A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography
The distal root of the mandibular first molar occasionally has an extra root, which can directly affect the outcome of endodontic therapy. In this study, we examined the diagnostic performance of a deep learning system for classification of the root morphology of mandibular first molars on panoramic...
Gespeichert in:
| Veröffentlicht in: | Dento-maxillo-facial radiology Jg. 48; H. 3; S. 20180218 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
The British Institute of Radiology
01.03.2019
|
| Schlagworte: | |
| ISSN: | 0250-832X, 1476-542X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The distal root of the mandibular first molar occasionally has an extra root, which can directly affect the outcome of endodontic therapy. In this study, we examined the diagnostic performance of a deep learning system for classification of the root morphology of mandibular first molars on panoramic radiographs. Dental cone-beam CT (CBCT) was used as the gold standard.
CBCT images and panoramic radiographs of 760 mandibular first molars from 400 patients who had not undergone root canal treatments were analyzed. Distal roots were examined on CBCT images to determine the presence of a single or extra root. Image patches of the roots were segmented from panoramic radiographs and applied to a deep learning system, and its diagnostic performance in the classification of root morphplogy was examined.
Extra roots were observed in 21.4% of distal roots on CBCT images. The deep learning system had diagnostic accuracy of 86.9% for the determination of whether distal roots were single or had extra roots.
The deep learning system showed high accuracy in the differential diagnosis of a single or extra root in the distal roots of mandibular first molars. |
|---|---|
| AbstractList | The distal root of the mandibular first molar occasionally has an extra root, which can directly affect the outcome of endodontic therapy. In this study, we examined the diagnostic performance of a deep learning system for classification of the root morphology of mandibular first molars on panoramic radiographs. Dental cone-beam CT (CBCT) was used as the gold standard.OBJECTIVES:The distal root of the mandibular first molar occasionally has an extra root, which can directly affect the outcome of endodontic therapy. In this study, we examined the diagnostic performance of a deep learning system for classification of the root morphology of mandibular first molars on panoramic radiographs. Dental cone-beam CT (CBCT) was used as the gold standard.CBCT images and panoramic radiographs of 760 mandibular first molars from 400 patients who had not undergone root canal treatments were analyzed. Distal roots were examined on CBCT images to determine the presence of a single or extra root. Image patches of the roots were segmented from panoramic radiographs and applied to a deep learning system, and its diagnostic performance in the classification of root morphplogy was examined.METHODS:CBCT images and panoramic radiographs of 760 mandibular first molars from 400 patients who had not undergone root canal treatments were analyzed. Distal roots were examined on CBCT images to determine the presence of a single or extra root. Image patches of the roots were segmented from panoramic radiographs and applied to a deep learning system, and its diagnostic performance in the classification of root morphplogy was examined.Extra roots were observed in 21.4% of distal roots on CBCT images. The deep learning system had diagnostic accuracy of 86.9% for the determination of whether distal roots were single or had