Fast Feature Pyramids for Object Detection

Multi-resolution image features may be approximated via extrapolation from nearby scales, rather than being computed explicitly. This fundamental insight allows us to design object detection algorithms that are as accurate, and considerably faster, than the state-of-the-art. The computational bottle...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence Vol. 36; no. 8; pp. 1532 - 1545
Main Authors: Dollar, Piotr, Appel, Ron, Belongie, Serge, Perona, Pietro
Format: Journal Article
Language:English
Published: Los Alamitos, CA IEEE 01.08.2014
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0162-8828, 2160-9292, 1939-3539
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Multi-resolution image features may be approximated via extrapolation from nearby scales, rather than being computed explicitly. This fundamental insight allows us to design object detection algorithms that are as accurate, and considerably faster, than the state-of-the-art. The computational bottleneck of many modern detectors is the computation of features at every scale of a finely-sampled image pyramid. Our key insight is that one may compute finely sampled feature pyramids at a fraction of the cost, without sacrificing performance: for a broad family of features we find that features computed at octave-spaced scale intervals are sufficient to approximate features on a finely-sampled pyramid. Extrapolation is inexpensive as compared to direct feature computation. As a result, our approximation yields considerable speedups with negligible loss in detection accuracy. We modify three diverse visual recognition systems to use fast feature pyramids and show results on both pedestrian detection (measured on the Caltech, INRIA, TUD-Brussels and ETH data sets) and general object detection (measured on the PASCAL VOC). The approach is general and is widely applicable to vision algorithms requiring fine-grained multi-scale analysis. Our approximation is valid for images with broad spectra (most natural images) and fails for images with narrow band-pass spectra (e.g., periodic textures).
AbstractList Multi-resolution image features may be approximated via extrapolation from nearby scales, rather than being computed explicitly. This fundamental insight allows us to design object detection algorithms that are as accurate, and considerably faster, than the state-of-the-art. The computational bottleneck of many modern detectors is the computation of features at every scale of a finely-sampled image pyramid. Our key insight is that one may compute finely sampled feature pyramids at a fraction of the cost, without sacrificing performance: for a broad family of features we find that features computed at octave-spaced scale intervals are sufficient to approximate features on a finely-sampled pyramid. Extrapolation is inexpensive as compared to direct feature computation. As a result, our approximation yields considerable speedups with negligible loss in detection accuracy. We modify three diverse visual recognition systems to use fast feature pyramids and show results on both pedestrian detection (measured on the Caltech, INRIA, TUD-Brussels and ETH data sets) and general object detection (measured on the PASCAL VOC). The approach is general and is widely applicable to vision algorithms requiring fine-grained multi-scale analysis. Our approximation is valid for images with broad spectra (most natural images) and fails for images with narrow band-pass spectra (e.g., periodic textures).
Author Belongie, Serge
Dollar, Piotr
Appel, Ron
Perona, Pietro
Author_xml – sequence: 1
  givenname: Piotr
  surname: Dollar
  fullname: Dollar, Piotr
  email: pdollar@microsoft.com
  organization: Interactive Visual Media Group, Microsoft Res., Redmond, WA, USA
– sequence: 2
  givenname: Ron
  surname: Appel
  fullname: Appel, Ron
  email: appel@caltech.edu
  organization: Dept. of Electr. Eng., California Inst. of Technol., Pasadena, CA, USA
– sequence: 3
  givenname: Serge
  surname: Belongie
  fullname: Belongie, Serge
  organization: Cornell Comput. Sci. Dept., Cornell NYC Tech, Cornell, NY, USA
– sequence: 4
  givenname: Pietro
  surname: Perona
  fullname: Perona, Pietro
  email: perona@caltech.edu
  organization: Dept. of Electr. Eng., California Inst. of Technol., Pasadena, CA, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28720933$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/26353336$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9r20AQxZeSUjtuv0ADQRAKISB39r_2GNK6CbjYh_S8rKRZkJGlZFc6-NtnXbsO5JCe5vJ7M_PeOydnXd8hIV8pzCkF8_1xffv7Yc6AijnjAEKbD2TKqILcMMPOyBSoYnlRsGJCzmPcQCIl8E9kwhSXnHM1JTcLF4dsgW4YA2brXXDbpo6Z70O2KjdYDdkPHNJo-u4z-ehdG_HLcc7In8XPx7v7fLn69XB3u8wrQcWQo1RMmIIbjaVwoIu6rGvtBS-1qL2nmnvJhIBCoa8Yl6VTUkouE6ag1jWfkevD3qfQP48YB7ttYoVt6zrsx2ipplRyncz9H1WaShBG84RevUE3_Ri6ZMRSKRQYSB8l6vJIjeUWa_sUmq0LO_svsAR8OwIuVq71wXVVE1-5QjMwfH-OHbgq9DEG9CeEgt23Z_-2Z_ft2WN7SVS8EVXN4PbZD8E17fvSi4O0QcTTrWRfiPT4Cz5Aots
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_image_2017_02_008
crossref_primary_10_3390_electronics12173640
crossref_primary_10_1007_s00530_019_00614_y
crossref_primary_10_1016_j_patrec_2018_07_035
crossref_primary_10_1109_TCYB_2016_2601438
crossref_primary_10_1109_TIM_2018_2871353
crossref_primary_10_1109_LSP_2017_2731952
crossref_primary_10_1016_j_eswa_2015_01_032
crossref_primary_10_9717_kmms_2016_19_12_1909
crossref_primary_10_1016_j_heliyon_2022_e12086
crossref_primary_10_1109_TITS_2018_2869087
crossref_primary_10_1109_TITS_2015_2496795
crossref_primary_10_3390_app10051866
crossref_primary_10_1007_s00371_020_01880_y
crossref_primary_10_1109_TCSVT_2018_2873185
crossref_primary_10_1109_TITS_2017_2769719
crossref_primary_10_1177_1550147718763550
crossref_primary_10_1049_iet_cvi_2016_0303
crossref_primary_10_1007_s13177_024_00401_8
crossref_primary_10_1016_j_patrec_2016_11_020
crossref_primary_10_3390_ani14010159
crossref_primary_10_1038_s41598_024_64677_2
crossref_primary_10_1109_TII_2021_3056554
crossref_primary_10_1109_TPAMI_2022_3218569
crossref_primary_10_1587_transfun_E100_A_1601
crossref_primary_10_1016_j_dt_2020_10_006
crossref_primary_10_3389_fnbot_2019_00010
crossref_primary_10_1016_j_imavis_2018_06_009
crossref_primary_10_1016_j_jvcir_2022_103715
crossref_primary_10_1016_j_displa_2022_102354
crossref_primary_10_1109_TIP_2023_3297408
crossref_primary_10_3390_app13074210
crossref_primary_10_1109_TPAMI_2017_2738645
crossref_primary_10_1109_TCSVT_2020_3036467
crossref_primary_10_3390_app9040752
crossref_primary_10_1109_TCSVT_2018_2886476
