A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography

The distal root of the mandibular first molar occasionally has an extra root, which can directly affect the outcome of endodontic therapy. In this study, we examined the diagnostic performance of a deep learning system for classification of the root morphology of mandibular first molars on panoramic...

Full description

Saved in:
Bibliographic Details
Published in:Dento-maxillo-facial radiology Vol. 48; no. 3; p. 20180218
Main Authors: Hiraiwa, Teruhiko, Ariji, Yoshiko, Fukuda, Motoki, Kise, Yoshitaka, Nakata, Kazuhiko, Katsumata, Akitoshi, Fujita, Hiroshi, Ariji, Eiichiro
Format: Journal Article
Language:English
Published: England The British Institute of Radiology 01.03.2019
Subjects:
ISSN:0250-832X, 1476-542X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The distal root of the mandibular first molar occasionally has an extra root, which can directly affect the outcome of endodontic therapy. In this study, we examined the diagnostic performance of a deep learning system for classification of the root morphology of mandibular first molars on panoramic radiographs. Dental cone-beam CT (CBCT) was used as the gold standard. CBCT images and panoramic radiographs of 760 mandibular first molars from 400 patients who had not undergone root canal treatments were analyzed. Distal roots were examined on CBCT images to determine the presence of a single or extra root. Image patches of the roots were segmented from panoramic radiographs and applied to a deep learning system, and its diagnostic performance in the classification of root morphplogy was examined. Extra roots were observed in 21.4% of distal roots on CBCT images. The deep learning system had diagnostic accuracy of 86.9% for the determination of whether distal roots were single or had extra roots. The deep learning system showed high accuracy in the differential diagnosis of a single or extra root in the distal roots of mandibular first molars.
AbstractList The distal root of the mandibular first molar occasionally has an extra root, which can directly affect the outcome of endodontic therapy. In this study, we examined the diagnostic performance of a deep learning system for classification of the root morphology of mandibular first molars on panoramic radiographs. Dental cone-beam CT (CBCT) was used as the gold standard.OBJECTIVES:The distal root of the mandibular first molar occasionally has an extra root, which can directly affect the outcome of endodontic therapy. In this study, we examined the diagnostic performance of a deep learning system for classification of the root morphology of mandibular first molars on panoramic radiographs. Dental cone-beam CT (CBCT) was used as the gold standard.CBCT images and panoramic radiographs of 760 mandibular first molars from 400 patients who had not undergone root canal treatments were analyzed. Distal roots were examined on CBCT images to determine the presence of a single or extra root. Image patches of the roots were segmented from panoramic radiographs and applied to a deep learning system, and its diagnostic performance in the classification of root morphplogy was examined.METHODS:CBCT images and panoramic radiographs of 760 mandibular first molars from 400 patients who had not undergone root canal treatments were analyzed. Distal roots were examined on CBCT images to determine the presence of a single or extra root. Image patches of the roots were segmented from panoramic radiographs and applied to a deep learning system, and its diagnostic performance in the classification of root morphplogy was examined.Extra roots were observed in 21.4% of distal roots on CBCT images. The deep learning system had diagnostic accuracy of 86.9% for the determination of whether distal roots were single or had extra roots.RESULTS:Extra roots were observed in 21.4% of distal roots on CBCT images. The deep learning system had diagnostic accuracy of 86.9% for the determination of whether distal roots were single or had extra roots.The deep learning system showed high accuracy in the differential diagnosis of a single or extra root in the distal roots of mandibular first molars.CONCLUSIONS:The deep learning system showed high accuracy in the differential diagnosis of a single or extra root in the distal roots of mandibular first molars.
The distal root of the mandibular first molar occasionally has an extra root, which can directly affect the outcome of endodontic therapy. In this study, we examined the diagnostic performance of a deep learning system for classification of the root morphology of mandibular first molars on panoramic radiographs. Dental cone-beam CT (CBCT) was used as the gold standard. CBCT images and panoramic radiographs of 760 mandibular first molars from 400 patients who had not undergone root canal treatments were analyzed. Distal roots were examined on CBCT images to determine the presence of a single or extra root. Image patches of the roots were segmented from panoramic radiographs and applied to a deep learning system, and its diagnostic performance in the classification of root morphplogy was examined. Extra roots were observed in 21.4% of distal roots on CBCT images. The deep learning system had diagnostic accuracy of 86.9% for the determination of whether distal roots were single or had extra roots. The deep learning system showed high accuracy in the differential diagnosis of a single or extra root in the distal roots of mandibular first molars.