extra roots.RESULTS:Extra roots were observed in 21.4% of distal roots on CBCT images. The deep learning system had diagnostic accuracy of 86.9% for the determination of whether distal roots were single or had extra roots.The deep learning system showed high accuracy in the differential diagnosis of a single or extra root in the distal roots of mandibular first molars.CONCLUSIONS:The deep learning system showed high accuracy in the differential diagnosis of a single or extra root in the distal roots of mandibular first molars. The distal root of the mandibular first molar occasionally has an extra root, which can directly affect the outcome of endodontic therapy. In this study, we examined the diagnostic performance of a deep learning system for classification of the root morphology of mandibular first molars on panoramic radiographs. Dental cone-beam CT (CBCT) was used as the gold standard. CBCT images and panoramic radiographs of 760 mandibular first molars from 400 patients who had not undergone root canal treatments were analyzed. Distal roots were examined on CBCT images to determine the presence of a single or extra root. Image patches of the roots were segmented from panoramic radiographs and applied to a deep learning system, and its diagnostic performance in the classification of root morphplogy was examined. Extra roots were observed in 21.4% of distal roots on CBCT images. The deep learning system had diagnostic accuracy of 86.9% for the determination of whether distal roots were single or had extra roots. The deep learning system showed high accuracy in the differential diagnosis of a single or extra root in the distal roots of mandibular first molars. |
| Author | Hiraiwa, Teruhiko Kise, Yoshitaka Katsumata, Akitoshi Nakata, Kazuhiko Ariji, Eiichiro Fujita, Hiroshi Fukuda, Motoki Ariji, Yoshiko |
| Author_xml | – sequence: 1 givenname: Teruhiko surname: Hiraiwa fullname: Hiraiwa, Teruhiko organization: Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, Nagoya, Japan – sequence: 2 givenname: Yoshiko surname: Ariji fullname: Ariji, Yoshiko organization: Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, Nagoya, Japan – sequence: 3 givenname: Motoki surname: Fukuda fullname: Fukuda, Motoki organization: Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, Nagoya, Japan – sequence: 4 givenname: Yoshitaka surname: Kise fullname: Kise, Yoshitaka organization: Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, Nagoya, Japan – sequence: 5 givenname: Kazuhiko surname: Nakata fullname: Nakata, Kazuhiko organization: Department of Endodontics, Aichi-Gakuin University School of Dentistry, Nagoya, Japan – sequence: 6 givenname: Akitoshi surname: Katsumata fullname: Katsumata, Akitoshi organization: Department of Oral Radiology, Asahi University School of Dentistry, Mizuho, Japan – sequence: 7 givenname: Hiroshi surname: Fujita fullname: Fujita, Hiroshi organization: Department of Electrical, Electronic and Computer Faculty of Engineering, Gifu University, Gifu, Japan – sequence: 8 givenname: Eiichiro surname: Ariji fullname: Ariji, Eiichiro organization: Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, Nagoya, Japan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30379570$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kU1rFTEUhoNU7G116VaydDM13zPZCKWoLRTcKHQXMpmTuZGZZExyhfsL-redoR-o4Coh58l7znnfM3QSUwSE3lJyQZnUH4bZ5wtGaEcY7V6gHRWtaqRgdydoR5gkTcfZ3Sk6K-UHIURwqV6hU054q2VLduj-Eg8ASzOBzTHEEdtcgw8u2AmHWGGawgjRAS7HUmHGPmVsS4FSZogVJ49zShXPKS_7NKXxuD3VPeDZxiH0h8lm7EMuG7LdU8SLjSnbOTic7RDSmO2yP75GL72dCrx5PM_R98-fvl1dN7dfv9xcXd42TlBRG5C94q3inXbtABSocz3vte0UaanUmguvrZOcKEG8U1qrbmgZMO81EU4N_Bx9fNBdDv0Mg1uXyHYySw6zzUeTbDB_V2LYmzH9Mmr1lUu5Crx_FMjp5wFKNXMobvXJRkiHYhhlq7WECrGi7_7s9dzkyf0VaB4Al1MpGfwzQonZ0jVbuuYp3ZXn__AuVFtD2kYN039-_QaoN61N |