crossref_primary_10_1109_TITS_2017_2784093
crossref_primary_10_3390_s24123739
crossref_primary_10_1109_ACCESS_2019_2932749
crossref_primary_10_1088_2631_8695_ad507d
crossref_primary_10_1109_TCSVT_2020_3000223
crossref_primary_10_1016_j_patcog_2021_108063
crossref_primary_10_1016_j_compeleceng_2023_108695
crossref_primary_10_1016_j_imavis_2022_104394
crossref_primary_10_1051_matecconf_201710003010
crossref_primary_10_1109_TSM_2019_2931328
crossref_primary_10_1109_TCSI_2024_3425751
crossref_primary_10_1016_j_cosrev_2018_03_001
crossref_primary_10_1007_s10044_022_01076_1
crossref_primary_10_1016_j_compbiomed_2022_105989
crossref_primary_10_1109_ACCESS_2019_2909992
crossref_primary_10_1109_TMM_2015_2508146
crossref_primary_10_3389_fphy_2023_1121311
crossref_primary_10_1016_j_displa_2023_102454
crossref_primary_10_1109_TCSVT_2017_2653187
crossref_primary_10_1587_transinf_2018EDL8112
crossref_primary_10_1007_s11227_025_07208_8
crossref_primary_10_1016_j_asoc_2019_106014
crossref_primary_10_1007_s11263_020_01415_x
crossref_primary_10_1007_s00521_020_05314_7
crossref_primary_10_1109_TPAMI_2015_2470658
crossref_primary_10_1007_s11042_022_13515_6
crossref_primary_10_1016_j_imavis_2020_103986
crossref_primary_10_1109_TCSVT_2017_2648850
crossref_primary_10_1016_j_inffus_2018_09_015
crossref_primary_10_1007_s11554_021_01131_w
crossref_primary_10_1016_j_neucom_2019_12_110
crossref_primary_10_1007_s11554_023_01287_7
crossref_primary_10_1109_ACCESS_2021_3100369
crossref_primary_10_1016_j_neucom_2018_06_088
crossref_primary_10_1016_j_knosys_2023_110719
crossref_primary_10_1145_3626754
crossref_primary_10_1038_s44333_025_00037_5
crossref_primary_10_1109_TGRS_2019_2957251
crossref_primary_10_1109_TCSVT_2021_3096237
crossref_primary_10_1109_TCSVT_2016_2630731
crossref_primary_10_1109_TIV_2019_2904389
crossref_primary_10_1007_s11063_019_10182_x
crossref_primary_10_3390_sym12122012
crossref_primary_10_1109_TSP_2019_2931170
crossref_primary_10_1016_j_neucom_2021_10_006
crossref_primary_10_1109_ACCESS_2018_2879473
crossref_primary_10_1016_j_infrared_2018_11_007
crossref_primary_10_1109_TITS_2017_2750058
crossref_primary_10_1016_j_imavis_2019_02_009
crossref_primary_10_1007_s11277_017_5211_2
crossref_primary_10_1109_TCSVT_2015_2492838
crossref_primary_10_1155_2019_3651529
crossref_primary_10_1016_j_bspc_2024_106056
crossref_primary_10_3390_s22093568
crossref_primary_10_1587_transinf_2019EDL8027
crossref_primary_10_1155_2019_9060797
crossref_primary_10_1299_jbse_24_00367
crossref_primary_10_1007_s11554_022_01233_z
crossref_primary_10_1109_ACCESS_2020_2994000
crossref_primary_10_1051_smdo_2019016
crossref_primary_10_1007_s11042_023_16604_2
crossref_primary_10_1109_TPAMI_2015_2474388
crossref_primary_10_1109_TPAMI_2017_2756936
crossref_primary_10_1007_s11042_018_6995_0
crossref_primary_10_1109_TCYB_2014_2330853
crossref_primary_10_1109_TIP_2015_2507942
crossref_primary_10_1109_JSEN_2020_2966034
crossref_primary_10_1109_TITS_2022_3145467
crossref_primary_10_1016_j_neucom_2021_11_091
crossref_primary_10_1109_TMM_2015_2505089
crossref_primary_10_1109_TITS_2017_2749971
crossref_primary_10_3390_s21196358
crossref_primary_10_1109_ACCESS_2018_2836921
crossref_primary_10_1109_TCYB_2019_2894261
crossref_primary_10_1007_s12559_015_9373_5
crossref_primary_10_1109_ACCESS_2020_2995321
crossref_primary_10_1007_s11042_020_08744_6
crossref_primary_10_1016_j_eswa_2025_128529
crossref_primary_10_1162_neco_a_01156
crossref_primary_10_1109_TPAMI_2020_3009758
crossref_primary_10_1007_s13177_025_00507_7
crossref_primary_10_1016_j_jvcir_2018_02_001
crossref_primary_10_1109_TPAMI_2016_2537325
crossref_primary_10_1109_TSP_2018_2821650
crossref_primary_10_1061__ASCE_CP_1943_5487_0000813
crossref_primary_10_1016_j_image_2016_06_002
crossref_primary_10_1007_s13042_022_01771_9
crossref_primary_10_1007_s11042_018_5846_3
crossref_primary_10_1016_j_neucom_2017_06_009
crossref_primary_10_1016_j_patcog_2018_08_005
crossref_primary_10_1016_j_image_2018_09_002
crossref_primary_10_1109_TPAMI_2017_2706685
crossref_primary_10_1016_j_patcog_2016_05_027
crossref_primary_10_1007_s11063_018_9837_1
crossref_primary_10_3390_electronics14071291
crossref_primary_10_1109_ACCESS_2021_3066538
crossref_primary_10_1007_s11042_024_20335_3
crossref_primary_10_1109_ACCESS_2021_3063028
crossref_primary_10_1016_j_procs_2016_07_472
crossref_primary_10_1016_j_patcog_2020_107512
crossref_primary_10_1109_TASE_2018_2830655
crossref_primary_10_1016_j_patcog_2018_08_018
crossref_primary_10_1049_ipr2_12378
crossref_primary_10_1109_ACCESS_2017_2698164
crossref_primary_10_1186_s12544_020_00425_7
crossref_primary_10_1109_TCSVT_2018_2817609
crossref_primary_10_1002_tee_23737
crossref_primary_10_1109_TCSVT_2014_2360030
crossref_primary_10_1109_TPAMI_2018_2876253
crossref_primary_10_1016_j_neucom_2023_126558
crossref_primary_10_1007_s11042_025_20785_3
crossref_primary_10_1017_S1751731115001342
crossref_primary_10_1007_s11263_015_0823_z
crossref_primary_10_1016_j_image_2016_05_020
crossref_primary_10_1109_ACCESS_2021_3063030
crossref_primary_10_3390_s25133854
crossref_primary_10_1109_ACCESS_2019_2941892
crossref_primary_10_1109_TNNLS_2018_2876865
crossref_primary_10_1007_s12369_018_0507_2
crossref_primary_10_1049_iet_its_2018_5618
crossref_primary_10_1088_1742_6596_1883_1_012075
crossref_primary_10_1109_ACCESS_2020_3021508
crossref_primary_10_1007_s10489_021_02293_7
crossref_primary_10_1109_TVT_2018_2843394
crossref_primary_10_1007_s40815_019_00645_7
crossref_primary_10_1109_TITS_2018_2838128
crossref_primary_10_1016_j_neucom_2016_10_018
crossref_primary_10_1109_TIP_2017_2705426
crossref_primary_10_3390_s19040866
crossref_primary_10_1109_ACCESS_2019_2962100
crossref_primary_10_1109_ACCESS_2022_3165821
crossref_primary_10_1007_s11063_022_10910_w
crossref_primary_10_1109_TITS_2017_2686871
crossref_primary_10_3390_s20164363
crossref_primary_10_1109_TIP_2022_3189803
crossref_primary_10_1016_j_imavis_2019_04_003
crossref_primary_10_1007_s10851_018_0834_9
crossref_primary_10_3390_jimaging10010012
crossref_primary_10_1109_ACCESS_2024_3388889
crossref_primary_10_1155_2017_9830641
crossref_primary_10_1177_00202940221089237
crossref_primary_10_5507_tots_2019_002
crossref_primary_10_1109_ACCESS_2021_3057616
crossref_primary_10_1016_j_image_2016_05_007
crossref_primary_10_1587_transinf_2018EDL8170
crossref_primary_10_1007_s11042_019_07939_w
crossref_primary_10_1007_s11263_016_0890_9
crossref_primary_10_1016_j_smhl_2018_07_024
crossref_primary_10_1007_s11263_021_01512_5
crossref_primary_10_1186_s13640_016_0143_4
crossref_primary_10_1109_TNSE_2022_3227119
