016/j.lfs.2020.118740_bb0740 article-title: AIP1 is critical in transducing IRE1-mediated endoplasmic reticulum stress response publication-title: J. Biol. Chem. doi: 10.1074/jbc.M710557200 – volume: 33 start-page: 2922 issue: 24 year: 2014 ident: 10.1016/j.lfs.2020.118740_bb0400 article-title: The mammalian tRNA ligase complex mediates splicing of XBP1 mRNA and controls antibody secretion in plasma cells publication-title: EMBO J. doi: 10.15252/embj.201490332 – volume: 302 start-page: 1533 issue: 5650 year: 2003 ident: 10.1016/j.lfs.2020.118740_bb0560 article-title: Bypassing a kinase activity with an ATP-competitive drug publication-title: Science doi: 10.1126/science.1090031 – volume: 287 start-page: 664 issue: 5453 year: 2000 ident: 10.1016/j.lfs.2020.118740_bb0750 article-title: Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1 publication-title: Science doi: 10.1126/science.287.5453.664 – volume: 158 start-page: 534 issue: 3 year: 2014 ident: 10.1016/j.lfs.2020.118740_bb0565 article-title: Allosteric inhibition of the IRE1α RNase preserves cell viability and function during endoplasmic reticulum stress publication-title: Cell. doi: 10.1016/j.cell.2014.07.002 – volume: 2 start-page: 227 issue: 8 year: 1992 ident: 10.1016/j.lfs.2020.118740_bb0005 article-title: The endoplasmic reticulum as a protein-folding compartment publication-title: Trends Cell Biol. doi: 10.1016/0962-8924(92)90309-B – volume: 109 start-page: 8079 issue: 21 year: 2012 ident: 10.1016/j.lfs.2020.118740_bb0610 article-title: RNA surveillance is required for endoplasmic reticulum homeostasis publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1110589109 – volume: 107 start-page: 881 issue: 7 year: 2001 ident: 10.1016/j.lfs.2020.118740_bb0320 article-title: XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor publication-title: Cell doi: 10.1016/S0092-8674(01)00611-0 – volume: 129 start-page: 2317 issue: 12 year: 2016 ident: 10.1016/j.lfs.2020.118740_bb0730 article-title: An initial phase of JNK activation inhibits cell death early in the endoplasmic reticulum stress response publication-title: J. Cell Sci. doi: 10.1242/jcs.179127 – volume: 8 start-page: 75723 issue: 9 year: 2013 ident: 10.1016/j.lfs.2020.118740_bb0470 article-title: Regulation of Sumo mRNA during endoplasmic reticulum stress publication-title: PLoS One doi: 10.1371/journal.pone.0075723 – volume: 103 start-page: 14343 issue: 39 year: 2006 ident: 10.1016/j.lfs.2020.118740_bb0110 article-title: The crystal structure of human IRE1 luminal domain reveals a conserved dimerization interface required for activation of the unfolded protein response publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0606480103 – volume: 120 start-page: 1681 issue: pt9 year: 2007 ident: 10.1016/j.lfs.2020.118740_bb0180 article-title: Self-association and BiP dissociation are not sufficient for activation of the ER stress sensor Ire1 publication-title: J. Cell Sci. doi: 10.1242/jcs.002808 – volume: 279 start-page: 49689 issue: 48 year: 2004 ident: 10.1016/j.lfs.2020.118740_bb0735 article-title: Proteintyrosine phosphatase 1B potentiates IRE1 signalling during endoplasmic reticulum stress publication-title: J. Biol. Chem. doi: 10.1074/jbc.C400261200 – volume: 217 start-page: 1739 issue: 5 year: 2018 ident: 10.1016/j.lfs.2020.118740_bb0590 article-title: Phosphorylation of IRE1 at S729 regulates RIDD in B cells and antibody production after immunization publication-title: J. Cell Biol. doi: 10.1083/jcb.201709137 – volume: 36 start-page: 329 issue: 6 year: 2011 ident: 10.1016/j.lfs.2020.118740_bb0545 article-title: Modulating stress responses by the UPRosome: a matter of life and death publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2011.03.001 – volume: 26 start-page: 237 issue: 6 year: 1999 ident: 10.1016/j.lfs.2020.118740_bb5015 article-title: Expression of inositol trisphosphate receptors publication-title: Cell Calcium doi: 10.1054/ceca.1999.0090 – volume: 167 start-page: 35 issue: 1 year: 2004 ident: 10.1016/j.lfs.2020.118740_bb0160 article-title: XBP1: a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum publication-title: J. Cell Biol. doi: 10.1083/jcb.200406136 – volume: 3 issue: 7 year: 2011 ident: 10.1016/j.lfs.2020.118740_bb0305 article-title: Spliceosome, structure and function publication-title: Cold Spring Harb Perspect Biol. doi: 10.1101/cshperspect.a003707 – volume: 138 start-page: 562 issue: 3 year: 2009 ident: 10.1016/j.lfs.2020.118740_bb0460 article-title: Ire1 alpha kinase activation modes control alternate endoribonuclese outputs to determine divergent cell fates publication-title: Cell doi: 10.1016/j.cell.2009.07.017 – volume: 28 start-page: 1624 issue: 11 year: 2009 ident: 10.1016/j.lfs.2020.118740_bb0585 article-title: XBP-1 regulates signal transduction, transcription factors and bone marrow colonization in B cells publication-title: EMBO J. doi: 10.1038/emboj.2009.117 – volume: 48 start-page: 16 issue: 1 year: 2012 ident: 10.1016/j.lfs.2020.118740_bb0265 article-title: The membrane stress response buffers lethal effects of lipid disequilibrium by reprogramming the protein homeostasis network publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.08.016 – volume: 107 start-page: 103 issue: 1 year: 2001 ident: 10.1016/j.lfs.2020.118740_bb0350 article-title: Block of HAC1 mRNA translation by long-range base pairing is released by cytoplasmic splicing upon induction of the unfolded protein response publication-title: Cell. doi: 10.1016/S0092-8674(01)00505-0 – volume: 10 start-page: 76 issue: 1 year: 2018 ident: 10.1016/j.lfs.2020.118740_bb0855 article-title: Genome-wide analyses reveal the IRE1a-XBP1 pathway promotes T helper cell differentiation by resolving secretory stress and accelerating proliferation publication-title: Genome Med. doi: 10.1186/s13073-018-0589-3 – volume: 278 start-page: 34864 year: 2003 ident: 10.1016/j.lfs.2020.118740_bb0535 article-title: Delineation of a negative feedback regulatory loop that controls protein translation during endoplasmic reticulum stress publication-title: J. Biol. Chem. doi: 10.1074/jbc.M301107200 – volume: 136 start-page: 343 issue: 3 year: 2004 ident: 10.1016/j.lfs.2020.118740_bb0700 article-title: Differential contributions of ATF6 and XBP1 to the activation of endoplasmic reticulum stress-responsive cis-acting elements ERSE, UPRE and ERSE-II publication-title: J. Biochem. doi: 10.1093/jb/mvh122 – volume: 138 start-page: 156 year: 2017 ident: 10.1016/j.lfs.2020.118740_bb0285 article-title: The role of de novo protein synthesis and SIRT1 in ER stress-induced Atf4 and Chop mRNA expression in mammalian cells publication-title: Biochimie. doi: 10.1016/j.biochi.2017.04.018 – volume: 10 start-page: 891 issue: 12 year: 2019 ident: 10.1016/j.lfs.2020.118740_bb0710 article-title: eIF2α-CHOP-BCl-2/JNK and IRE1α-XBP1/JNK signaling promote apoptosis and inflammation and support the proliferation of Newcastle disease virus publication-title: Cell Death Dis. doi: 10.1038/s41419-019-2128-6 – volume: 125 start-page: 4278 year: 2012 ident: 10.1016/j.lfs.2020.118740_bb0625 article-title: Autocrine control of glioma cells adhesion and migration through IRE1alpha-mediated cleavage of SPARC mRNA publication-title: J. Cell Sci. – volume: 87 start-page: 405 issue: 3 year: 1996 ident: 10.1016/j.lfs.2020.118740_bb0355 article-title: tRNA ligase is required for regulated mRNA splicing in the unfolded protein response publication-title: Cell doi: 10.1016/S0092-8674(00)81361-6 – volume: 91 start-page: 469 issue: 9 year: 2015 ident: 10.1016/j.lfs.2020.118740_bb0010 article-title: The unfolded protein response: the dawn of a new field publication-title: The Proceedings of the Japan Academy – volume: 107 start-page: 16113 issue: 37 year: 2010 ident: 10.1016/j.lfs.2020.118740_bb0190 article-title: Mammalian endoplasmic reticulum stress sensor IRE1 signals by dynamic clustering publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1010580107 – volume: 4 start-page: 4170 issue: 1 year: 2009 ident: 10.1016/j.lfs.2020.118740_bb0525 article-title: Divergent effects of PERK and IRE1 signaling on cell viability publication-title: PLoS One doi: 10.1371/journal.pone.0004170 – volume: 289 start-page: 30567 issue: 44 year: 2014 ident: 10.1016/j.lfs.2020.118740_bb0830 article-title: Ubiquitination of inositol-requiring enzyme 1 (IRE1) by the E3 ligase CHIP mediates the IRE1/TRAF2/JNK pathway publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.562868 – volume: 171 start-page: 1625 issue: 7 year: 2017 ident: 10.1016/j.lfs.2020.118740_bb5000 article-title: A J-Protein Co-chaperone Recruits BiP to Monomerize IRE1 and Repress the Unfolded Protein Response publication-title: Cell doi: 10.1016/j.cell.2017.10.040 – volume: 110 start-page: 4628 year: 2013 ident: 10.1016/j.lfs.2020.118740_bb0295 article-title: Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1217611110 – volume: 109 start-page: 869 issue: 15 year: 2012 ident: 10.1016/j.lfs.2020.118740_bb0450 article-title: The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1115623109 – volume: 110 start-page: 2864 issue: 8 year: 2013 ident: 10.1016/j.lfs.2020.118740_bb0150 article-title: Negative feedback by IRE1beta optimizes mucin production in goblet cells publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1212484110 – volume: 186 start-page: 323 issue: 3 year: 2009 ident: 10.1016/j.lfs.2020.118740_bb0055 article-title: Regulated Ire1-dependent decay of messenger RNAs in mammalian cells publication-title: J. Cell Biol. doi: 10.1083/jcb.200903014 – volume: 34 start-page: 191 issue: 2 year: 2009 ident: 10.1016/j.lfs.2020.118740_bb0415 article-title: Cotranslational targeting of XBP1 protein to the membrane promotes cytoplasmic splicing of its own mRNA publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.02.033 – volume: 333 start-page: 1891 issue: 6051 year: 2011 ident: 10.1016/j.lfs.2020.118740_bb0175 article-title: Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response publication-title: Science doi: 10.1126/science.1209126 – volume: 4 year: 2015 ident: 10.1016/j.lfs.2020.118740_bb0440 article-title: A functional link between the co-translational protein translocation pathway and the UPR publication-title: Elife doi: 10.7554/eLife.07426 – volume: 288 start-page: 8726 year: 2013 ident: 10.1016/j.lfs.2020.118740_bb0755 article-title: RNF13, a RING finger protein, mediates endoplasmic reticulum stress-induced apoptosis through the inositol-requiring enzyme (IRE1alpha)/c-Jun NH2-terminal kinase pathway publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.368829 – volume: 39 start-page: 5245 issue: 12 year: 2011 ident: 10.1016/j.lfs.2020.118740_bb0385 article-title: Reconstitution and characterization of the unconventional splicing of XBP1u mRNA in vitro publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr132 – volume: 16 start-page: 5819 issue: 12 year: 2005 ident: 10.1016/j.lfs.2020.118740_bb0410 article-title: Stable ribosome binding to the endoplasmic reticulum enables compartment-specific regulation of mRNA translation publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e05-07-0685 – volume: 11 start-page: 1997 issue: 1 year: 2020 ident: 10.1016/j.lfs.2020.118740_bb0085 article-title: The UPR sensor IRE1α and the adenovirus E3-19K glycoprotein sustain persistent and lytic infections publication-title: Nat. Commun. doi: 10.1038/s41467-020-15844-2 – volume: 75 start-page: 129 year: 2015 ident: 10.1016/j.lfs.2020.118740_bb0660 article-title: miR-125a-5p inhibits cell proliferation and induces apoptosis in colon cancer via targeting BCL2, BCL2L12 and MCL1 publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2015.07.036 – volume: 25 start-page: 212 issue: 1 year: 2018 ident: 10.1016/j.lfs.2020.118740_bb0695 article-title: XBP1-KLF9 axis acts as a molecular rheostat to control the transition from adaptive to cytotoxic unfolded protein response publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.09.013 – volume: 39 start-page: 245 issue: 5 year: 2014 ident: 10.1016/j.lfs.2020.118740_bb0485 article-title: Getting RIDD of RNA: IRE1 in cell fate regulation publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2014.02.008 – volume: 35 start-page: 551 issue: 5 year: 2009 ident: 10.1016/j.lfs.2020.118740_bb0550 article-title: Fine-tuning of the unfolded protein response: assembling the IRE1α interactome publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.08.021 – volume: 22 start-page: 3520 issue: 18 year: 2011 ident: 10.1016/j.lfs.2020.118740_bb0260 article-title: Membrane aberrancy and unfolded proteins activate the endoplasmic reticulum stress sensor Ire1 in different ways publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e11-04-0295 – volume: 91 start-page: 1219 issue: 14 year: 2011 ident: 10.1016/j.lfs.2020.118740_bb0155 article-title: The unfolded protein response: integrating stress signals through the stress sensor IRE1α publication-title: Physiol. Rev. doi: 10.1152/physrev.00001.2011 – volume: 6 start-page: 1441 issue: 11 year: 1992 ident: 10.1016/j.lfs.2020.118740_bb0235 article-title: IRE1 encodes a putative protein kinase containing a membrane-spanning domain and is required for inositol phototrophy in Saccharomyces cerevisiae publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.1992.tb00864.x – volume: 102 start-page: 18773 issue: 52 year: 2005 ident: 10.1016/j.lfs.2020.118740_bb0100 article-title: On the mechanism of sensing unfolded protein in the endoplasmic reticulum publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0509487102 – volume: 37 issue: 2 year: 2017 ident: 10.1016/j.lfs.2020.118740_bb0405 article-title: Functional analysis of the mammalian RNA ligase for the IRE1 in the unfolded protein response publication-title: Bioscience Rep. doi: 10.1042/BSR20160574 – volume: 46 start-page: 674 issue: 5 year: 2012 ident: 10.1016/j.lfs.2020.118740_bb0395 article-title: The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.05.021 – volume: 153 start-page: 1011 year: 2001 ident: 10.1016/j.lfs.2020.118740_bb0540 article-title: Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha publication-title: J. Cell Biol. doi: 10.1083/jcb.153.5.1011 – volume: 26 start-page: 3087 issue: 11 year: 2019 ident: 10.1016/j.lfs.2020.118740_bb0430 article-title: The metastable XBP1u transmembrane domain defines determinants for intramembrane proteolysis by signal peptide peptidase publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.02.057 – volume: 126 start-page: 4136 issue: 18 year: 2013 ident: 10.1016/j.lfs.2020.118740_bb0640 article-title: The IRE1 ER stress-response pathway is required for normal secretory-protein metabolism in C. elegans publication-title: J. Cell Sci. – volume: 331 start-page: 586 issue: 6017 year: 2011 ident: 10.1016/j.lfs.2020.118740_bb0435 article-title: Translational pausing ensures membrane targeting and cytoplasmic splicing of XBP1u mRNA publication-title: Science doi: 10.1126/science.1197142 – volume: 338 start-page: 818 issue: 6108 year: 2012 ident: 10.1016/j.lfs.2020.118740_bb0490 article-title: IRE1alpha cleaves select microRNAs during ER stress to derepress translation of proapoptotic caspase-2 publication-title: Science doi: 10.1126/science.1226191 – volume: 117 start-page: 3352 issue: 7 year: 2020 ident: 10.1016/j.lfs.2020.118740_bb0035 article-title: Dynamics and clustering of IRE1α during ER stress publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1921799117 – year: 2020 ident: 10.1016/j.lfs.2020.118740_bb0675 article-title: Endoplasmic reticulum stress-dependent activation of iNOS/NO-NF-κB signaling and NLRP3 inflammasome contributes to endothelial inflammation and apoptosis associated with microgravity publication-title: FASEB J. doi: 10.1096/fj.202000734R – volume: 204 start-page: 2267 year: 2007 ident: 10.1016/j.lfs.2020.118740_bb0690 article-title: The transcription factor XBP-1 is essential for the development and survival of dendritic cells publication-title: J. Exp. Med. doi: 10.1084/jem.20070525 – volume: 291 start-page: 12040 issue: 23 year: 2016 ident: 10.1016/j.lfs.2020.118740_bb0760 article-title: Ubiquitin D regulates IRE1α/c-Jun N-terminal kinase (JNK) protein-dependent apoptosis in pancreatic beta cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.704619 – volume: 3 issue: 10 year: 2017 ident: 10.1016/j.lfs.2020.118740_bb0850 article-title: Identification of XBP1-u as a novel regulator of the MDM2/p53 axis using an shRNA library publication-title: Sci. Adv. doi: 10.1126/sciadv.1701383 – volume: 13 issue: 12 year: 2018 ident: 10.1016/j.lfs.2020.118740_bb0280 article-title: Decrease in membrane phospholipids unsaturation correlates with myocardial diastolic dysfunction publication-title: PLoS One doi: 10.1371/journal.pone.0208396 – volume: 73 start-page: 4732 issue: 15 year: 2013 ident: 10.1016/j.lfs.2020.118740_bb0630 article-title: Posttranscriptional regulation of PER1 underlies the oncogenic function of IREα publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-3989 – volume: 21 start-page: 3722 issue: 21 year: 2010 ident: 10.1016/j.lfs.2020.118740_bb0365 article-title: Dual functions of yeast tRNA ligase in the unfolded protein response: unconventional cytoplasmic splicing of HAC1 pre-mRNA is not sufficient to release translational attenuation publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e10-08-0693 – volume: 365 start-page: 777 issue: 4 year: 2008 ident: 10.1016/j.lfs.2020.118740_bb0555 article-title: A kinase inhibitor activates the IRE1alpha RNase to confer cytoprotection against ER stress publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2007.11.040 |
| SSID | ssj0005573 |
| Score | 2.5655067 |
| SecondaryResourceType | review_article |
| Snippet | The endoplasmic reticulum is primarily responsible for protein folding and maturation. However, the organelle is subject to varied stress conditions from time... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 118740 |
| SubjectTerms | Animals Apoptosis Cell Nucleus - metabolism Cytoplasm Divergent cell fates DNA-Binding Proteins - metabolism Endoplasmic reticulum Endoplasmic Reticulum - metabolism Endoplasmic Reticulum Stress Endoribonucleases - metabolism Enzymatic activity Enzymes ER-stress Folding functional diversity Homeostasis Humans Inositol Inositol-requiring enzyme 1(IRE1) Kinases Membrane proteins Pleiotropy Protein Folding Protein-Serine-Threonine Kinases - metabolism Proteins Regulated IRE1 Dependent Decay (RIDD) Ribonuclease ribonucleases Signal Transduction Signaling Splicing Substrate Specificity Substrates Transcription Factors - metabolism Unfolded Protein Response Unfolded Protein Response (UPR) X-Box Binding Protein 1 - metabolism X-box protein 1 (Xbp1) Yeast yeasts |
| Title | The molecular mechanism and functional diversity of UPR signaling sensor IRE1 |
| URI | https://dx.doi.org/10.1016/j.lfs.2020.118740 https://www.ncbi.nlm.nih.gov/pubmed/33188833 https://www.proquest.com/docview/2505721231 https://www.proquest.com/docview/2460762159 https://www.proquest.com/docview/2540500376 |
| Volume | 265 |
| WOSCitedRecordID | wos000604430800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0631 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005573 issn: 0024-3205 databaseCode: AIEXJ dateStart: 19950106 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe6DdAuiA0GhTEZiQNQZcqHE8fHDg0BGmNCG-otuIktZWrTKu2mjb-e92I7rQat4MAlqmInUf1-fl9-H4S89n0FYiZhnhaMewxzgIciTTwQVjnnKWNxc4L__YSfnqaDgTjrdH64XJjrEa-q9OZGTP8rqeEeEBtTZ_-B3O1L4Qb8BqLDFcgO178m_Ng1ve2NFab2uk4YKMWs869YDsi4OPvWw0gO2SSnz8C0ndTYTiNY1l1PSq16VmKaAk-CL_tpj7Avk2njJcdlvYg4PEJvxa3NDCrluHW2ysLkuX_9Kcta_v6efl3qZbdEiD4JzyRmHirDSlOO9Q0sj7e8NkziJW4ZNA0B_8jIjU_h8nCksaZ6iKz97lxY9um4IWIEjAmbJi9kWhtp6IY2yFbIYwF8b6v_6XjweREGFPPInXY3cX93vrhNHrh3rFJdVpkmjYpy_og8tLYF7RtM7JCOqnbJfdNt9HaX7Fg-PqNvbLHxt4_JF4ALbeFCW7hQoBldwIW2cKETTQEutIULNXChCJcn5OLD8fn7j55tseHlLGBzTyWRLyMt5FD4jOVxpLBhqh-rVAZ5GBQ64aFmgmmwexMlVK5AneO6EIFM4xDEwx7ZrCaVekao4IVmgVZBETWxVoINQw7bPk9i0GnDvEt8t3pZbuvPYxuUUeYCDS8zWPsM1z4za98l79pHpqb4yrrJzJEks3vBaIUZYGrdY_uOfJndxTCOZjsqdUGXvGqHgfHiaZqs1OQK5rDEB00CzIE1c9AewhJPSZc8NdBo_4hD1fOVIy_I9mJn7ZPNeX2lXpJ7-fW8nNUHZIMP0gML51-9OKzE |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+molecular+mechanism+and+functional+diversity+of+UPR+signaling+sensor+IRE1&rft.jtitle=Life+sciences+%281973%29&rft.au=Bashir%2C+Samirul&rft.au=Banday%2C+Mariam&rft.au=Qadri%2C+Ozaira&rft.au=Bashir%2C+Arif&rft.date=2021-01-15&rft.eissn=1879-0631&rft.volume=265&rft.spage=118740&rft_id=info:doi/10.1016%2Fj.lfs.2020.118740&rft_id=info%3Apmid%2F33188833&rft.externalDocID=33188833 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3205&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3205&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3205&client=summon |