| CitedBy_id | crossref_primary_10_1016_j_cmpb_2023_107708 crossref_primary_10_1016_j_identj_2024_11_009 crossref_primary_10_1016_j_jdent_2024_105434 crossref_primary_10_1016_j_jormas_2023_101524 crossref_primary_10_1038_s41598_021_81449_4 crossref_primary_10_5624_isd_20240232 crossref_primary_10_3390_app12178500 crossref_primary_10_1002_prca_201900040 crossref_primary_10_1051_e3sconf_202129701074 crossref_primary_10_1016_j_joen_2024_02_011 crossref_primary_10_1259_dmfr_20200611 crossref_primary_10_3390_diagnostics14242849 crossref_primary_10_1109_ACCESS_2020_3028600 crossref_primary_10_3390_s21196628 crossref_primary_10_1007_s11282_024_00793_z crossref_primary_10_1016_j_oooo_2020_04_813 crossref_primary_10_1016_j_joen_2023_10_010 crossref_primary_10_1016_j_aanat_2025_152671 crossref_primary_10_1186_s12903_024_04786_6 crossref_primary_10_1016_j_ajoms_2024_04_009 crossref_primary_10_4103_jpcdoh_jpcdoh_9_25 crossref_primary_10_1080_09540091_2025_2522706 crossref_primary_10_1016_j_ijmedinf_2023_105170 crossref_primary_10_3390_healthcare10101892 crossref_primary_10_4103_sej_sej_199_23 crossref_primary_10_1016_j_joen_2021_09_009 crossref_primary_10_1186_s12903_022_02422_9 crossref_primary_10_1038_s41598_021_02571_x crossref_primary_10_1155_2022_9726181 crossref_primary_10_1186_s12903_025_06796_4 crossref_primary_10_12688_f1000research_140204_1 crossref_primary_10_7759_cureus_27405 crossref_primary_10_1016_j_jds_2021_07_021 crossref_primary_10_1038_s41598_024_82378_8 crossref_primary_10_1186_s12903_025_05652_9 crossref_primary_10_3390_diagnostics11081477 crossref_primary_10_1155_2023_4415970 crossref_primary_10_1016_j_comcom_2019_09_020 crossref_primary_10_1259_dmfr_20200185 crossref_primary_10_7759_cureus_47033 crossref_primary_10_1109_ACCESS_2024_3472012 crossref_primary_10_1016_j_cden_2025_05_010 crossref_primary_10_1007_s11282_021_00577_9 crossref_primary_10_1016_j_oooo_2020_04_005 crossref_primary_10_3390_healthcare10071269 crossref_primary_10_1093_dmfr_twae002 crossref_primary_10_1016_j_oooo_2023_09_011 crossref_primary_10_3390_s25113476 crossref_primary_10_1007_s00784_021_04082_5 crossref_primary_10_1111_iej_14128 crossref_primary_10_1111_iej_14127 crossref_primary_10_1007_s42044_024_00226_4 crossref_primary_10_1108_JHOM_06_2024_0233 crossref_primary_10_1259_dmfr_20200513 crossref_primary_10_1259_dmfr_20220122 crossref_primary_10_1259_dmfr_20220244 crossref_primary_10_1016_j_oooo_2023_06_001 crossref_primary_10_3390_healthcare10112188 crossref_primary_10_1155_2023_7049360 crossref_primary_10_33808_clinexphealthsci_1466714 crossref_primary_10_1051_mbcb_2025008 crossref_primary_10_3390_diagnostics12102537 crossref_primary_10_1038_s41598_023_43277_6 crossref_primary_10_1016_j_ajoms_2022_02_004 crossref_primary_10_1007_s00784_024_06049_8 crossref_primary_10_1016_j_jormas_2020_12_006 crossref_primary_10_1016_j_jds_2020_06_019 crossref_primary_10_1007_s00784_025_06216_5 crossref_primary_10_1111_iej_13265 crossref_primary_10_1038_s41598_022_16074_w crossref_primary_10_1155_2024_1119816 crossref_primary_10_1111_exsy_13326 crossref_primary_10_1007_s00784_020_03544_6 crossref_primary_10_1259_dmfr_20210436 crossref_primary_10_1155_2023_8814905 crossref_primary_10_1007_s11042_024_19920_3 crossref_primary_10_1177_00220345241255593 crossref_primary_10_1016_j_heliyon_2023_e13694 crossref_primary_10_3390_diagnostics14121260 crossref_primary_10_1007_s00405_025_09451_4 crossref_primary_10_1007_s11282_022_00622_1 crossref_primary_10_1007_s10278_021_00481_y crossref_primary_10_1177_20552076241291345 