crossref_primary_10_1016_j_csi_2022_103702
crossref_primary_10_3233_MGS_200330
crossref_primary_10_1088_1742_6596_1865_4_042019
crossref_primary_10_1371_journal_pone_0208385
crossref_primary_10_1016_j_patcog_2019_04_018
crossref_primary_10_1109_TCSVT_2018_2883558
crossref_primary_10_1109_TITS_2017_2714691
crossref_primary_10_1109_TMM_2016_2638622
crossref_primary_10_1109_TMM_2023_3272471
crossref_primary_10_1002_ecj_12268
crossref_primary_10_1016_j_compag_2024_108963
crossref_primary_10_1186_s13638_022_02157_9
crossref_primary_10_1109_JSTSP_2022_3211198
crossref_primary_10_3390_s19040780
crossref_primary_10_1016_j_rcim_2019_101887
crossref_primary_10_1007_s11760_020_01742_z
crossref_primary_10_1109_TITS_2022_3171250
crossref_primary_10_1016_j_cviu_2016_05_003
crossref_primary_10_1049_cvi2_70010
crossref_primary_10_3390_inventions6040079
crossref_primary_10_1109_ACCESS_2018_2855703
crossref_primary_10_1145_3565886
crossref_primary_10_1088_1742_6596_1187_4_042100
crossref_primary_10_1109_ACCESS_2020_3012557
crossref_primary_10_3390_electronics9091478
crossref_primary_10_1016_j_patcog_2016_06_002
crossref_primary_10_1016_j_patcog_2018_10_008
crossref_primary_10_1587_transinf_2016EDL8164
crossref_primary_10_1016_j_future_2022_07_003
crossref_primary_10_3390_electronics13091697
crossref_primary_10_1007_s10489_022_03549_6
crossref_primary_10_1007_s00521_017_3152_z
crossref_primary_10_1016_j_cviu_2022_103554
crossref_primary_10_1016_j_dsp_2021_103370
crossref_primary_10_1016_j_infrared_2019_103178
crossref_primary_10_1007_s11554_020_00962_3
crossref_primary_10_1016_j_neucom_2020_12_005
crossref_primary_10_1007_s11042_022_13458_y
crossref_primary_10_1109_LRA_2024_3392083
crossref_primary_10_1109_TITS_2016_2561262
crossref_primary_10_3390_s18124290
crossref_primary_10_1109_ACCESS_2019_2948876
crossref_primary_10_1007_s11042_018_6057_7
crossref_primary_10_1007_s11042_018_6769_8
crossref_primary_10_1016_j_neunet_2023_01_028
crossref_primary_10_1007_s11042_022_13007_7
crossref_primary_10_1016_j_patcog_2018_10_028
crossref_primary_10_3390_agronomy14102253
crossref_primary_10_1109_ACCESS_2021_3114399
crossref_primary_10_1109_TIV_2016_2615523
crossref_primary_10_3390_rs16203862
crossref_primary_10_1109_ACCESS_2020_3046515
crossref_primary_10_3390_ijgi10040234
crossref_primary_10_3390_s25175497
crossref_primary_10_1109_TITS_2015_2409889
crossref_primary_10_1016_j_inffus_2022_06_008
crossref_primary_10_1109_JSEN_2019_2962834
crossref_primary_10_1016_j_patrec_2017_02_018
crossref_primary_10_1134_S1054661818020074
crossref_primary_10_1109_TIP_2018_2818018
crossref_primary_10_1007_s00138_018_0984_1
crossref_primary_10_1007_s13735_019_00180_z
crossref_primary_10_1051_itmconf_20171205004
crossref_primary_10_1007_s10489_023_04750_x
crossref_primary_10_1049_iet_ipr_2018_5424
crossref_primary_10_1049_iet_cvi_2016_0068
crossref_primary_10_1109_TIP_2018_2855399
crossref_primary_10_3390_rs12071217
crossref_primary_10_3390_sym11101205
crossref_primary_10_3390_app9020315
crossref_primary_10_3390_s19122671
crossref_primary_10_1016_j_phycom_2024_102303
crossref_primary_10_1016_j_enbuild_2024_113936
crossref_primary_10_1109_ACCESS_2021_3120618
crossref_primary_10_1007_s11263_018_1087_1
crossref_primary_10_1007_s13369_020_04990_w
crossref_primary_10_1109_LGRS_2019_2919755
crossref_primary_10_1109_TGRS_2019_2897139
crossref_primary_10_1109_TGRS_2020_3011418
crossref_primary_10_1109_ACCESS_2021_3119629
crossref_primary_10_1109_TITS_2019_2929618
crossref_primary_10_1007_s10334_020_00871_3
crossref_primary_10_1007_s11042_018_6974_5
crossref_primary_10_1016_j_cviu_2022_103508
crossref_primary_10_1109_TPAMI_2020_3032166
crossref_primary_10_1109_TITS_2020_3041679
crossref_primary_10_1007_s11760_018_1406_6
crossref_primary_10_1007_s00779_019_01278_1
crossref_primary_10_1109_TCDS_2019_2928338
crossref_primary_10_1007_s11042_019_07825_5
crossref_primary_10_1109_ACCESS_2019_2936454
crossref_primary_10_1142_S0218001416550223
crossref_primary_10_1109_ACCESS_2019_2943112
crossref_primary_10_1109_TMM_2017_2759508
crossref_primary_10_3390_s21124184
crossref_primary_10_1016_j_neunet_2023_06_012
crossref_primary_10_1109_JSEN_2021_3115016
crossref_primary_10_1016_j_isprsjprs_2023_01_009
crossref_primary_10_1016_j_neucom_2021_06_072
crossref_primary_10_1007_s00521_020_04731_y
crossref_primary_10_1016_j_patcog_2022_108738
crossref_primary_10_1049_itr2_12066
crossref_primary_10_1109_TIP_2016_2609807
crossref_primary_10_1109_TITS_2019_2906132
crossref_primary_10_1109_TITS_2020_2991848
crossref_primary_10_3389_fnbot_2023_1255085
crossref_primary_10_1109_ACCESS_2021_3093698
crossref_primary_10_3390_s17112699
crossref_primary_10_1007_s00521_021_05978_9
crossref_primary_10_1007_s11042_024_18852_2
crossref_primary_10_1186_s41935_022_00314_1
crossref_primary_10_1007_s11263_020_01369_0
crossref_primary_10_1007_s10489_023_04628_y
crossref_primary_10_1016_j_heliyon_2022_e09633
crossref_primary_10_1109_LSP_2022_3215920
crossref_primary_10_1109_TMM_2019_2929005
crossref_primary_10_1109_MM_2017_4241343
crossref_primary_10_1109_TIP_2019_2944306
crossref_primary_10_1007_s11042_018_5819_6
crossref_primary_10_1109_TII_2019_2897128
crossref_primary_10_1007_s11771_020_4448_1
crossref_primary_10_1109_TPAMI_2019_2897684
crossref_primary_10_3390_s18113776
crossref_primary_10_1002_rob_22082
crossref_primary_10_1155_2022_5878443
crossref_primary_10_1016_j_neucom_2018_03_070
crossref_primary_10_1109_TITS_2018_2847224
crossref_primary_10_1109_TPAMI_2014_2377734
crossref_primary_10_1016_j_knosys_2017_06_001
crossref_primary_10_1016_j_neucom_2018_02_068
crossref_primary_10_1109_TPAMI_2018_2807450
crossref_primary_10_1016_j_cviu_2016_03_003
crossref_primary_10_1007_s11042_019_08008_y
crossref_primary_10_1109_TITS_2019_2910643
crossref_primary_10_3390_app9030565
crossref_primary_10_3390_s21010027
crossref_primary_10_1016_j_eswa_2022_118406
crossref_primary_10_1007_s11263_022_01728_z
crossref_primary_10_1016_j_neucom_2019_11_023
crossref_primary_10_1016_j_neucom_2019_11_024
crossref_primary_10_3390_s24041168
crossref_primary_10_1007_s42154_018_0009_9
crossref_primary_10_3390_s16010128
crossref_primary_10_1007_s11042_019_07747_2
crossref_primary_10_3390_s18041063
crossref_primary_10_1007_s00138_020_01106_0
crossref_primary_10_1007_s00521_019_04424_1
crossref_primary_10_1007_s11042_023_15608_2
crossref_primary_10_1007_s00138_021_01169_7
crossref_primary_10_1016_j_eswa_2023_122190
crossref_primary_10_1016_j_jvcir_2016_06_011
crossref_primary_10_1177_0278364917730603
crossref_primary_10_1007_s13369_017_2424_3
crossref_primary_10_3390_a11120192