Author Hiraiwa, Teruhiko
Kise, Yoshitaka
Katsumata, Akitoshi
Nakata, Kazuhiko
Ariji, Eiichiro
Fujita, Hiroshi
Fukuda, Motoki
Ariji, Yoshiko
Author_xml – sequence: 1
  givenname: Teruhiko
  surname: Hiraiwa
  fullname: Hiraiwa, Teruhiko
  organization: Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, Nagoya, Japan
– sequence: 2
  givenname: Yoshiko
  surname: Ariji
  fullname: Ariji, Yoshiko
  organization: Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, Nagoya, Japan
– sequence: 3
  givenname: Motoki
  surname: Fukuda
  fullname: Fukuda, Motoki
  organization: Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, Nagoya, Japan
– sequence: 4
  givenname: Yoshitaka
  surname: Kise
  fullname: Kise, Yoshitaka
  organization: Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, Nagoya, Japan
– sequence: 5
  givenname: Kazuhiko
  surname: Nakata
  fullname: Nakata, Kazuhiko
  organization: Department of Endodontics, Aichi-Gakuin University School of Dentistry, Nagoya, Japan
– sequence: 6
  givenname: Akitoshi
  surname: Katsumata
  fullname: Katsumata, Akitoshi
  organization: Department of Oral Radiology, Asahi University School of Dentistry, Mizuho, Japan
– sequence: 7
  givenname: Hiroshi
  surname: Fujita
  fullname: Fujita, Hiroshi
  organization: Department of Electrical, Electronic and Computer Faculty of Engineering, Gifu University, Gifu, Japan
– sequence: 8
  givenname: Eiichiro
  surname: Ariji
  fullname: Ariji, Eiichiro
  organization: Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, Nagoya, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30379570$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1rFTEUhoNU7G116VaydDM13zPZCKWoLRTcKHQXMpmTuZGZZExyhfsL-redoR-o4Coh58l7znnfM3QSUwSE3lJyQZnUH4bZ5wtGaEcY7V6gHRWtaqRgdydoR5gkTcfZ3Sk6K-UHIURwqV6hU054q2VLduj-Eg8ASzOBzTHEEdtcgw8u2AmHWGGawgjRAS7HUmHGPmVsS4FSZogVJ49zShXPKS_7NKXxuD3VPeDZxiH0h8lm7EMuG7LdU8SLjSnbOTic7RDSmO2yP75GL72dCrx5PM_R98-fvl1dN7dfv9xcXd42TlBRG5C94q3inXbtABSocz3vte0UaanUmguvrZOcKEG8U1qrbmgZMO81EU4N_Bx9fNBdDv0Mg1uXyHYySw6zzUeTbDB_V2LYmzH9Mmr1lUu5Crx_FMjp5wFKNXMobvXJRkiHYhhlq7WECrGi7_7s9dzkyf0VaB4Al1MpGfwzQonZ0jVbuuYp3ZXn__AuVFtD2kYN039-_QaoN61N
CitedBy_id crossref_primary_10_1016_j_cmpb_2023_107708
crossref_primary_10_1016_j_identj_2024_11_009
crossref_primary_10_1016_j_jdent_2024_105434
crossref_primary_10_1016_j_jormas_2023_101524
crossref_primary_10_1038_s41598_021_81449_4
crossref_primary_10_5624_isd_20240232
crossref_primary_10_3390_app12178500
crossref_primary_10_1002_prca_201900040
crossref_primary_10_1051_e3sconf_202129701074
crossref_primary_10_1016_j_joen_2024_02_011
crossref_primary_10_1259_dmfr_20200611
crossref_primary_10_3390_diagnostics14242849
crossref_primary_10_1109_ACCESS_2020_3028600
crossref_primary_10_3390_s21196628
crossref_primary_10_1007_s11282_024_00793_z
crossref_primary_10_1016_j_oooo_2020_04_813
crossref_primary_10_1016_j_joen_2023_10_010
crossref_primary_10_1016_j_aanat_2025_152671
crossref_primary_10_1186_s12903_024_04786_6
crossref_primary_10_1016_j_ajoms_2024_04_009
crossref_primary_10_4103_jpcdoh_jpcdoh_9_25
crossref_primary_10_1080_09540091_2025_2522706
crossref_primary_10_1016_j_ijmedinf_2023_105170
crossref_primary_10_3390_healthcare10101892
crossref_primary_10_4103_sej_sej_199_23
crossref_primary_10_1016_j_joen_2021_09_009
crossref_primary_10_1186_s12903_022_02422_9
crossref_primary_10_1038_s41598_021_02571_x
crossref_primary_10_1155_2022_9726181
crossref_primary_10_1186_s12903_025_06796_4
crossref_primary_10_12688_f1000research_140204_1
crossref_primary_10_7759_cureus_27405
crossref_primary_10_1016_j_jds_2021_07_021
crossref_primary_10_1038_s41598_024_82378_8
crossref_primary_10_1186_s12903_025_05652_9
crossref_primary_10_3390_diagnostics11081477
crossref_primary_10_1155_2023_4415970
crossref_primary_10_1016_j_comcom_2019_09_020
crossref_primary_10_1259_dmfr_20200185
crossref_primary_10_7759_cureus_47033
crossref_primary_10_1109_ACCESS_2024_3472012
crossref_primary_10_1016_j_cden_2025_05_010
crossref_primary_10_1007_s11282_021_00577_9
crossref_primary_10_1016_j_oooo_2020_04_005
crossref_primary_10_3390_healthcare10071269
crossref_primary_10_1093_dmfr_twae002
crossref_primary_10_1016_j_oooo_2023_09_011
crossref_primary_10_3390_s25113476
crossref_primary_10_1007_s00784_021_04082_5
crossref_primary_10_1111_iej_14128
crossref_primary_10_1111_iej_14127
crossref_primary_10_1007_s42044_024_00226_4
crossref_primary_10_1108_JHOM_06_2024_0233
crossref_primary_10_1259_dmfr_20200513
crossref_primary_10_1259_dmfr_20220122
crossref_primary_10_1259_dmfr_20220244
crossref_primary_10_1016_j_oooo_2023_06_001
crossref_primary_10_3390_healthcare10112188
crossref_primary_10_1155_2023_7049360
crossref_primary_10_33808_clinexphealthsci_1466714
crossref_primary_10_1051_mbcb_2025008
crossref_primary_10_3390_diagnostics12102537
crossref_primary_10_1038_s41598_023_43277_6
crossref_primary_10_1016_j_ajoms_2022_02_004
crossref_primary_10_1007_s00784_024_06049_8
crossref_primary_10_1016_j_jormas_2020_12_006
crossref_primary_10_1016_j_jds_2020_06_019
crossref_primary_10_1007_s00784_025_06216_5
crossref_primary_10_1111_iej_13265
crossref_primary_10_1038_s41598_022_16074_w
crossref_primary_10_1155_2024_1119816
crossref_primary_10_1111_exsy_13326
crossref_primary_10_1007_s00784_020_03544_6
crossref_primary_10_1259_dmfr_20210436
crossref_primary_10_1155_2023_8814905
crossref_primary_10_1007_s11042_024_19920_3
crossref_primary_10_1177_00220345241255593
crossref_primary_10_1016_j_heliyon_2023_e13694
crossref_primary_10_3390_diagnostics14121260
crossref_primary_10_1007_s00405_025_09451_4
crossref_primary_10_1007_s11282_022_00622_1
crossref_primary_10_1007_s10278_021_00481_y
crossref_primary_10_1177_20552076241291345
crossref_primary_10_1186_s12880_021_00618_z
crossref_primary_10_1007_s44163_025_00371_0
crossref_primary_10_1016_j_jdent_2022_104301
crossref_primary_10_1186_s12903_024_04494_1
crossref_primary_10_3390_app12063043
crossref_primary_10_1016_j_oooo_2022_05_014
crossref_primary_10_1177_0022034520969115
crossref_primary_10_1016_j_joen_2021_11_007
crossref_primary_10_1080_00016357_2020_1840624
crossref_primary_10_3390_app13148260
crossref_primary_10_3390_ijerph19031728
crossref_primary_10_1016_j_identj_2022_02_009
crossref_primary_10_1038_s41598_020_64509_z
crossref_primary_10_3390_diagnostics14212442
crossref_primary_10_1002_cre2_70035
crossref_primary_10_1007_s10278_025_01405_w
crossref_primary_10_3390_diagnostics13132196
crossref_primary_10_4103_jioh_jioh_257_22
crossref_primary_10_7759_cureus_85062
crossref_primary_10_1016_j_eswa_2022_116968
crossref_primary_10_1186_s13036_024_00423_6
crossref_primary_10_1371_journal_pone_0310925
crossref_primary_10_1007_s11282_020_00485_4
crossref_primary_10_3390_diagnostics12040942
crossref_primary_10_1002_osi2_1177
crossref_primary_10_1002_jdd_12385
crossref_primary_10_3390_bioengineering12050447
crossref_primary_10_1038_s41598_022_20411_4
crossref_primary_10_3390_children11020140
crossref_primary_10_3390_app10082856
crossref_primary_10_4103_njcp_njcp_624_22
crossref_primary_10_3390_jcm12030937
crossref_primary_10_3390_app15063295
crossref_primary_10_3390_jcm10194508
crossref_primary_10_1259_dmfr_20210002
crossref_primary_10_25122_jml_2024_0168
crossref_primary_10_1111_iej_14163
crossref_primary_10_19127_bshealthscience_1559454
crossref_primary_10_1007_s11282_019_00409_x
crossref_primary_10_3390_sym14061129
crossref_primary_10_1007_s11282_022_00644_9
crossref_primary_10_1007_s10266_023_00864_3
crossref_primary_10_1186_s12903_024_04892_5
crossref_primary_10_1016_j_compbiomed_2024_108527
crossref_primary_10_1016_j_oooo_2023_12_790
crossref_primary_10_1259_dmfr_20210246
crossref_primary_10_7717_peerj_11451
crossref_primary_10_1007_s11282_024_00799_7
crossref_primary_10_1016_j_cden_2025_05_007
crossref_primary_10_1111_adj_12812
crossref_primary_10_1111_jerd_12844
crossref_primary_10_1159_000527145
crossref_primary_10_1016_j_jdsr_2023_09_004
crossref_primary_10_3390_diagnostics15060655
crossref_primary_10_3390_diagnostics13030414
crossref_primary_10_1109_ACCESS_2024_3406342
crossref_primary_10_3390_s21134613
crossref_primary_10_1016_j_ajoms_2022_12_010
crossref_primary_10_1259_dmfr_20210197
crossref_primary_10_1259_dmfr_20200171
crossref_primary_10_1259_dmfr_20200172
crossref_primary_10_1007_s11282_022_00634_x
crossref_primary_10_1007_s11282_021_00572_0
crossref_primary_10_1186_s12903_025_06350_2
crossref_primary_10_1016_j_joen_2023_11_002
crossref_primary_10_1371_journal_pone_0254997
crossref_primary_10_1186_s12874_024_02183_9
crossref_primary_10_7717_peerj_cs_620
crossref_primary_10_1016_j_jdent_2025_105648
crossref_primary_10_3390_diagnostics13020202
crossref_primary_10_3390_bioengineering11050431
crossref_primary_10_3390_diagnostics14080806
crossref_primary_10_1007_s00784_024_05587_5
crossref_primary_10_3390_jcm12237378
crossref_primary_10_1016_j_joen_2021_06_003
crossref_primary_10_1111_aej_12822
crossref_primary_10_1111_odi_14056
crossref_primary_10_1016_j_triboint_2023_108735
Cites_doi 10.1016/j.media.2017.10.002
10.1155/2017/8314740
10.1016/j.cmpb.2016.10.007
10.1016/0030-4220(84)90085-9
10.1038/s41598-017-05728-9
10.1002/ar.22958
10.1007/s10278-017-9955-8
10.1155/2018/1753480
10.4103/1305-7456.172623
10.1186/s13550-017-0260-9
10.1136/gutjnl-2017-314547
10.1371/journal.pone.0178992
10.1007/s00784-016-1742-2
10.1016/j.joen.2016.07.026
10.5624/isd.2015.45.2.95
10.1371/journal.pone.0134919
10.1155/2017/9512370
10.1038/s41598-017-15720-y
ContentType Journal Article
Copyright 2019 The Authors. Published by the British Institute of Radiology 2019 The Authors
Copyright_xml – notice: 2019 The Authors. Published by the British Institute of Radiology 2019 The Authors
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1259/dmfr.20180218
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Dentistry
DocumentTitleAlternate AI evaluation of mandibular first molar morphology
EISSN 1476-542X
ExternalDocumentID PMC6476355
30379570
10_1259_dmfr_20180218
Genre Journal Article
GroupedDBID ---
--K
-KS
0R~
18M
1B1
1OC
33P
34H
4.4
53G
5GY
5WD
AANLZ
AASGY
AAUAY
AAXRX
AAYXX
ABCUV
ABDFA
ABEJV
ABGNP
ABNHQ
ABQNK
ABXGK
ABXVV
ACAHQ
ACCZN
ACGFO
ACGOF
ACPOU
ACVCV
ACXBN
ACZBC
ADBBV
ADBTR
ADIPN
ADMGS
ADNBA
ADOZA
ADVOB
ADXAS
AENEX
AEUYR
AFFNX
AFFQV
AGMDO
AHGBF
AHMMS
AIACR
AIURR
AJAOE
AJBYB
AJDVS
AJNCP
ALMA_UNASSIGNED_HOLDINGS
AMYDB
AOIJS
AVNTJ
BAWUL
BCRHZ
BFHJK
C45
CAG
CITATION
COF
CS3
DCZOG
DIK
DRFUL
DRMAN
DRSTM
EBD
EBS
EJD
F5P
GK1
GX1
H13
HYE
IHE
KBYEO
KOP
LATKE
LEEKS
LYRES
M41
MXFUL
MXMAN
MXSTM
NQ-
OCZFY
OJZSN
OK1
OVD
OWPYF
P2P
RJQFR
ROL
ROX
RPZ
SUPJJ
TEORI
TXR
WIN
ZGI
ZZTAW
AGORE
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c414t-e5b6376389c7de1e1ccb3b9a8607159934f9ac530640fc69968d72e2ff904c6d3
ISICitedReferencesCount 187
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000459541200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0250-832X
IngestDate Tue Sep 30 16:50:51 EDT 2025
Sat Sep 27 22:30:36 EDT 2025
Mon Jul 21 06:03:10 EDT 2025
Tue Nov 18 22:06:27 EST 2025
Sat Nov 29 06:09:21 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords deep learning
mandibular first molar
panoramic radiography
artificial intelligence
root morphology
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c414t-e5b6376389c7de1e1ccb3b9a8607159934f9ac530640fc69968d72e2ff904c6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 30379570
PQID 2127950144
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6476355
proquest_miscellaneous_2127950144
pubmed_primary_30379570
crossref_primary_10_1259_dmfr_20180218
crossref_citationtrail_10_1259_dmfr_20180218
PublicationCentury 2000
PublicationDate 2019-Mar
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-Mar
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Dento-maxillo-facial radiology
PublicationTitleAlternate Dentomaxillofac Radiol
PublicationYear 2019
Publisher The British Institute of Radiology
Publisher_xml – name: The British Institute of Radiology
References b12
b11
Zhang X (b2) 2015; 10
b14
b13
b16
b15
b18
Wrzesień M (b10) 2017; 30
b19
Lam C (b23) 2017; 2018
b3
b4
b5
b8
b9
Gani OA (b25) 2014; 27
b21
b20
b22
b24
Madani ZS (b1) 2017; 12
Krizhevsky A (b17) 2012; 25
Ogawa A (b6) 2017; 38
Rahimi S (b7) 2017; 12
References_xml – volume: 12
  start-page: 70
  year: 2017
  ident: b7
  publication-title: Iran Endod J
– ident: b24
  doi: 10.1016/j.media.2017.10.002
– volume: 2018
  start-page: 147
  year: 2017
  ident: b23
  publication-title: AMIA Jt Summits Transl Sci Proc
– ident: b11
  doi: 10.1155/2017/8314740
– volume: 25
  start-page: 1
  year: 2012
  ident: b17
  publication-title: Adv Neural Inf Process Syst
– ident: b18
  doi: 10.1016/j.cmpb.2016.10.007
– ident: b19
  doi: 10.1016/0030-4220(84)90085-9
– ident: b21
  doi: 10.1038/s41598-017-05728-9
– ident: b9
  doi: 10.1002/ar.22958
– ident: b16
  doi: 10.1007/s10278-017-9955-8
– ident: b22
  doi: 10.1155/2018/1753480
– volume: 12
  start-page: 143
  year: 2017
  ident: b1
  publication-title: Iran Endod J
– volume: 38
  start-page: 93
  year: 2017
  ident: b6
  publication-title: JJEA
– ident: b4
  doi: 10.4103/1305-7456.172623
– volume: 27
  start-page: 105
  year: 2014
  ident: b25
  publication-title: Acta Odontol Latinoam
– ident: b13
  doi: 10.1186/s13550-017-0260-9
– ident: b14
  doi: 10.1136/gutjnl-2017-314547
– ident: b12
  doi: 10.1371/journal.pone.0178992
– ident: b3
  doi: 10.1007/s00784-016-1742-2
– ident: b5
  doi: 10.1016/j.joen.2016.07.026
– ident: b8
  doi: 10.5624/isd.2015.45.2.95
– volume: 10
  start-page: e0134919
  year: 2015
  ident: b2
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0134919
– ident: b20
  doi: 10.1155/2017/9512370
– volume: 30
  start-page: 705
  year: 2017
  ident: b10
  publication-title: Int J Occup Med Environ Health
– ident: b15
  doi: 10.1038/s41598-017-15720-y
SSID ssj0004356
Score 2.5860937
Snippet The distal root of the mandibular first molar occasionally has an extra root, which can directly affect the outcome of endodontic therapy. In this study, we...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 20180218
SubjectTerms Adolescent
Adult
Artificial Intelligence
Cone-Beam Computed Tomography
Dental Pulp Cavity
Female
Humans
Male
Mandible
Middle Aged
Molar - diagnostic imaging
Radiography, Panoramic
Retrospective Studies
Tooth Root - diagnostic imaging
Young Adult
Title A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography
URI https://www.ncbi.nlm.nih.gov/pubmed/30379570
https://www.proquest.com/docview/2127950144
https://pubmed.ncbi.nlm.nih.gov/PMC6476355
Volume 48
WOSCitedRecordID wos000459541200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1476-542X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004356
  issn: 0250-832X
  databaseCode: DRFUL
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1476-542X
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004356
  issn: 0250-832X
  databaseCode: WIN
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6DTFeEIyPlY_JSIiXEZE2Tpw8VoxqD2xCqJPKU-QkthbaxlXXjv4H_Gv8Wdw5ztcG0njgJYqcs5Pmfj3fOeffEfKWc3coXVc5yJXlsNSPnETBIRCeZFIIyVlqik3w8_NwOo2-9Hq_qr0w13NeFOF2Gy3_q6qhDZSNW2f_Qd31oNAA56B0OILa4XgnxY-OMymXzrxa80ARSxORt_k3Sw7nMouypudE3xF86fXxQoMCSn4mm0WwwA0wiclaVTn4jCCC5xq5WQsAEibZr0SWtzmwrdd7AiNrZyG2-XyuHSXMwxjZ9pr-ab4S-Q_jzE7kanOZz3QDx_y7STv4pq_a7ePNbJOZHmd6rWd5k1FQ1os04msxE-3FDdxPVWV3WRsIHpoDRmdaTleljWY8cHxm26wRZ2ELrF7bIiND2bC08bemC4j9QJ3ZQiEzbCPXpeW-MV3WSYwYPsEAMXaPq-47ZG_I_Qjs697J1_HF52aPrmcqCdc_yPK9wgAfOvfv-ke3gp6bubstZ2jyiDy0UQwdleh7THqyOCD7qGZTPPCA3D-zORtPyM8R7QCSNoCkbUDSEpAUAEkbQFKtKAKSNoDEJgAkbQBJDSCpASTVBa0BSVuAfEouxp8mH08dW_7DSdmArR3pJwFOf2GU8kwO5CBNEy-JRIiUiPCKPaYikfoYQrsqDSBwDzM-lEOlIpelQeY9I7uFLuQhoQOVQGSuQukmHst4mMDQymeBGHjgxamkT95XLz1OLTc-lmiZx39Ucp-8q8WXJSnM3wTfVBqMwWzjtzhRSL25irGwQoTf9FmfPC81Wg8FXiVc426f8I6uawGkhO9eKfJLQw0fMCSY9F_c9QFfkgfN3-4V2V2vNvI1uZdeA1xWR2SHT8Mji-TfLtzg_A
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep-learning+artificial+intelligence+system+for+assessment+of+root+morphology+of+the+mandibular+first+molar+on+panoramic+radiography&rft.jtitle=Dento-maxillo-facial+radiology&rft.au=Hiraiwa%2C+Teruhiko&rft.au=Ariji%2C+Yoshiko&rft.au=Fukuda%2C+Motoki&rft.au=Kise%2C+Yoshitaka&rft.date=2019-03-01&rft.issn=0250-832X&rft.eissn=1476-542X&rft.volume=48&rft.issue=3&rft.spage=20180218&rft_id=info:doi/10.1259%2Fdmfr.20180218&rft.externalDBID=n%2Fa&rft.externalDocID=10_1259_dmfr_20180218
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0250-832X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0250-832X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0250-832X&client=summon