crossref_primary_10_1186_s12880_021_00618_z crossref_primary_10_1007_s44163_025_00371_0 crossref_primary_10_1016_j_jdent_2022_104301 crossref_primary_10_1186_s12903_024_04494_1 crossref_primary_10_3390_app12063043 crossref_primary_10_1016_j_oooo_2022_05_014 crossref_primary_10_1177_0022034520969115 crossref_primary_10_1016_j_joen_2021_11_007 crossref_primary_10_1080_00016357_2020_1840624 crossref_primary_10_3390_app13148260 crossref_primary_10_3390_ijerph19031728 crossref_primary_10_1016_j_identj_2022_02_009 crossref_primary_10_1038_s41598_020_64509_z crossref_primary_10_3390_diagnostics14212442 crossref_primary_10_1002_cre2_70035 crossref_primary_10_1007_s10278_025_01405_w crossref_primary_10_3390_diagnostics13132196 crossref_primary_10_4103_jioh_jioh_257_22 crossref_primary_10_7759_cureus_85062 crossref_primary_10_1016_j_eswa_2022_116968 crossref_primary_10_1186_s13036_024_00423_6 crossref_primary_10_1371_journal_pone_0310925 crossref_primary_10_1007_s11282_020_00485_4 crossref_primary_10_3390_diagnostics12040942 crossref_primary_10_1002_osi2_1177 crossref_primary_10_1002_jdd_12385 crossref_primary_10_3390_bioengineering12050447 crossref_primary_10_1038_s41598_022_20411_4 crossref_primary_10_3390_children11020140 crossref_primary_10_3390_app10082856 crossref_primary_10_4103_njcp_njcp_624_22 crossref_primary_10_3390_jcm12030937 crossref_primary_10_3390_app15063295 crossref_primary_10_3390_jcm10194508 crossref_primary_10_1259_dmfr_20210002 crossref_primary_10_25122_jml_2024_0168 crossref_primary_10_1111_iej_14163 crossref_primary_10_19127_bshealthscience_1559454 crossref_primary_10_1007_s11282_019_00409_x crossref_primary_10_3390_sym14061129 crossref_primary_10_1007_s11282_022_00644_9 crossref_primary_10_1007_s10266_023_00864_3 crossref_primary_10_1186_s12903_024_04892_5 crossref_primary_10_1016_j_compbiomed_2024_108527 crossref_primary_10_1016_j_oooo_2023_12_790 crossref_primary_10_1259_dmfr_20210246 crossref_primary_10_7717_peerj_11451 crossref_primary_10_1007_s11282_024_00799_7 crossref_primary_10_1016_j_cden_2025_05_007 crossref_primary_10_1111_adj_12812 crossref_primary_10_1111_jerd_12844 crossref_primary_10_1159_000527145 crossref_primary_10_1016_j_jdsr_2023_09_004 crossref_primary_10_3390_diagnostics15060655 crossref_primary_10_3390_diagnostics13030414 crossref_primary_10_1109_ACCESS_2024_3406342 crossref_primary_10_3390_s21134613 crossref_primary_10_1016_j_ajoms_2022_12_010 crossref_primary_10_1259_dmfr_20210197 crossref_primary_10_1259_dmfr_20200171 crossref_primary_10_1259_dmfr_20200172 crossref_primary_10_1007_s11282_022_00634_x crossref_primary_10_1007_s11282_021_00572_0 crossref_primary_10_1186_s12903_025_06350_2 crossref_primary_10_1016_j_joen_2023_11_002 crossref_primary_10_1371_journal_pone_0254997 crossref_primary_10_1186_s12874_024_02183_9 crossref_primary_10_7717_peerj_cs_620 crossref_primary_10_1016_j_jdent_2025_105648 crossref_primary_10_3390_diagnostics13020202 crossref_primary_10_3390_bioengineering11050431 crossref_primary_10_3390_diagnostics14080806 crossref_primary_10_1007_s00784_024_05587_5 crossref_primary_10_3390_jcm12237378 crossref_primary_10_1016_j_joen_2021_06_003 crossref_primary_10_1111_aej_12822 crossref_primary_10_1111_odi_14056 crossref_primary_10_1016_j_triboint_2023_108735 |
| Cites_doi | 10.1016/j.media.2017.10.002 10.1155/2017/8314740 10.1016/j.cmpb.2016.10.007 10.1016/0030-4220(84)90085-9 10.1038/s41598-017-05728-9 10.1002/ar.22958 10.1007/s10278-017-9955-8 10.1155/2018/1753480 10.4103/1305-7456.172623 10.1186/s13550-017-0260-9 10.1136/gutjnl-2017-314547 10.1371/journal.pone.0178992 10.1007/s00784-016-1742-2 10.1016/j.joen.2016.07.026 10.5624/isd.2015.45.2.95 10.1371/journal.pone.0134919 10.1155/2017/9512370 10.1038/s41598-017-15720-y |