crossref_primary_10_4271_12_08_03_0027
crossref_primary_10_1016_j_imavis_2022_104553
crossref_primary_10_1109_TIM_2022_3165838
crossref_primary_10_1109_TSMC_2016_2587483
crossref_primary_10_1109_TCSVT_2016_2581660
crossref_primary_10_3390_rs13142665
crossref_primary_10_1088_1361_6501_acfd4d
crossref_primary_10_1109_THMS_2016_2620110
crossref_primary_10_1049_iet_its_2019_0468
crossref_primary_10_1016_j_neucom_2018_03_041
crossref_primary_10_1109_TITS_2018_2807199
crossref_primary_10_1049_iet_its_2018_5197
crossref_primary_10_1109_TIP_2022_3154286
crossref_primary_10_1016_j_eswa_2018_07_020
crossref_primary_10_1007_s11042_017_5002_5
crossref_primary_10_1016_j_procs_2017_09_094
crossref_primary_10_1109_TITS_2015_2502325
crossref_primary_10_1109_JIOT_2022_3195359
crossref_primary_10_3390_electronics12173576
crossref_primary_10_1051_0004_6361_202243478
crossref_primary_10_1007_s11063_016_9561_7
crossref_primary_10_1016_j_patcog_2022_108786
crossref_primary_10_3390_jimaging6120142
crossref_primary_10_1109_TITS_2024_3447453
crossref_primary_10_1016_j_matdes_2023_112470
crossref_primary_10_3390_s17020336
crossref_primary_10_1016_j_autcon_2021_103704
crossref_primary_10_1007_s11554_016_0573_3
crossref_primary_10_1007_s13735_019_00171_0
crossref_primary_10_1061_JTEPBS_TEENG_8652
crossref_primary_10_1016_j_cviu_2024_103957
crossref_primary_10_1109_ACCESS_2019_2922479
crossref_primary_10_3390_rs10121990
crossref_primary_10_1109_TETCI_2018_2865215
crossref_primary_10_1587_transinf_2018RCP0005
crossref_primary_10_1016_j_neucom_2019_10_025
crossref_primary_10_1117_1_JEI_32_2_023011
crossref_primary_10_1007_s10462_023_10475_7
crossref_primary_10_1109_TITS_2020_3019390
crossref_primary_10_1016_j_cosrev_2020_100301
crossref_primary_10_3390_sym13020250
crossref_primary_10_1007_s11042_020_09143_7
crossref_primary_10_1109_TPAMI_2021_3076733
crossref_primary_10_1016_j_displa_2022_102317
crossref_primary_10_1109_TITS_2017_2676182
crossref_primary_10_1007_s40998_022_00512_6
crossref_primary_10_1109_ACCESS_2020_2981620
crossref_primary_10_1109_TIP_2020_2966371
crossref_primary_10_1016_j_cviu_2020_102907
crossref_primary_10_1109_JSTARS_2020_3032221
crossref_primary_10_1016_j_imavis_2016_10_010
crossref_primary_10_2478_ttj_2019_0017
crossref_primary_10_1080_21642583_2022_2062479
crossref_primary_10_3390_s23239380
crossref_primary_10_1007_s00530_022_00974_y
crossref_primary_10_1109_TIP_2017_2773199
crossref_primary_10_3390_jimaging6080078
crossref_primary_10_1109_TITS_2016_2614548
crossref_primary_10_1109_TVT_2020_2983825
crossref_primary_10_1109_JSTARS_2025_3576127
crossref_primary_10_1049_ipr2_12297
crossref_primary_10_1109_TCSVT_2019_2913114
crossref_primary_10_1016_j_cviu_2016_09_001
crossref_primary_10_1016_j_procs_2019_01_018
crossref_primary_10_1016_j_jvcir_2019_06_004
crossref_primary_10_1109_TPAMI_2023_3290594
crossref_primary_10_1109_TITS_2019_2911315
crossref_primary_10_1109_TPAMI_2019_2929520
crossref_primary_10_1007_s10479_020_03823_1
crossref_primary_10_1109_TIV_2017_2726764
crossref_primary_10_1051_e3sconf_202124503062
crossref_primary_10_1007_s11227_020_03345_4
crossref_primary_10_3390_app10030809
crossref_primary_10_1109_TCSVT_2019_2950526
crossref_primary_10_1007_s11265_018_1374_7
crossref_primary_10_1109_TITS_2015_2495342
crossref_primary_10_1007_s00521_021_06628_w
crossref_primary_10_1109_TCSVT_2021_3060162
crossref_primary_10_1109_ACCESS_2025_3598771
crossref_primary_10_1109_TITS_2019_2933581
crossref_primary_10_3390_s18030882
crossref_primary_10_3390_jimaging6050027
crossref_primary_10_1109_TIP_2015_2483376
crossref_primary_10_1016_j_procs_2016_11_016
crossref_primary_10_1016_j_isprsjprs_2016_11_006
crossref_primary_10_1109_TIV_2017_2772889
crossref_primary_10_1007_s00521_021_06265_3
crossref_primary_10_1016_j_knosys_2022_108439
crossref_primary_10_1016_j_patcog_2016_09_010
crossref_primary_10_1109_ACCESS_2018_2889187
crossref_primary_10_1007_s00521_019_04057_4
crossref_primary_10_1049_iet_cvi_2018_5304
crossref_primary_10_1007_s11042_019_7204_5
crossref_primary_10_1109_TITS_2017_2756989
crossref_primary_10_1016_j_neucom_2017_11_060
crossref_primary_10_1016_j_patcog_2017_04_027
crossref_primary_10_1109_ACCESS_2020_3025193
crossref_primary_10_3390_s22124441
crossref_primary_10_1002_rob_21814
crossref_primary_10_1007_s10489_021_02254_0
crossref_primary_10_1049_iet_cvi_2018_5315
crossref_primary_10_1109_LGRS_2015_2439517
crossref_primary_10_1007_s00500_020_04999_1
crossref_primary_10_1109_TCYB_2018_2803217
crossref_primary_10_3389_fimag_2024_1387543
crossref_primary_10_1049_iet_cvi_2016_0403
crossref_primary_10_1088_1361_6501_abb745
crossref_primary_10_1109_TCYB_2015_2508603
crossref_primary_10_1016_j_neucom_2017_03_078
crossref_primary_10_1109_TPAMI_2023_3268864
crossref_primary_10_3390_jimaging6060048
crossref_primary_10_1007_s11265_018_1361_z
crossref_primary_10_1016_j_cej_2023_142756
crossref_primary_10_1016_j_knosys_2022_108254
crossref_primary_10_1080_01431161_2019_1685720
crossref_primary_10_1007_s11760_025_04032_8
crossref_primary_10_1186_s40537_018_0131_x
crossref_primary_10_3390_app132112068
crossref_primary_10_1109_TITS_2019_2923752
crossref_primary_10_1109_TITS_2024_3360875
crossref_primary_10_1109_ACCESS_2020_3015580
crossref_primary_10_1016_j_neucom_2017_03_050
crossref_primary_10_3390_rs12152379
crossref_primary_10_1016_j_isprsjprs_2019_02_005
crossref_primary_10_1016_j_fusengdes_2025_115164
crossref_primary_10_1016_j_neucom_2018_09_003
crossref_primary_10_1016_j_isprsjprs_2022_02_006
crossref_primary_10_1177_1729881417704544
crossref_primary_10_1680_jsmic_19_00017
crossref_primary_10_1587_transinf_2019EDP7092
crossref_primary_10_1109_ACCESS_2020_3012089
crossref_primary_10_1109_TITS_2019_2942045
crossref_primary_10_1117_1_JEI_31_4_043004
crossref_primary_10_1109_JSEN_2020_3038487
crossref_primary_10_3390_s19010004
crossref_primary_10_1016_j_cviu_2020_103030
crossref_primary_10_1109_TIP_2019_2938877
crossref_primary_10_1007_s11042_018_6173_4
crossref_primary_10_3390_s18072272
crossref_primary_10_1109_TIM_2019_2955799
crossref_primary_10_3233_ICA_200636
crossref_primary_10_1109_TNNLS_2024_3387282
crossref_primary_10_1049_iet_cvi_2018_5598
crossref_primary_10_1007_s11045_021_00764_1
crossref_primary_10_1007_s00530_016_0518_5
crossref_primary_10_1109_TCSVT_2021_3049397
crossref_primary_10_1109_TII_2019_2958826
crossref_primary_10_1109_TCSVT_2016_2539684
crossref_primary_10_1109_TITS_2020_2982804
crossref_primary_10_1007_s11042_022_14131_0
crossref_primary_10_3390_s22124416
crossref_primary_10_3390_diagnostics14151646
crossref_primary_10_1016_j_cviu_2017_10_009
crossref_primary_10_1109_TCSVT_2018_2882192
crossref_primary_10_1016_j_patcog_2016_08_015
crossref_primary_10_3390_s18113994
crossref_primary_10_1109_TMM_2021_3075323
crossref_primary_10_1007_s11265_023_01843_1
crossref_primary_10_1016_j_neucom_2017_03_007
crossref_primary_10_1109_TMM_2023_3323860
crossref_primary_10_1016_j_neucom_2015_03_125
crossref_primary_10_1109_TMM_2021_3140025
crossref_primary_10_1088_1742_6596_1964_6_062047
crossref_primary_10_1016_j_cosrev_2025_100804
crossref_primary_10_1016_j_engappai_2021_104469
crossref_primary_10_1109_TIP_2020_2973513
crossref_primary_10_1109_TPAMI_2019_2910514
crossref_primary_10_1109_ACCESS_2019_2901270
crossref_primary_10_1016_j_neucom_2017_12_042
crossref_primary_10_1007_s11042_022_13667_5
crossref_primary_10_1016_j_patrec_2017_11_014
crossref_primary_10_1109_TIP_2021_3049948
crossref_primary_10_1016_j_robot_2018_12_007
crossref_primary_10_1109_ACCESS_2025_3607191
crossref_primary_10_1109_ACCESS_2020_3022517
crossref_primary_10_1109_TITS_2018_2857814
crossref_primary_10_1016_j_cviu_2016_07_003
crossref_primary_10_1002_mp_14118
crossref_primary_10_1016_j_patcog_2018_01_029
crossref_primary_10_1007_s11063_019_10046_4
crossref_primary_10_1515_amcs_2017_0013
crossref_primary_10_1002_rob_21667
crossref_primary_10_1007_s11042_023_17188_7
crossref_primary_10_1007_s11063_022_10855_0
crossref_primary_10_1109_ACCESS_2019_2940626
crossref_primary_10_1109_TIE_2019_2898624
crossref_primary_10_3390_s151229838
crossref_primary_10_1049_joe_2015_0032
crossref_primary_10_1007_s41315_019_00107_1
crossref_primary_10_1109_TCSVT_2019_2906195
crossref_primary_10_1038_s41467_024_55749_y
crossref_primary_10_1109_TIP_2019_2896952
crossref_primary_10_1109_TITS_2019_2904836
crossref_primary_10_1145_3472288
crossref_primary_10_3390_e24081091
crossref_primary_10_1016_j_patcog_2016_07_010
crossref_primary_10_3390_rs9111170
crossref_primary_10_1016_j_seares_2018_09_014
crossref_primary_10_1007_s11263_020_01393_0
crossref_primary_10_1007_s11042_023_16595_0
crossref_primary_10_1016_j_imavis_2017_02_007
crossref_primary_10_3390_rs14143347
crossref_primary_10_1109_TITS_2019_2958486
crossref_primary_10_1007_s11045_018_0621_1
crossref_primary_10_3390_electronics8060595
crossref_primary_10_1088_1757_899X_646_1_012053
crossref_primary_10_1038_s41598_019_56309_x
crossref_primary_10_1007_s11554_021_01178_9
crossref_primary_10_1049_iet_cvi_2015_0451
crossref_primary_10_1109_TIV_2023_3302032
crossref_primary_10_3389_fnbot_2018_00064
crossref_primary_10_1109_LGRS_2017_2677954
crossref_primary_10_1177_1729881418770545
crossref_primary_10_1016_j_autcon_2020_103289
crossref_primary_10_1080_09540091_2023_2202363
crossref_primary_10_3390_electronics7100216
crossref_primary_10_1016_j_neucom_2019_08_038
crossref_primary_10_3390_s24216911
crossref_primary_10_1109_TITS_2017_2682181
crossref_primary_10_1109_TVT_2015_2500275
crossref_primary_10_1109_ACCESS_2022_3153708
crossref_primary_10_1016_j_cviu_2017_01_003
crossref_primary_10_1007_s10586_018_1747_5
crossref_primary_10_1016_j_cviu_2017_01_001
crossref_primary_10_1007_s11227_017_2202_8
crossref_primary_10_1109_TITS_2016_2594816
crossref_primary_10_3390_app14020731
crossref_primary_10_3390_s17040843
crossref_primary_10_1109_TITS_2016_2567418
crossref_primary_10_1007_s11063_017_9746_8
crossref_primary_10_1108_IR_11_2020_0246
crossref_primary_10_1016_j_imavis_2024_105106
crossref_primary_10_1016_j_neucom_2020_02_096
crossref_primary_10_3390_s21248410
crossref_primary_10_1007_s11042_018_6467_6
crossref_primary_10_3390_s16081296
crossref_primary_10_1007_s00034_025_03148_z
crossref_primary_10_3390_jmse13020205
crossref_primary_10_3390_s25082446
crossref_primary_10_1109_TCSVT_2017_2672686
crossref_primary_10_1007_s00371_021_02157_8
crossref_primary_10_1145_3635155
crossref_primary_10_1016_j_isprsjprs_2022_04_002
crossref_primary_10_3390_s20030628
crossref_primary_10_1109_TIFS_2019_2916592
crossref_primary_10_3390_rs15082041
crossref_primary_10_1007_s10586_024_04326_5
crossref_primary_10_1016_j_neucom_2019_08_016
crossref_primary_10_3390_s151229874
crossref_primary_10_1109_TSMC_2018_2871750
crossref_primary_10_3390_electronics13101989
crossref_primary_10_1109_TIP_2023_3272826
crossref_primary_10_1109_JSEN_2021_3062762
crossref_primary_10_1155_2015_767423
crossref_primary_10_1049_ipr2_12042
crossref_primary_10_1007_s10489_021_02294_6
crossref_primary_10_1109_ACCESS_2019_2939201
crossref_primary_10_3788_gzxb20255406_0610001
crossref_primary_10_1016_j_flowmeasinst_2023_102370
crossref_primary_10_1016_j_neucom_2020_02_075
crossref_primary_10_1016_j_neucom_2019_08_008
crossref_primary_10_1109_TPAMI_2014_2345390
crossref_primary_10_1016_j_neucom_2015_08_107
crossref_primary_10_1109_TITS_2019_2948044
crossref_primary_10_4018_IJSWIS_359769
crossref_primary_10_3390_s18124385
crossref_primary_10_3390_s24051709
crossref_primary_10_1109_TIV_2024_3367688
crossref_primary_10_1016_j_infrared_2016_12_021
crossref_primary_10_1016_j_patrec_2017_09_040
crossref_primary_10_1016_j_jvcir_2020_102843
crossref_primary_10_1371_journal_pone_0173317
crossref_primary_10_1088_1742_6596_1634_1_012032
crossref_primary_10_1109_TIP_2018_2865280
crossref_primary_10_1088_1742_6596_1544_1_012022
crossref_primary_10_1109_ACCESS_2019_2904712
crossref_primary_10_1007_s11042_018_6241_9
crossref_primary_10_1016_j_imavis_2021_104107
crossref_primary_10_1016_j_cviu_2014_10_003
crossref_primary_10_1016_j_patcog_2024_110541
crossref_primary_10_1109_TIP_2019_2917781
crossref_primary_10_1007_s00371_023_03137_w
crossref_primary_10_1177_09544070231153199
crossref_primary_10_1049_itr2_12562
crossref_primary_10_1016_j_apgeog_2015_07_010
crossref_primary_10_1109_JSSC_2019_2937437
crossref_primary_10_3390_s20133646
crossref_primary_10_1016_j_jvcir_2018_01_013
crossref_primary_10_1016_j_ifacol_2019_09_078
crossref_primary_10_1016_j_patcog_2018_02_022
crossref_primary_10_1016_j_compag_2024_109718
crossref_primary_10_1007_s11042_023_15862_4
crossref_primary_10_3390_app9020237
crossref_primary_10_1109_TITS_2016_2612705
crossref_primary_10_1016_j_engappai_2017_06_017
crossref_primary_10_1007_s11265_024_01941_8
crossref_primary_10_1109_TCSVT_2016_2556538
crossref_primary_10_1007_s11760_018_1364_z
crossref_primary_10_1016_j_engappai_2025_111979
crossref_primary_10_1016_j_jvcir_2021_103195
crossref_primary_10_1587_transinf_2016EDL8053
crossref_primary_10_1007_s00138_021_01181_x
crossref_primary_10_1109_ACCESS_2018_2803160
crossref_primary_10_1007_s11042_020_09493_2
crossref_primary_10_3390_s24010172
crossref_primary_10_1109_ACCESS_2018_2840329