| ContentType | Journal Article |
| Copyright | 2019 The Authors. Published by the British Institute of Radiology 2019 The Authors |
| Copyright_xml | – notice: 2019 The Authors. Published by the British Institute of Radiology 2019 The Authors |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1259/dmfr.20180218 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Dentistry |
| DocumentTitleAlternate | AI evaluation of mandibular first molar morphology |
| EISSN | 1476-542X |
| ExternalDocumentID | PMC6476355 30379570 10_1259_dmfr_20180218 |
| Genre | Journal Article |
| GroupedDBID | --- --K -KS 0R~ 18M 1B1 1OC 33P 34H 4.4 53G 5GY 5WD AANLZ AASGY AAUAY AAXRX AAYXX ABCUV ABDFA ABEJV ABGNP ABNHQ ABQNK ABXGK ABXVV ACAHQ ACCZN ACGFO ACGOF ACPOU ACVCV ACXBN ACZBC ADBBV ADBTR ADIPN ADMGS ADNBA ADOZA ADVOB ADXAS AENEX AEUYR AFFNX AFFQV AGMDO AHGBF AHMMS AIACR AIURR AJAOE AJBYB AJDVS AJNCP ALMA_UNASSIGNED_HOLDINGS AMYDB AOIJS AVNTJ BAWUL BCRHZ BFHJK C45 CAG CITATION COF CS3 DCZOG DIK DRFUL DRMAN DRSTM EBD EBS EJD F5P GK1 GX1 H13 HYE IHE KBYEO KOP LATKE LEEKS LYRES M41 MXFUL MXMAN MXSTM NQ- OCZFY OJZSN OK1 OVD OWPYF P2P RJQFR ROL ROX RPZ SUPJJ TEORI TXR WIN ZGI ZZTAW AGORE CGR CUY CVF ECM EIF NPM RIG 7X8 5PM |
| ID | FETCH-LOGICAL-c414t-e5b6376389c7de1e1ccb3b9a8607159934f9ac530640fc69968d72e2ff904c6d3 |
| ISICitedReferencesCount | 187 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000459541200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0250-832X |
| IngestDate | Tue Sep 30 16:50:51 EDT 2025 Sat Sep 27 22:30:36 EDT 2025 Mon Jul 21 06:03:10 EDT 2025 Tue Nov 18 22:06:27 EST 2025 Sat Nov 29 06:09:21 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | deep learning mandibular first molar panoramic radiography artificial intelligence root morphology |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c414t-e5b6376389c7de1e1ccb3b9a8607159934f9ac530640fc69968d72e2ff904c6d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 30379570 |
| PQID | 2127950144 |
| PQPubID | 23479 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6476355 proquest_miscellaneous_2127950144 pubmed_primary_30379570 crossref_primary_10_1259_dmfr_20180218 crossref_citationtrail_10_1259_dmfr_20180218 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-Mar |
| PublicationDateYYYYMMDD | 2019-03-01 |
| PublicationDate_xml | – month: 03 year: 2019 text: 2019-Mar |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Dento-maxillo-facial radiology |
| PublicationTitleAlternate | Dentomaxillofac Radiol |
| PublicationYear | 2019 |
| Publisher | The British Institute of Radiology |
| Publisher_xml | – name: The British Institute of Radiology |
| References | b12 b11 Zhang X (b2) 2015; 10 b14 b13 b16 b15 b18 Wrzesień M (b10) 2017; 30 b19 Lam C (b23) 2017; 2018 b3 b4 b5 b8 b9 Gani OA (b25) 2014; 27 b21 b20 b22 b24 Madani ZS (b1) 2017; 12 Krizhevsky A (b17) 2012; 25 Ogawa A (b6) 2017; 38 Rahimi S (b7) 2017; 12 |
| References_xml | – volume: 12 start-page: 70 year: 2017 ident: b7 publication-title: Iran Endod J – ident: b24 doi: 10.1016/j.media.2017.10.002 – volume: 2018 start-page: 147 year: 2017 ident: b23 publication-title: AMIA Jt Summits Transl Sci Proc – ident: b11 doi: 10.1155/2017/8314740 – volume: 25 start-page: 1 year: 2012 ident: b17 publication-title: Adv Neural Inf Process Syst – ident: b18 doi: 10.1016/j.cmpb.2016.10.007 – ident: b19 doi: 10.1016/0030-4220(84)90085-9 – ident: b21 doi: 10.1038/s41598-017-05728-9 – ident: b9 doi: 10.1002/ar.22958 – ident: b16 doi: 10.1007/s10278-017-9955-8 – ident: b22 doi: 10.1155/2018/1753480 – volume: 12 start-page: 143 year: 2017 ident: b1 publication-title: Iran Endod J – volume: 38 start-page: 93 year: 2017 ident: b6 publication-title: JJEA – ident: b4 doi: 10.4103/1305-7456.172623 – volume: 27 start-page: 105 year: 2014 ident: b25 publication-title: Acta Odontol Latinoam – ident: b13 doi: 10.1186/s13550-017-0260-9 – ident: b14 doi: 10.1136/gutjnl-2017-314547 – ident: b12 doi: 10.1371/journal.pone.0178992 – ident: b3 doi: 10.1007/s00784-016-1742-2 – ident: b5 doi: 10.1016/j.joen.2016.07.026 – ident: b8 doi: 10.5624/isd.2015.45.2.95 – volume: 10 start-page: e0134919 year: 2015 ident: b2 publication-title: PLoS One doi: 10.1371/journal.pone.0134919 – ident: b20 doi: 10.1155/2017/9512370 – volume: 30 start-page: 705 year: 2017 ident: b10 publication-title: Int J Occup Med Environ Health – ident: b15 doi: 10.1038/s41598-017-15720-y |
| SSID | ssj0004356 |
| Score | 2.5860937 |
| Snippet | The distal root of the mandibular first molar occasionally has an extra root, which can directly affect the outcome of endodontic therapy. In this study, we... |
| SourceID | pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 20180218 |
| SubjectTerms | Adolescent Adult Artificial Intelligence Cone-Beam Computed Tomography Dental Pulp Cavity Female Humans Male Mandible Middle Aged Molar - diagnostic imaging Radiography, Panoramic Retrospective Studies Tooth Root - diagnostic imaging Young Adult |
| Title | A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30379570 https://www.proquest.com/docview/2127950144 https://pubmed.ncbi.nlm.nih.gov/PMC6476355 |
| Volume | 48 |
| WOSCitedRecordID | wos000459541200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1476-542X dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004356 issn: 0250-832X databaseCode: WIN dateStart: 20090101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1476-542X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004356 issn: 0250-832X databaseCode: DRFUL dateStart: 20090101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DY29IBi3cpmMhHgZ1prEiePHilHtgU0IbVJ5ipzE0ULbuOra0X_Av-E3co5z7apJ8MBLFDmnTpTv6_Gxc_wdQt6LkHOtFGdBLGPGQ-0w5aeCCalgzgJDulBlsQlxcRGOx_Jrr_e73gtzOxVFEa7Xcv5foYY2ABu3zv4D3E2n0ADnADocAXY4_hXww-NU6zmb1mseaFLJRORd_c1Sw7nMomzkOTF2hFh6eTwzAECpz1RlEcxwA0xss1azHGJGMMFzg9qsBRAJk-wXKs27GthV1HsKPRs2U-t8OjUsU_ZhrG13Tf8sX6j8pw1mL_VidZ1PTEvH_IdNO_hubrrto9VkldpfnJulmeRtRkFZL9KaL9VEdRc3cD9Vnd1V-UCI0Bg4nXHXYfOwQ0yv631Rjcwt_fnW0ADzPIAunWWoArttByDOZ5YSMKgL6ZflTO5ocdeXdsieK3wJXnTv9Nvo6ku7E9ez9YKbx65UXeHeJxt3PiD7dV-bAdHWLOdusm4n-rl8TB5V0xY6LOn2hPR0cUgeIq62WuAh2T-vkjSekl9DusFA2jKQdhlISwZSYCBtGUhNRpGBtGUgNgEDactAahlILQOpKWjDQNph4DNyNfp8-emMVfU-WMIdvmTajwMc70KZiFQ72kmS2IulClEDEd62xzOpEh_nzIMsCWCmHqbC1W6WyQFPgtR7TnYLU-iXhIYwbEtXucJRHBzQIIwDR2YDL-UwfgWJ0ycf65ceJZUYPtZkmUY4KQa4IoQrquHqkw-N-bxUgbnP8F2NYAR-Gj--qUKb1U2ElRQkfsTnffKiRLTpqqZCn4gNrBsD1IDfvFLk11YLPuCoKOm_urfP1-Sg_WO9IbvLxUq_JQ-SW-DH4ojsiHF4VLH4D-Kv1Gw |
| linkProvider | Wiley-Blackwell |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep-learning+artificial+intelligence+system+for+assessment+of+root+morphology+of+the+mandibular+first+molar+on+panoramic+radiography&rft.jtitle=Dento-maxillo-facial+radiology&rft.au=Hiraiwa%2C+Teruhiko&rft.au=Ariji%2C+Yoshiko&rft.au=Fukuda%2C+Motoki&rft.au=Kise%2C+Yoshitaka&rft.date=2019-03-01&rft.issn=0250-832X&rft.volume=48&rft.issue=3&rft.spage=20180218&rft_id=info:doi/10.1259%2Fdmfr.20180218&rft_id=info%3Apmid%2F30379570&rft.externalDocID=30379570 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0250-832X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0250-832X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0250-832X&client=summon |