crossref_primary_10_1109_TMM_2021_3082687
crossref_primary_10_3390_s20082180
crossref_primary_10_1016_j_imavis_2019_103867
crossref_primary_10_1007_s10846_018_0840_6
crossref_primary_10_3390_jimaging11060177
crossref_primary_10_1109_TCSVT_2019_2905373
crossref_primary_10_1007_s11042_020_08848_z
crossref_primary_10_1016_j_knosys_2021_106990
crossref_primary_10_1109_TIP_2019_2957927
crossref_primary_10_1016_j_isprsjprs_2018_04_003
crossref_primary_10_1016_j_patrec_2017_08_030
crossref_primary_10_1109_TPAMI_2022_3221079
crossref_primary_10_1109_ACCESS_2023_3297265
crossref_primary_10_4018_IJIRR_356489
crossref_primary_10_1016_j_patcog_2018_03_007
crossref_primary_10_1007_s11042_018_6387_5
crossref_primary_10_1016_j_compeleceng_2018_02_013
crossref_primary_10_3390_ijgi9020098
crossref_primary_10_1007_s10489_021_02798_1
crossref_primary_10_3390_s23135977
crossref_primary_10_1016_j_neucom_2023_126285
crossref_primary_10_4316_AECE_2023_02011
crossref_primary_10_3390_app11199202
crossref_primary_10_1109_TIP_2020_3038371
crossref_primary_10_1109_ACCESS_2024_3395786
crossref_primary_10_1109_TITS_2015_2465296
crossref_primary_10_1109_ACCESS_2019_2899105
crossref_primary_10_1109_JSTARS_2017_2694890
crossref_primary_10_1109_TIP_2019_2942686
crossref_primary_10_1049_iet_rsn_2020_0224
crossref_primary_10_1109_TIP_2019_2922095
crossref_primary_10_1109_TIM_2022_3192294
crossref_primary_10_1016_j_neucom_2022_10_080
crossref_primary_10_1016_j_dt_2021_10_007
crossref_primary_10_1109_LGRS_2019_2936173
crossref_primary_10_1007_s11042_019_08498_w
crossref_primary_10_3390_s16111904
crossref_primary_10_1002_ecs2_2992
crossref_primary_10_1016_j_compag_2021_106404
crossref_primary_10_1002_spe_3089
crossref_primary_10_1109_TIP_2017_2762591
crossref_primary_10_3390_app12189171
crossref_primary_10_3390_rs16061081
crossref_primary_10_1016_j_compenvurbsys_2020_101481
crossref_primary_10_1109_TITS_2015_2433019
crossref_primary_10_1109_TNNLS_2021_3105143
crossref_primary_10_1109_TIM_2022_3213016
crossref_primary_10_1016_j_patcog_2022_108847
crossref_primary_10_1631_FITEE_1601873
crossref_primary_10_1155_2015_148081
crossref_primary_10_1109_TCYB_2017_2776977
crossref_primary_10_1109_TITS_2018_2799228
crossref_primary_10_1109_ACCESS_2022_3150988
crossref_primary_10_1049_cvi2_12081
crossref_primary_10_3390_app13031461
crossref_primary_10_4081_jae_2024_1641
crossref_primary_10_1016_j_autcon_2019_102894
crossref_primary_10_1109_TIP_2016_2554321
crossref_primary_10_1016_j_patrec_2018_01_004
crossref_primary_10_1016_j_neucom_2019_03_004
crossref_primary_10_1109_ACCESS_2019_2953276
crossref_primary_10_1016_j_infrared_2021_103965
crossref_primary_10_1109_TNNLS_2020_3004819
crossref_primary_10_1109_TPAMI_2021_3119563
crossref_primary_10_3390_s16020263
crossref_primary_10_1109_TITS_2022_3206709
crossref_primary_10_1134_S0361768817040053
crossref_primary_10_3390_s21217267
crossref_primary_10_1007_s00530_022_00929_3
crossref_primary_10_1007_s11042_020_09616_9
crossref_primary_10_1109_TIV_2021_3133849
crossref_primary_10_1088_1757_899X_428_1_012030
crossref_primary_10_1016_j_neucom_2021_08_136
crossref_primary_10_1109_ACCESS_2019_2924947
crossref_primary_10_1016_j_patcog_2024_110704
crossref_primary_10_1145_3460770
crossref_primary_10_1371_journal_pone_0269198
crossref_primary_10_1049_joe_2018_8284
crossref_primary_10_1016_j_patrec_2015_07_043
crossref_primary_10_1007_s10278_023_00774_4
crossref_primary_10_1007_s12559_021_09898_7
crossref_primary_10_1186_s41074_018_0048_5
crossref_primary_10_3390_s21041232
crossref_primary_10_1016_j_cviu_2017_05_010
crossref_primary_10_1007_s11042_017_5530_z
crossref_primary_10_1016_j_cviu_2017_05_015
crossref_primary_10_1016_j_cviu_2019_102883
crossref_primary_10_3390_rs16162971
crossref_primary_10_1109_ACCESS_2019_2929182
crossref_primary_10_1016_j_ymssp_2020_107181
crossref_primary_10_1007_s10044_017_0625_8
crossref_primary_10_1145_3595379
crossref_primary_10_1007_s11042_019_08201_z
crossref_primary_10_1007_s11263_016_0960_z
crossref_primary_10_1109_ACCESS_2020_2967414
crossref_primary_10_1109_TCYB_2019_2916158
crossref_primary_10_1109_TCSVT_2016_2607378
crossref_primary_10_1007_s40313_015_0202_6
crossref_primary_10_1109_TNSE_2021_3139335
crossref_primary_10_1109_TPAMI_2017_2700460
crossref_primary_10_1007_s10489_023_04747_6
crossref_primary_10_1016_j_image_2019_115764
crossref_primary_10_1049_iet_ipr_2018_6209
crossref_primary_10_3390_s21175851
crossref_primary_10_1016_j_scs_2020_102600
crossref_primary_10_3390_s21041254
crossref_primary_10_1016_j_neucom_2017_01_084
crossref_primary_10_3390_s25020363
crossref_primary_10_1109_TCSVT_2021_3138851
crossref_primary_10_1134_S1054661817040149
crossref_primary_10_1007_s12652_025_04956_6
crossref_primary_10_1016_j_powtec_2024_119437
crossref_primary_10_1007_s11042_019_08578_x
crossref_primary_10_1016_j_patcog_2021_108373
crossref_primary_10_1109_ACCESS_2020_3003751
crossref_primary_10_1109_TVLSI_2018_2808104
crossref_primary_10_1007_s00371_021_02280_6
crossref_primary_10_1088_1742_6596_1802_3_032075
crossref_primary_10_1016_j_ijbiomac_2025_139519
crossref_primary_10_1007_s13735_021_00212_7
crossref_primary_10_1016_j_jpdc_2017_05_011
crossref_primary_10_1016_j_neucom_2019_04_001
crossref_primary_10_1007_s11263_019_01237_6
crossref_primary_10_1080_21642583_2021_1901156
crossref_primary_10_1109_TCSI_2021_3098053
crossref_primary_10_3390_s18103415
crossref_primary_10_3390_app9235172
crossref_primary_10_1109_MSEC_2018_2875851
crossref_primary_10_1016_j_jvcir_2021_103189
crossref_primary_10_1016_j_neucom_2024_128357
crossref_primary_10_1109_TITS_2021_3126231
crossref_primary_10_1007_s11042_019_08080_4
crossref_primary_10_3390_jsan10030042
crossref_primary_10_1007_s00521_023_08239_z
crossref_primary_10_1109_TMM_2020_3020691
crossref_primary_10_1016_j_neucom_2020_05_019
crossref_primary_10_1016_j_compmedimag_2017_07_003
crossref_primary_10_1016_j_cogr_2025_04_001
crossref_primary_10_1007_s00500_021_05912_0
crossref_primary_10_1007_s40815_016_0172_2
crossref_primary_10_1109_ACCESS_2019_2895376
crossref_primary_10_1049_iet_its_2019_0376
crossref_primary_10_1109_TIP_2017_2694224
crossref_primary_10_1007_s10489_022_03217_9
crossref_primary_10_1016_j_neucom_2017_01_043
crossref_primary_10_1007_s11042_021_10863_7
crossref_primary_10_53525_jster_1469697
crossref_primary_10_3390_jmmp9090297
crossref_primary_10_1109_TITS_2018_2801560
Cites_doi 10.1109/CVPR.2010.5539906
10.1364/JOSAA.2.001160
10.1109/5.52200
10.1109/ICCV.2007.4409092
10.1109/ICIP.1996.559512
10.1109/34.93808
10.1109/34.192463
10.1109/5.726791
10.1109/CVPR.2001.990517
10.1364/JOSAA.4.002379
10.1109/TPAMI.2011.155
10.1109/TASSP.1987.1165137
10.1088/0954-898X/5/4/006
10.1016/0042-6989(78)90232-8
10.1016/0042-6989(73)90201-0
10.1023/B:VISI.0000029664.99615.94
10.1109/34.730558
10.1007/s11263-009-0275-4
10.1109/TPAMI.2009.109
10.1109/CVPR.2005.310
10.1109/IVS.2010.5548145
10.1109/12.210173
10.1023/A:1011113216584
10.1109/CVPR.2012.6248017
10.1016/0042-6989(82)90113-4
10.1109/ICVS.2006.9
10.5244/C.23.91
10.1109/CVPR.2003.1211479
10.1103/PhysRevLett.73.814
10.2307/2310428
10.1109/CVPR.2011.5995668
10.1364/JOSAA.7.000923
10.1007/BF00288907
10.1007/BF00318371
10.1023/A:1008162616689
10.1177/0278364909341884
10.1109/ICCV.2007.4408860
10.1109/CVPR.2010.5540226
10.1007/s11263-007-0095-3
10.1109/TCOM.1983.1095851
10.1109/34.49051
10.1214/aos/1016218223
10.1016/0262-8856(92)90015-U
10.1038/14819
10.1113/jphysiol.1968.sp008455
10.1109/ICCV.1990.139492
10.1109/CVPR.2005.188
10.1109/CVPR.2005.177
10.1109/CVPR.2007.383134
10.1109/TPAMI.2009.144
10.1364/JOSAA.2.000284
10.1109/CVPR.2000.854739
10.1109/CVPR.2009.5206638
10.5244/C.24.68
10.1007/s11263-005-6644-8
10.1109/ICCV.2009.5459207
10.1109/ICCV.2009.5459205
10.1109/CVPR.1996.517092
10.1109/CVPR.2010.5540102
10.1109/ICCV.1999.790410
10.1109/TPAMI.2009.167
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
DOI 10.1109/TPAMI.2014.2300479
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Technology Research Database
PubMed
Technology Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 2160-9292
1939-3539
EndPage 1545
ExternalDocumentID 3378272931
26353336
28720933
10_1109_TPAMI_2014_2300479
6714453
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
AAYOK
IQODW
RIG
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
ID FETCH-LOGICAL-c414t-e562498397eb4a078dbdd7f43b74dff173f5244086efc235ba655535dbd60d7d3
IEDL.DBID RIE
ISICitedReferencesCount 1423
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000340191900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
IngestDate Thu Oct 02 12:10:40 EDT 2025
Sat Sep 27 20:59:22 EDT 2025
Mon Jun 30 04:29:28 EDT 2025
Mon Jul 21 05:51:17 EDT 2025
Wed Apr 02 07:46:48 EDT 2025
Sat Nov 29 05:15:56 EST 2025
Tue Nov 18 21:39:56 EST 2025
Wed Aug 27 02:47:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Bottleneck
Computer vision
Image recognition
Image resolution
Statistical analysis
Image processing
Visual features
pedestrian detection
Pedestrian
Real time
image pyramids
Narrow band
Texture
Multiresolution analysis
Multiple image
Visual system
Extrapolation
Surveillance
natural image statistics
real-time systems
Object detection
Fine grain structure
Natural scenes
Passband
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-e562498397eb4a078dbdd7f43b74dff173f5244086efc235ba655535dbd60d7d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26353336
PQID 1546090086
PQPubID 85458
PageCount 14
ParticipantIDs proquest_miscellaneous_1711537016
crossref_primary_10_1109_TPAMI_2014_2300479
proquest_miscellaneous_1671504973
pubmed_primary_26353336
proquest_journals_1546090086
ieee_primary_6714453
crossref_citationtrail_10_1109_TPAMI_2014_2300479
pascalfrancis_primary_28720933
PublicationCentury 2000
PublicationDate 2014-08-01
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2014
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
wojek (ref74) 2008
ref59
ref15
ref14
maffei (ref3) 1973; 13
ref53
ref52
ref11
ref10
zhang (ref48) 2007
ref16
ref19
crowley (ref42) 2002
ref18
ref51
ref50
zhang (ref61) 2008
lin (ref71) 2008
itti (ref17) 1998; 20
ref46
ref45
ref47
ref41
ref44
ref43
agarwal (ref55) 2002
ref7
ref9
ref4
weber (ref54) 2000
ref6
gu (ref58) 2009
ref5
wojek (ref60) 2008
ref35
ref34
ref37
ref36
ref75
ref31
ref30
ochman (ref49) 2005
ref33
ref76
ref2
ref1
ref39
ref38
zhu (ref63) 2006
ref70
krizhevsky (ref26) 2012
ref73
maji (ref72) 2008
ref68
ref67
ref23
ref69
ref25
ref64
ref20
doll r (ref40) 2012
ref66
ref22
riesenhuber (ref24) 1999; 2
ref65
ref21
mallat (ref8) 1989; 11
park (ref77) 2010
ref28
ref27
(ref32) 0
ref29
ref62
References_xml – ident: ref44
  doi: 10.1109/CVPR.2010.5539906
– ident: ref5
  doi: 10.1364/JOSAA.2.001160
– ident: ref9
  doi: 10.1109/5.52200
– ident: ref37
  doi: 10.1109/ICCV.2007.4409092
– ident: ref11
  doi: 10.1109/ICIP.1996.559512
– ident: ref12
  doi: 10.1109/34.93808
– volume: 11
  start-page: 647
  year: 1989
  ident: ref8
  article-title: A Theory for Multiresolution Signal Decomposition: The Wavelet Representation
  publication-title: IEEE Trans Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.192463
– year: 2008
  ident: ref71
  article-title: A Pose-Invariant Descriptor for Human Detection and Segmentation
  publication-title: Proc 10th European Conf Computer Vision (ECCV)
– ident: ref23
  doi: 10.1109/5.726791
– ident: ref27
  doi: 10.1109/CVPR.2001.990517
– ident: ref7
  doi: 10.1364/JOSAA.4.002379
– ident: ref31
  doi: 10.1109/TPAMI.2011.155
– ident: ref10
  doi: 10.1109/TASSP.1987.1165137
– ident: ref67
  doi: 10.1088/0954-898X/5/4/006
– ident: ref34
  doi: 10.1016/0042-6989(78)90232-8
– volume: 13
  start-page: 1255
  year: 1973
  ident: ref3
  article-title: The Visual Cortex as a Spatial Frequency Analyser
  publication-title: Vision Research
  doi: 10.1016/0042-6989(73)90201-0
– year: 0
  ident: ref32
– ident: ref25
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 20
  start-page: 1254
  year: 1998
  ident: ref17
  article-title: A Model of Saliency-Based Visual Attention for Rapid Scene Analysis
  publication-title: IEEE Trans Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.730558
– ident: ref38
  doi: 10.1007/s11263-009-0275-4
– year: 2000
  ident: ref54
  article-title: Unsupervised Learning of Models for Recognition
  publication-title: Proc European Conf Computer Vision (ECCV)
– ident: ref65
  doi: 10.1109/TPAMI.2009.109
– ident: ref47
  doi: 10.1109/CVPR.2005.310
– year: 2008
  ident: ref60
  article-title: Sliding-Windows for Rapid Object Class Localization: A Parallel Technique
  publication-title: Proc 30th DAGM Symp Pattern Recognition
– ident: ref62
  doi: 10.1109/IVS.2010.5548145
– ident: ref19
  doi: 10.1109/12.210173
– ident: ref51
  doi: 10.1023/A:1011113216584
– year: 2012
  ident: ref26
  article-title: Imagenet Classification with Deep Convolutional Neural Networks
  publication-title: Proc Advances in Neural Information Processing Systems (NIPS)
– ident: ref30
  doi: 10.1109/CVPR.2012.6248017
– ident: ref22
  doi: 10.1016/0042-6989(82)90113-4
– ident: ref43
  doi: 10.1109/ICVS.2006.9
– ident: ref29
  doi: 10.5244/C.23.91
– ident: ref56
  doi: 10.1109/CVPR.2003.1211479
– year: 2008
  ident: ref72
  article-title: Classification Using Intersection Kernel SVMs Is Efficient
  publication-title: Proc IEEE Conf Computer Vision and Pattern Recognition (CVPR)
– ident: ref33
  doi: 10.1103/PhysRevLett.73.814
– ident: ref68
  doi: 10.2307/2310428
– ident: ref45
  doi: 10.1109/CVPR.2011.5995668
– ident: ref13
  doi: 10.1364/JOSAA.7.000923
– ident: ref2
  doi: 10.1007/BF00288907
– ident: ref6
  doi: 10.1007/BF00318371
– year: 2008
  ident: ref61
  article-title: Efficient Scan-Window Based Object Detection Using GPGPU
  publication-title: Proc Workshop Visual Computer Vision on GPU?s (CVGPU)
– ident: ref53
  doi: 10.1023/A:1008162616689
– year: 2009
  ident: ref58
  article-title: Recognition Using Regions
  publication-title: Proc IEEE Conf Computer Vision and Pattern Recognition (CVPR)
– ident: ref66
  doi: 10.1177/0278364909341884
– ident: ref50
  doi: 10.1109/ICCV.2007.4408860
– ident: ref59
  doi: 10.1109/CVPR.2010.5540226
– ident: ref57
  doi: 10.1007/s11263-007-0095-3
– ident: ref4
  doi: 10.1109/TCOM.1983.1095851
– year: 2010
  ident: ref77
  article-title: Multiresolution Models for Object Detection
  publication-title: Proc 11th European Conf Computer Vision (ECCV)
– ident: ref41
  doi: 10.1109/34.49051
– ident: ref69
  doi: 10.1214/aos/1016218223
– ident: ref14
  doi: 10.1016/0262-8856(92)90015-U
– volume: 2
  start-page: 1019
  year: 1999
  ident: ref24
  article-title: Hierarchical Models of Object Recognition in Cortex
  publication-title: Nature Neuroscience
  doi: 10.1038/14819
– year: 2002
  ident: ref42
  article-title: Fast Computation of Characteristic Scale Using a Half-Octave Pyramid
  publication-title: Proc Fourth Int?l Conf Scale-Space Theories in Computer Vision
– ident: ref1
  doi: 10.1113/jphysiol.1968.sp008455
– ident: ref18
  doi: 10.1109/ICCV.1990.139492
– ident: ref64
  doi: 10.1109/CVPR.2005.188
– ident: ref21
  doi: 10.1109/CVPR.2005.177
– ident: ref70
  doi: 10.1109/CVPR.2007.383134
– ident: ref46
  doi: 10.1109/TPAMI.2009.144
– ident: ref15
  doi: 10.1364/JOSAA.2.000284
– ident: ref52
  doi: 10.1109/CVPR.2000.854739
– ident: ref36
  doi: 10.1109/CVPR.2009.5206638
– ident: ref39
  doi: 10.5244/C.24.68
– year: 2005
  ident: ref49
  article-title: Waldboost?Learning for Time Constrained Sequential Detection
  publication-title: Proc IEEE Conf Computer Vision and Pattern Recognition (CVPR)
– year: 2012
  ident: ref40
  article-title: Crosstalk Cascades for Frame-Rate Pedestrian Detection
  publication-title: Proc 12th European Conf Computer Vision (ECCV)
– ident: ref28
  doi: 10.1007/s11263-005-6644-8
– ident: ref73
  doi: 10.1109/ICCV.2009.5459207
– year: 2008
  ident: ref74
  article-title: A Performance Evaluation of Single and Multi-Feature People Detection
  publication-title: Proc 30th DAGM Symp Pattern Recognition (DAGM)
– year: 2002
  ident: ref55
  article-title: Learning a Sparse Representation for Object Detection
  publication-title: Proc European Conf Computer Vision (ECCV)
– ident: ref75
  doi: 10.1109/ICCV.2009.5459205
– ident: ref16
  doi: 10.1109/CVPR.1996.517092
– ident: ref76
  doi: 10.1109/CVPR.2010.5540102
– ident: ref20
  doi: 10.1109/ICCV.1999.790410
– ident: ref35
  doi: 10.1109/TPAMI.2009.167
– year: 2006
  ident: ref63
  article-title: Fast Human Detection Using a Cascade of Histograms of Oriented Gradients
  publication-title: Proc IEEE Conf Computer Vision and Pattern Recognition (CVPR)
– year: 2007
  ident: ref48
  article-title: Multiple-Instance Pruning for Learning Efficient Cascade Detectors
  publication-title: Proc Advances in Neural Information Processing Systems (NIPS)
SSID ssj0014503
Score 2.663328
Snippet Multi-resolution image features may be approximated via extrapolation from nearby scales, rather than being computed explicitly. This fundamental insight...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1532
SubjectTerms Accuracy
Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Approximation
Approximation methods
Artificial intelligence
Computation
Computer science; control theory; systems
Detectors
Exact sciences and technology
Feature extraction
Histograms
image pyramids
Mathematical analysis
natural image statistics
Object detection
Pattern recognition. Digital image processing. Computational geometry
pedestrian detection
Pyramids
real-time systems
Spectra
Texture
Theoretical computing
Visual features
Visual task performance
Visualization
Title Fast Feature Pyramids for Object Detection
URI https://ieeexplore.ieee.org/document/6714453
https://www.ncbi.nlm.nih.gov/pubmed/26353336
https://www.proquest.com/docview/1546090086
https://www.proquest.com/docview/1671504973
https://www.proquest.com/docview/1711537016
Volume 36
WOSCitedRecordID wos000340191900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FQc4tKUFGmhXQeIEhCbxKz5WLSs4UPZQpL1FfkWqBFm0ySLx75lxsilIUIlbJI9lZ2Ysf2OP5wN4JVwltXNFpq1yGUeMnFVFU2VBM6N0sNIoG8km1PV1tVzqxQ68nd7ChBBi8ll4R5_xLt-v3IaOys6lQvgv2C7sKqWGt1rTjQEXkQUZEQyucAwjtg9kcn1-s7j49JGyuDilPVNNdSoBjDstY7Ey891-FAlWKD3SdKihZqC2-Df2jHvQ_OD_Zn8I-yPWTC8G53gMO6E9goMtj0M6LusjePRbUcJjeD03XZ8SNNysQ7r4uTbfbn2XIrhNP1s6tUmvQh8TuNon8GX-_ubyQzYyKmSOF7zPAqIdrhETqWC5QXTgrfeq4cwq7pumUKwRJXFQy9C4kglrpBCCCRSTuVeePYW9dtWGE0ixlwtOeoQ3nJemtL6yslSWc5t7HCaBYqvX2o3lxon14msdw45c19EsNZmlHs2SwJupz_eh2Ma90sek5Ely1G8Csz_MN7VjbFjS-U0Cp1t71uOC7WpEkjLXFOAl8HJqxqVG9yemDasNyuAIAiMqxe6RUQixmUI3TODZ4Ct3Exhd7vnfJ_4CHtLvDdmFp7DXrzfhDB64H_1tt56hzy-rWfT5X1FB9_Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB-sFloftNVaY62m0Ke20ST7lX0U7aFUr_dwBd_CfgUEzZVLrtD_vrObXLTQCr4FdpbdzMyyv9mdnR_AR2YKLo3JEqmFSShi5KTIqiJxkighneZK6EA2Icbj4vpaTlbgy_AWxjkXks_ckf8Md_l2Zhb-qOyYC4T_jDyDNUZpnnWvtYY7A8oCDzJiGFzjGEgsn8ik8ng6Obm68Hlc1Cc--6rqvggw7rWEhNrM9ztSoFjxCZKqQR1VHbnF_9Fn2IVGm0-b_yvY6NFmfNK5x2tYcfUWbC6ZHOJ-YW_B-oOyhNvwaaSaNvbgcDF38eT3XN3d2CZGeBt_1_7cJj5zbUjhqt_Aj9HX6el50nMqJIZmtE0c4h0qERUJp6lCfGC1taKiRAtqqyoTpGK5Z6HmrjI5YVpxxhhhKMZTKyzZgdV6VrtdiLGXcYZbBDhoDZVrW2ieC02pTi0OE0G21Gtp-oLjnvfitgyBRyrLYJbSm6XszRLB56HPz67cxqPS217Jg2Sv3wgO_jLf0I7RYe5PcCLYX9qz7JdsUyKW5Kn0IV4EH4ZmXGz-BkXVbrZAGRyBYUwlyCMyAkE2EeiGEbztfOV-Ar3L7f174ofw4nx6dVleXoy_vYOX_le7XMN9WG3nC_cenptf7U0zPwie_weFA_pT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Feature+Pyramids+for+Object+Detection&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Dollar%2C+Piotr&rft.au=Appel%2C+Ron&rft.au=Belongie%2C+Serge&rft.au=Perona%2C+Pietro&rft.date=2014-08-01&rft.issn=0162-8828&rft.volume=36&rft.issue=8&rft.spage=1532&rft.epage=1545&rft_id=info:doi/10.1109%2FTPAMI.2014.2300479&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon