Fast R Functions for Robust Correlations and Hierarchical Clustering

Many high-throughput biological data analyses require the calculation of large correlation matrices and/or clustering of a large number of objects. The standard R function for calculating Pearson correlation can handle calculations without missing values efficiently, but is inefficient when applied...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of statistical software Ročník 46; číslo 11
Hlavní autori: Langfelder, Peter, Horvath, Steve
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Foundation for Open Access Statistics 01.03.2012
Predmet:
ISSN:1548-7660, 1548-7660
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Many high-throughput biological data analyses require the calculation of large correlation matrices and/or clustering of a large number of objects. The standard R function for calculating Pearson correlation can handle calculations without missing values efficiently, but is inefficient when applied to data sets with a relatively small number of missing data. We present an implementation of Pearson correlation calculation that can lead to substantial speedup on data with relatively small number of missing entries. Further, we parallelize all calculations and thus achieve further speedup on systems where parallel processing is available. A robust correlation measure, the biweight midcorrelation, is implemented in a similar manner and provides comparable speed. The functions cor and bicor for fast Pearson and biweight midcorrelation, respectively, are part of the updated, freely available R package WGCNA.The hierarchical clustering algorithm implemented in R function hclust is an order n(3) (n is the number of clustered objects) version of a publicly available clustering algorithm (Murtagh 2012). We present the package flashClust that implements the original algorithm which in practice achieves order approximately n(2), leading to substantial time savings when clustering large data sets.
AbstractList Many high-throughput biological data analyses require the calculation of large correlation matrices and/or clustering of a large number of objects. The standard R function for calculating Pearson correlation can handle calculations without missing values efficiently, but is inefficient when applied to data sets with a relatively small number of missing data. We present an implementation of Pearson correlation calculation that can lead to substantial speedup on data with relatively small number of missing entries. Further, we parallelize all calculations and thus achieve further speedup on systems where parallel processing is available. A robust correlation measure, the biweight midcorrelation, is implemented in a similar manner and provides comparable speed. The functions cor and bicor for fast Pearson and biweight midcorrelation, respectively, are part of the updated, freely available R package WGCNA.The hierarchical clustering algorithm implemented in R function hclust is an order n(3) (n is the number of clustered objects) version of a publicly available clustering algorithm (Murtagh 2012). We present the package flashClust that implements the original algorithm which in practice achieves order approximately n(2), leading to substantial time savings when clustering large data sets.
Many high-throughput biological data analyses require the calculation of large correlation matrices and/or clustering of a large number of objects. The standard R function for calculating Pearson correlation can handle calculations without missing values efficiently, but is inefficient when applied to data sets with a relatively small number of missing data. We present an implementation of Pearson correlation calculation that can lead to substantial speedup on data with relatively small number of missing entries. Further, we parallelize all calculations and thus achieve further speedup on systems where parallel processing is available. A robust correlation measure, the biweight midcorrelation, is implemented in a similar manner and provides comparable speed. The functions cor and bicor for fast Pearson and biweight midcorrelation, respectively, are part of the updated, freely available R package WGCNA. The hierarchical clustering algorithm implemented in R function hclust is an order n3 (n is the number of clustered objects) version of a publicly available clustering algorithm (Murtagh 2012). We present the package flashClust that implements the original algorithm which in practice achieves order approximately n2, leading to substantial time savings when clustering large data sets.
Many high-throughput biological data analyses require the calculation of large correlation matrices and/or clustering of a large number of objects. The standard R function for calculating Pearson correlation can handle calculations without missing values efficiently, but is inefficient when applied to data sets with a relatively small number of missing data. We present an implementation of Pearson correlation calculation that can lead to substantial speedup on data with relatively small number of missing entries. Further, we parallelize all calculations and thus achieve further speedup on systems where parallel processing is available. A robust correlation measure, the biweight midcorrelation, is implemented in a similar manner and provides comparable speed. The functions cor and bicor for fast Pearson and biweight midcorrelation, respectively, are part of the updated, freely available R package WGCNA.The hierarchical clustering algorithm implemented in R function hclust is an order n(3) (n is the number of clustered objects) version of a publicly available clustering algorithm (Murtagh 2012). We present the package flashClust that implements the original algorithm which in practice achieves order approximately n(2), leading to substantial time savings when clustering large data sets.Many high-throughput biological data analyses require the calculation of large correlation matrices and/or clustering of a large number of objects. The standard R function for calculating Pearson correlation can handle calculations without missing values efficiently, but is inefficient when applied to data sets with a relatively small number of missing data. We present an implementation of Pearson correlation calculation that can lead to substantial speedup on data with relatively small number of missing entries. Further, we parallelize all calculations and thus achieve further speedup on systems where parallel processing is available. A robust correlation measure, the biweight midcorrelation, is implemented in a similar manner and provides comparable speed. The functions cor and bicor for fast Pearson and biweight midcorrelation, respectively, are part of the updated, freely available R package WGCNA.The hierarchical clustering algorithm implemented in R function hclust is an order n(3) (n is the number of clustered objects) version of a publicly available clustering algorithm (Murtagh 2012). We present the package flashClust that implements the original algorithm which in practice achieves order approximately n(2), leading to substantial time savings when clustering large data sets.
Many high-throughput biological data analyses require the calculation of large correlation matrices and/or clustering of a large number of objects. The standard R function for calculating Pearson correlation can handle calculations without missing values efficiently, but is inefficient when applied to data sets with a relatively small number of missing data. We present an implementation of Pearson correlation calculation that can lead to substantial speedup on data with relatively small number of missing entries. Further, we parallelize all calculations and thus achieve further speedup on systems where parallel processing is available. A robust correlation measure, the biweight midcorrelation, is implemented in a similar manner and provides comparable speed. The functions cor and bicor for fast Pearson and biweight midcorrelation, respectively, are part of the updated, freely available R package WGCNA.The hierarchical clustering algorithm implemented in R function hclustis an order n^3 (n is the number of clustered objects) version of a publicly available clustering algorithm (Murtagh 2012). We present the package flashClust that implements the original algorithm which in practice achieves order approximately n^2, leading to substantial time savings when clustering large data sets.
Author Langfelder, Peter
Horvath, Steve
Author_xml – sequence: 1
  givenname: Peter
  surname: Langfelder
  fullname: Langfelder, Peter
– sequence: 2
  givenname: Steve
  surname: Horvath
  fullname: Horvath, Steve
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23050260$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1rFDEYh4NU7Icevcocvcyaz5nMRZDVtYWCUHoPb762WbJJTWYK_vfG3VpawVPCmyfP74XfOTpJOTmE3hO8InJg46ddrasHzIdVIOQVOiOCy34cBnzy7H6KzmvdYUwxn8QbdEoZFpgO-Ax93UCdu5tusyQzh5xq53PpbrJe2nidS3ERjnNItrsMrkAxd8FA7NaxMa6EtH2LXnuI1b17PC_Q7ebb7fqyv_7x_Wr95bo3nPC5N5MfiGTAjJbUwmQJjJRqqjXh0jtN2OjBDthPkguHJyqJNIw7PWHBANgFujpqbYadui9hD-WXyhDUYZDLVkGZg4lOea-t0NICnoBrP4HXI0hrWg7xgrrm-nx03S9676xxaS4QX0hfvqRwp7b5QTE-iJGQJvj4KCj55-LqrPahGhcjJJeXqoikDWSC04Z-eJ71FPK3hQb0R8CUXGtx_gkhWB1aVq1l9adlFQ7Z7B_ehPlQU1s1xP_8-g0lja5t
CitedBy_id crossref_primary_10_3390_sym16111510
crossref_primary_10_1126_sciimmunol_abl9165
crossref_primary_10_1038_srep26815
crossref_primary_10_1016_j_actatropica_2022_106749
crossref_primary_10_1093_infdis_jiz121
crossref_primary_10_1093_hr_uhae290
crossref_primary_10_1371_journal_pone_0090962
crossref_primary_10_1016_j_jenvman_2018_06_085
crossref_primary_10_1038_s41420_022_00824_w
crossref_primary_10_1016_j_scitotenv_2022_156177
crossref_primary_10_1534_g3_118_200017
crossref_primary_10_1007_s00253_023_12752_5
crossref_primary_10_1186_s12891_024_07707_4
crossref_primary_10_1038_s41598_024_53890_8
crossref_primary_10_3390_cells8030216
crossref_primary_10_3389_fmicb_2023_1194871
crossref_primary_10_1016_j_scitotenv_2021_149368
crossref_primary_10_3389_fgene_2019_01120
crossref_primary_10_3389_fcell_2022_915198
crossref_primary_10_1016_j_jhazmat_2021_127958
crossref_primary_10_3389_fsurg_2022_963850
crossref_primary_10_1186_s12864_018_4738_2
crossref_primary_10_1186_s12864_022_08953_3
crossref_primary_10_3389_fimmu_2022_978851
crossref_primary_10_1128_spectrum_01489_25
crossref_primary_10_1038_s41590_020_00817_w
crossref_primary_10_1155_2020_2137319
crossref_primary_10_1007_s11357_021_00329_x
crossref_primary_10_1016_j_scitotenv_2023_169740
crossref_primary_10_1093_bioadv_vbac006
crossref_primary_10_1016_j_scitotenv_2018_12_144
crossref_primary_10_1016_j_scitotenv_2022_155051
crossref_primary_10_3389_fanim_2023_1179773
crossref_primary_10_1038_s41398_020_00979_z
crossref_primary_10_1016_j_neuron_2022_09_028
crossref_primary_10_1186_s12859_022_04605_1
crossref_primary_10_3389_fpls_2022_1038109
crossref_primary_10_1111_jcmm_70424
crossref_primary_10_1038_s41598_023_44183_7
crossref_primary_10_1038_s41598_019_51627_6
crossref_primary_10_1111_ppl_13746
crossref_primary_10_1016_j_cbd_2021_100884
crossref_primary_10_1038_s41467_019_10591_5
crossref_primary_10_1038_s41564_023_01432_9
crossref_primary_10_1002_joc_6754
crossref_primary_10_1111_1462_2920_15091
crossref_primary_10_1016_j_soilbio_2022_108573
crossref_primary_10_1002_jgm_3620
crossref_primary_10_7554_eLife_60100
crossref_primary_10_3389_fonc_2025_1519533
crossref_primary_10_1534_genetics_116_198051
crossref_primary_10_1155_2021_7430315
crossref_primary_10_1111_nph_70089
crossref_primary_10_1002_ece3_70953
crossref_primary_10_3389_fnut_2022_992331
crossref_primary_10_1111_pce_14522
crossref_primary_10_1038_s41598_025_05792_6
crossref_primary_10_3389_fgene_2022_939328
crossref_primary_10_1177_11769351251323239
crossref_primary_10_1038_s41586_019_1917_5
crossref_primary_10_1002_hbm_25654
crossref_primary_10_1016_j_soilbio_2018_05_003
crossref_primary_10_1016_j_jpsychires_2018_09_017
crossref_primary_10_1038_s41598_020_57467_z
crossref_primary_10_1186_s12865_017_0238_4
crossref_primary_10_1371_journal_pone_0088669
crossref_primary_10_1158_2159_8290_CD_20_0706
crossref_primary_10_1016_j_alcohol_2013_08_004
crossref_primary_10_1152_japplphysiol_00680_2023
crossref_primary_10_1186_s12918_018_0644_0
crossref_primary_10_1038_s41598_019_52883_2
crossref_primary_10_3389_fpls_2022_864605
crossref_primary_10_1128_msystems_01337_21
crossref_primary_10_3389_fpls_2020_00224
crossref_primary_10_1021_acs_est_5c01206
crossref_primary_10_1007_s00401_018_1900_5
crossref_primary_10_1007_s00253_021_11666_4
crossref_primary_10_1186_s13287_022_02988_9
crossref_primary_10_1007_s11596_017_1734_8
crossref_primary_10_2983_035_044_0109
crossref_primary_10_3758_s13428_021_01772_6
crossref_primary_10_1016_j_apsoil_2025_106421
crossref_primary_10_1016_j_neo_2024_101013
crossref_primary_10_3390_ijms21010292
crossref_primary_10_1016_j_scitotenv_2022_160418
crossref_primary_10_1016_j_still_2021_105169
crossref_primary_10_1177_14703203251356435
crossref_primary_10_3389_fmicb_2019_02463
crossref_primary_10_1016_j_envint_2020_105869
crossref_primary_10_1371_journal_pgen_1005305
crossref_primary_10_1007_s11684_024_1122_2
crossref_primary_10_1016_j_geoderma_2025_117419
crossref_primary_10_1111_cpr_12386
crossref_primary_10_1186_s12935_020_01179_x
crossref_primary_10_1038_s41598_025_90744_3
crossref_primary_10_1128_msystems_00529_22
crossref_primary_10_1186_s12891_024_07967_0
crossref_primary_10_3724_abbs_2025067
crossref_primary_10_3892_mmr_2019_10443
crossref_primary_10_1038_s42003_025_08578_8
crossref_primary_10_1088_1742_6596_1955_1_012108
crossref_primary_10_3389_fgene_2018_00228
crossref_primary_10_3389_fgene_2022_922074
crossref_primary_10_1016_j_soilbio_2018_07_022
crossref_primary_10_1038_s43588_023_00429_y
crossref_primary_10_1016_j_intimp_2025_114836
crossref_primary_10_1111_acel_13450
crossref_primary_10_1016_j_ecoenv_2020_111749
crossref_primary_10_1007_s43032_023_01363_0
crossref_primary_10_3389_fgene_2020_600097
crossref_primary_10_14814_phy2_15068
crossref_primary_10_1016_j_molmet_2025_102219
crossref_primary_10_1111_tpj_15726
crossref_primary_10_1111_wrr_12963
crossref_primary_10_1016_j_jaci_2024_04_022
crossref_primary_10_1038_s41598_019_52712_6
crossref_primary_10_1161_ATVBAHA_123_319332
crossref_primary_10_1186_s12859_021_04256_8
crossref_primary_10_1016_j_scitotenv_2024_171269
crossref_primary_10_1016_j_apsoil_2025_105942
crossref_primary_10_1186_s12915_023_01558_6
crossref_primary_10_3389_fcell_2023_1198949
crossref_primary_10_1016_j_bbadis_2016_11_014
crossref_primary_10_3390_ijms241411304
crossref_primary_10_3390_jof7040270
crossref_primary_10_1186_s12859_018_2351_7
crossref_primary_10_3390_cancers12010037
crossref_primary_10_1186_s12864_021_07742_8
crossref_primary_10_3389_fphar_2023_1173961
crossref_primary_10_3389_fbioe_2017_00084
crossref_primary_10_1186_s12885_021_08660_4
crossref_primary_10_1007_s11104_025_07553_w
crossref_primary_10_1038_s41467_023_37246_w
crossref_primary_10_3389_fimmu_2022_970950
crossref_primary_10_3390_agriculture11111113
crossref_primary_10_3389_fmicb_2022_858508
crossref_primary_10_1016_j_jhazmat_2024_134032
crossref_primary_10_1186_s13229_019_0262_8
crossref_primary_10_1007_s11307_023_01828_3
crossref_primary_10_3389_fcell_2023_1159355
crossref_primary_10_1186_s12885_019_6462_y
crossref_primary_10_1016_j_compbiomed_2023_106703
crossref_primary_10_1038_nature20612
crossref_primary_10_1038_s41598_023_44884_z
crossref_primary_10_3389_fmicb_2021_802201
crossref_primary_10_1016_j_yexcr_2024_114196
crossref_primary_10_3390_nu11061265
crossref_primary_10_1016_j_apsoil_2024_105441
crossref_primary_10_3389_fimmu_2023_1257652
crossref_primary_10_3389_fmicb_2022_1084452
crossref_primary_10_1111_nph_20039
crossref_primary_10_1038_s41398_021_01536_y
crossref_primary_10_1038_s41598_025_03111_7
crossref_primary_10_1093_burnst_tkad020
crossref_primary_10_3389_fcell_2024_1478757
crossref_primary_10_1038_s41467_024_48106_6
crossref_primary_10_1007_s10528_023_10601_8
crossref_primary_10_1007_s12602_022_09974_w
crossref_primary_10_1038_s41467_021_23111_1
crossref_primary_10_15672_hujms_1679033
crossref_primary_10_1186_1471_2164_15_845
crossref_primary_10_1177_1744806920918057
crossref_primary_10_1016_j_catena_2022_106520
crossref_primary_10_1086_729927
crossref_primary_10_1038_s41598_018_30779_x
crossref_primary_10_1186_s40168_022_01318_8
crossref_primary_10_2217_bmm_2020_0325
crossref_primary_10_1007_s42832_025_0336_9
crossref_primary_10_1016_j_csbj_2019_12_009
crossref_primary_10_1007_s00253_023_12676_0
crossref_primary_10_1007_s13167_023_00334_4
crossref_primary_10_1128_AEM_00533_21
crossref_primary_10_3390_vaccines10040612
crossref_primary_10_1007_s42832_025_0301_7
crossref_primary_10_1016_j_jhazmat_2022_128465
crossref_primary_10_1007_s00122_025_05032_5
crossref_primary_10_1093_molbev_msaf078
crossref_primary_10_3389_fpls_2023_1212559
crossref_primary_10_1038_s41598_020_67753_5
crossref_primary_10_2136_sssaj2018_11_0426
crossref_primary_10_3389_fcell_2021_702974
crossref_primary_10_1016_j_bbi_2023_03_004
crossref_primary_10_1186_s41065_020_00151_z
crossref_primary_10_1093_plcell_koae095
crossref_primary_10_1186_s12885_022_09290_0
crossref_primary_10_1111_cas_15303
crossref_primary_10_1016_j_soilbio_2021_108517
crossref_primary_10_1016_j_ygeno_2021_12_011
crossref_primary_10_1016_j_ygeno_2020_05_026
crossref_primary_10_1016_j_ygeno_2024_110879
crossref_primary_10_3389_fonc_2021_622880
crossref_primary_10_1016_j_apsoil_2020_103796
crossref_primary_10_1038_srep45303
crossref_primary_10_3389_fnagi_2022_968190
crossref_primary_10_3390_genes11091067
crossref_primary_10_1016_j_apsoil_2025_105976
crossref_primary_10_1371_journal_pone_0152648
crossref_primary_10_1038_s41467_018_06891_x
crossref_primary_10_1097_FPC_0000000000000461
crossref_primary_10_1038_s41598_022_07132_4
crossref_primary_10_3389_fbioe_2021_651895
crossref_primary_10_3390_brainsci12091138
crossref_primary_10_1038_s41598_017_17735_x
crossref_primary_10_1038_srep10237
crossref_primary_10_3390_microorganisms11051116
crossref_primary_10_1155_2022_1661334
crossref_primary_10_1073_pnas_1806760115
crossref_primary_10_1007_s11427_023_2432_9
crossref_primary_10_1111_mec_17653
crossref_primary_10_1038_s41598_020_67894_7
crossref_primary_10_3390_ijms26189234
crossref_primary_10_1007_s11103_021_01122_2
crossref_primary_10_1016_j_anbehav_2024_10_011
crossref_primary_10_3389_fmicb_2022_895687
crossref_primary_10_1038_s41587_019_0298_5
crossref_primary_10_7717_peerj_11427
crossref_primary_10_1093_ismeco_ycaf044
crossref_primary_10_1177_11779322241281652
crossref_primary_10_1177_1744806919878088
crossref_primary_10_1111_jcmm_70083
crossref_primary_10_1186_s13637_017_0059_z
crossref_primary_10_1186_s13148_023_01457_1
crossref_primary_10_1186_s12864_021_08163_3
crossref_primary_10_1186_s12974_022_02462_6
crossref_primary_10_12688_f1000research_18705_2
crossref_primary_10_1007_s11356_025_36002_5
crossref_primary_10_1080_21691401_2019_1613421
crossref_primary_10_1186_s12967_020_02502_w
crossref_primary_10_1186_s13148_022_01272_0
crossref_primary_10_12688_f1000research_18705_1
crossref_primary_10_1128_mSystems_00195_16
crossref_primary_10_1186_s12920_021_01012_y
crossref_primary_10_1038_s44183_024_00083_5
crossref_primary_10_1186_s12864_021_08054_7
crossref_primary_10_1155_2022_4629419
crossref_primary_10_3389_fimmu_2023_1264093
crossref_primary_10_1007_s11802_023_5344_8
crossref_primary_10_3389_fmicb_2025_1528865
crossref_primary_10_1007_s10265_025_01631_x
crossref_primary_10_3390_genes9020092
crossref_primary_10_1177_20552076221147433
crossref_primary_10_1371_journal_pone_0227258
crossref_primary_10_1186_s12864_015_1741_8
crossref_primary_10_3389_fpls_2025_1547897
crossref_primary_10_1016_j_imbio_2023_152750
crossref_primary_10_1007_s11104_022_05797_4
crossref_primary_10_1038_s41598_024_53327_2
crossref_primary_10_1002_ctm2_479
crossref_primary_10_1007_s00374_024_01884_z
crossref_primary_10_1016_j_envpol_2022_119572
crossref_primary_10_1002_alz_14460
crossref_primary_10_3389_fonc_2020_576565
crossref_primary_10_1038_s41536_021_00179_3
crossref_primary_10_1016_j_cej_2021_130489
crossref_primary_10_1111_1462_2920_16629
crossref_primary_10_3389_fpls_2023_1087707
crossref_primary_10_1038_s41598_024_63588_6
crossref_primary_10_1016_j_chemosphere_2023_140377
crossref_primary_10_1016_j_jenvman_2025_124846
crossref_primary_10_1038_s41598_025_90578_z
crossref_primary_10_1016_j_foreco_2023_120901
crossref_primary_10_1111_rda_14231
crossref_primary_10_1038_s41598_022_26395_5
crossref_primary_10_3389_fendo_2021_820463
crossref_primary_10_1016_j_pedsph_2023_12_016
crossref_primary_10_3390_horticulturae11080974
crossref_primary_10_1016_j_neurobiolaging_2022_12_014
crossref_primary_10_1016_j_foodchem_2022_132438
crossref_primary_10_1038_s41597_025_04771_w
crossref_primary_10_1093_treephys_tpx054
crossref_primary_10_1111_gcb_16211
crossref_primary_10_1007_s42832_024_0289_4
crossref_primary_10_1186_s40168_023_01539_5
crossref_primary_10_1111_tpj_17111
crossref_primary_10_1111_tpj_70305
crossref_primary_10_1038_s41398_017_0044_z
crossref_primary_10_1016_j_envpol_2022_119360
crossref_primary_10_1164_rccm_201607_1407OC
crossref_primary_10_1002_glia_23176
crossref_primary_10_1016_j_nmd_2016_10_011
crossref_primary_10_1038_s41398_019_0488_4
crossref_primary_10_7717_peerj_11691
crossref_primary_10_1016_j_jhazmat_2023_131175
crossref_primary_10_3389_fcvm_2024_1475991
crossref_primary_10_3389_fnmol_2018_00454
crossref_primary_10_3389_fonc_2022_990398
crossref_primary_10_1016_j_ibmb_2024_104115
crossref_primary_10_3389_fnins_2022_823741
crossref_primary_10_1016_j_alcohol_2013_04_002
crossref_primary_10_3390_cancers12071809
crossref_primary_10_1016_j_apsoil_2024_105712
crossref_primary_10_4251_wjgo_v15_i10_1717
crossref_primary_10_3390_biology12091230
crossref_primary_10_1038_s41522_023_00369_5
crossref_primary_10_1016_j_ecolind_2025_113394
crossref_primary_10_1016_j_heliyon_2024_e31528
crossref_primary_10_3390_ijms25158154
crossref_primary_10_3389_fvets_2025_1577028
crossref_primary_10_14814_phy2_12208
crossref_primary_10_3897_imafungus_16_e140187
crossref_primary_10_1093_bioadv_vbaf055
crossref_primary_10_1038_s41598_023_27378_w
crossref_primary_10_3389_fmicb_2021_667632
crossref_primary_10_1128_msystems_00066_18
crossref_primary_10_3389_fnins_2021_680530
crossref_primary_10_1007_s11103_018_0754_5
crossref_primary_10_1111_tpj_16248
crossref_primary_10_1155_2022_7117014
crossref_primary_10_1016_j_scitotenv_2023_162972
crossref_primary_10_7554_eLife_106239_3
crossref_primary_10_1186_s12870_014_0307_2
crossref_primary_10_3389_fpls_2021_666075
crossref_primary_10_3389_fgene_2021_756471
crossref_primary_10_1093_carcin_bgz040
crossref_primary_10_1186_s12859_022_04909_2
crossref_primary_10_3390_cancers14133284
crossref_primary_10_3390_jox13030024
crossref_primary_10_3389_fbioe_2015_00106
crossref_primary_10_1007_s00253_016_7774_3
crossref_primary_10_1016_j_ecss_2024_108949
crossref_primary_10_1016_j_cryobiol_2025_105258
crossref_primary_10_1111_pce_15009
crossref_primary_10_1038_s41467_023_41926_y
crossref_primary_10_1038_srep23805
crossref_primary_10_1007_s42832_023_0197_z
crossref_primary_10_1038_s43587_024_00730_z
crossref_primary_10_1186_s12870_024_05804_z
crossref_primary_10_1016_j_rsma_2025_104175
crossref_primary_10_3390_cancers10090307
crossref_primary_10_1186_s12915_022_01398_w
crossref_primary_10_1186_s12959_025_00750_8
crossref_primary_10_1007_s11104_022_05829_z
crossref_primary_10_1134_S0026261722020102
crossref_primary_10_1371_journal_pone_0156006
crossref_primary_10_1111_jcmm_17477
crossref_primary_10_1007_s12672_025_03497_w
crossref_primary_10_1007_s42729_025_02575_w
crossref_primary_10_1126_science_abb2494
crossref_primary_10_1038_s41598_017_05044_2
crossref_primary_10_1177_19450265251375945
crossref_primary_10_2147_JIR_S439779
crossref_primary_10_1186_s12263_019_0639_5
crossref_primary_10_1111_gbb_12697
crossref_primary_10_3390_cells12131685
crossref_primary_10_1007_s10482_025_02085_w
crossref_primary_10_1007_s42995_025_00279_9
crossref_primary_10_3389_fpls_2023_1096225
crossref_primary_10_1016_j_pedsph_2025_01_011
crossref_primary_10_1007_s11104_024_06993_0
crossref_primary_10_1093_nar_gky750
crossref_primary_10_1007_s00253_019_09867_z
crossref_primary_10_1016_j_funeco_2024_101357
crossref_primary_10_1038_sdata_2018_233
crossref_primary_10_1038_s41598_017_13176_8
crossref_primary_10_3389_fcimb_2019_00297
crossref_primary_10_1093_treephys_tpac115
crossref_primary_10_1093_bjd_ljac007
crossref_primary_10_3389_fgene_2020_622659
crossref_primary_10_3389_fnagi_2022_838436
crossref_primary_10_1186_s12872_020_01838_x
crossref_primary_10_1038_s41477_023_01491_0
crossref_primary_10_1007_s11103_024_01422_3
crossref_primary_10_1007_s11104_024_07134_3
crossref_primary_10_1016_j_scitotenv_2022_159004
crossref_primary_10_1016_j_gpb_2018_04_008
crossref_primary_10_3389_fpls_2020_00524
crossref_primary_10_1038_s41374_022_00830_7
crossref_primary_10_1016_S1002_0160_19_60838_6
crossref_primary_10_1038_s41396_019_0567_9
crossref_primary_10_1016_j_jad_2024_01_173
crossref_primary_10_1016_j_pbb_2013_12_009
crossref_primary_10_1145_3757060
crossref_primary_10_3389_fpsyt_2024_1425552
crossref_primary_10_7717_peerj_12394
crossref_primary_10_1016_j_fmre_2025_03_018
crossref_primary_10_1186_s13098_023_01136_4
crossref_primary_10_1038_s41401_023_01137_z
crossref_primary_10_1038_s41420_023_01635_3
crossref_primary_10_3389_fpls_2024_1451215
crossref_primary_10_7554_eLife_37059
crossref_primary_10_1038_s41598_024_60137_z
crossref_primary_10_3390_s22186826
crossref_primary_10_1164_rccm_202103_0569OC
crossref_primary_10_1186_s12859_020_03914_7
crossref_primary_10_1007_s11368_022_03301_0
crossref_primary_10_3390_admsci14020026
crossref_primary_10_1371_journal_pone_0191407
crossref_primary_10_1111_mec_17676
crossref_primary_10_1016_j_molimm_2013_08_008
crossref_primary_10_1016_j_apsoil_2022_104416
crossref_primary_10_3389_fnagi_2024_1352681
crossref_primary_10_1038_s41598_023_48002_x
crossref_primary_10_1038_srep28663
crossref_primary_10_1002_ueg2_70064
crossref_primary_10_7554_eLife_29655
crossref_primary_10_1038_s41598_021_86970_0
crossref_primary_10_1038_s41598_018_35704_w
crossref_primary_10_1038_s41598_022_27326_0
crossref_primary_10_1021_acs_jafc_5c04171
crossref_primary_10_1038_srep30981
crossref_primary_10_1111_gcb_17160
crossref_primary_10_1016_j_apsoil_2025_106275
crossref_primary_10_1111_1462_2920_15922
crossref_primary_10_3390_ijms242115819
crossref_primary_10_1186_s13073_021_00924_9
crossref_primary_10_3390_genes13050749
crossref_primary_10_1038_s41467_020_14999_2
crossref_primary_10_1093_plcell_koaf208
crossref_primary_10_1136_bmjinnov_2020_000547
crossref_primary_10_1177_13872877241299104
crossref_primary_10_1186_s13059_019_1866_1
crossref_primary_10_1038_s41420_024_01968_7
crossref_primary_10_1038_srep33460
crossref_primary_10_3389_fonc_2022_914078
crossref_primary_10_1016_j_fcr_2022_108712
crossref_primary_10_3389_fimmu_2017_00445
crossref_primary_10_1186_s13048_024_01556_4
crossref_primary_10_1002_glia_24633
crossref_primary_10_1038_s41586_018_0623_z
crossref_primary_10_3847_1538_3881_ac174c
crossref_primary_10_3389_fmicb_2021_684386
crossref_primary_10_1016_j_envint_2022_107279
crossref_primary_10_1186_s12920_023_01439_5
crossref_primary_10_1177_13872877251378778
crossref_primary_10_1016_j_neuron_2022_01_006
crossref_primary_10_3389_fonc_2020_01716
crossref_primary_10_1371_journal_pone_0273982
crossref_primary_10_1016_j_envint_2023_107789
crossref_primary_10_1111_tpj_15656
crossref_primary_10_1002_wcms_70042
crossref_primary_10_1186_s12864_020_6706_x
crossref_primary_10_1016_j_jaci_2019_06_025
crossref_primary_10_1016_j_micres_2024_127931
crossref_primary_10_1016_j_pedsph_2022_06_044
crossref_primary_10_1038_s41598_023_29101_1
crossref_primary_10_3892_etm_2019_7973
crossref_primary_10_3389_fgene_2021_696956
crossref_primary_10_3897_imafungus_16_140187
crossref_primary_10_1186_s12974_021_02296_8
crossref_primary_10_1016_j_pedsph_2024_08_007
crossref_primary_10_1159_000503828
crossref_primary_10_1016_j_jtrangeo_2019_102474
crossref_primary_10_1186_s12864_016_3176_2
crossref_primary_10_2147_JIR_S507274
crossref_primary_10_1111_mec_17186
crossref_primary_10_1093_pcp_pcx193
crossref_primary_10_1186_s42397_022_00129_4
crossref_primary_10_1038_s41593_025_02007_z
crossref_primary_10_1161_CIRCRESAHA_123_323464
crossref_primary_10_1089_omi_2016_0177
crossref_primary_10_1109_JBHI_2025_3548263
crossref_primary_10_1186_s13195_022_01044_1
crossref_primary_10_1186_s40478_019_0797_0
crossref_primary_10_1007_s00374_023_01719_3
crossref_primary_10_1016_j_agee_2021_107651
crossref_primary_10_1186_s12864_019_5747_5
crossref_primary_10_1038_nature18646
crossref_primary_10_3389_fimmu_2023_1178193
crossref_primary_10_1016_j_scitotenv_2025_178960
crossref_primary_10_1016_j_compbiomed_2023_107085
crossref_primary_10_1371_journal_pone_0315014
crossref_primary_10_1111_nph_17132
crossref_primary_10_3389_fendo_2023_1193622
crossref_primary_10_3390_antiox11081506
crossref_primary_10_1016_j_soilbio_2023_108989
crossref_primary_10_1016_j_jenvman_2022_115859
crossref_primary_10_3389_fimmu_2022_873871
crossref_primary_10_1093_bib_bbab314
crossref_primary_10_1016_j_scitotenv_2023_167499
crossref_primary_10_1093_advances_nmz022
crossref_primary_10_1038_nature18637
crossref_primary_10_3389_fimmu_2020_609900
crossref_primary_10_1016_j_plgene_2020_100234
crossref_primary_10_1002_pmic_201600057
crossref_primary_10_1093_hmg_ddx014
crossref_primary_10_1016_j_gecco_2024_e03171
crossref_primary_10_1038_s41598_022_18396_1
crossref_primary_10_1016_j_jhazmat_2025_138843
crossref_primary_10_3390_en16041984
crossref_primary_10_1016_j_jhazmat_2022_129482
crossref_primary_10_1007_s10528_025_11211_2
crossref_primary_10_3389_fcell_2020_577032
crossref_primary_10_1093_molbev_msae035
crossref_primary_10_3389_fgene_2021_726670
crossref_primary_10_1038_nm_4213
crossref_primary_10_7554_eLife_58597
crossref_primary_10_1038_s41598_020_75322_z
crossref_primary_10_3389_fimmu_2022_988303
crossref_primary_10_1073_pnas_2319811121
crossref_primary_10_12688_wellcomeopenres_15115_1
crossref_primary_10_3389_fgene_2022_895587
crossref_primary_10_1016_j_pedobi_2020_150699
crossref_primary_10_1016_j_ejsobi_2021_103378
crossref_primary_10_1038_s41522_022_00277_0
crossref_primary_10_1038_s41598_023_50938_z
crossref_primary_10_1016_j_scitotenv_2023_165056
crossref_primary_10_15252_emmm_201708202
crossref_primary_10_1007_s42773_023_00247_5
crossref_primary_10_1109_TNB_2023_3283462
crossref_primary_10_1038_s41559_018_0682_4
crossref_primary_10_1073_pnas_2004945117
crossref_primary_10_1186_1756_0381_5_19
crossref_primary_10_3390_ijms232415932
crossref_primary_10_1093_cercor_bhz115
crossref_primary_10_1002_mco2_180
crossref_primary_10_1016_j_ygeno_2021_08_014
crossref_primary_10_3390_horticulturae8090793
crossref_primary_10_1038_s41467_023_44182_2
crossref_primary_10_1186_s12870_019_2012_7
crossref_primary_10_1371_journal_pbio_3000046
crossref_primary_10_1016_j_scitotenv_2018_10_277
crossref_primary_10_1186_s40478_021_01306_3
crossref_primary_10_1186_s40478_022_01494_6
crossref_primary_10_1111_ecog_07110
crossref_primary_10_1186_s12864_019_6002_9
crossref_primary_10_1038_s41598_017_11928_0
crossref_primary_10_3389_fpls_2016_01229
crossref_primary_10_3389_pore_2021_609083
crossref_primary_10_1186_s40945_021_00125_y
crossref_primary_10_1016_j_isci_2025_113133
crossref_primary_10_1371_journal_pone_0193334
crossref_primary_10_1111_mec_14531
crossref_primary_10_3389_fpls_2017_01217
crossref_primary_10_3389_fimmu_2021_616967
crossref_primary_10_3389_fmolb_2023_1000248
crossref_primary_10_1093_jpe_rtaf069
crossref_primary_10_1093_nar_gkab352
crossref_primary_10_1186_s12864_022_08912_y
crossref_primary_10_1007_s00403_022_02522_0
crossref_primary_10_1016_j_jhazmat_2019_122002
crossref_primary_10_1159_000529376
crossref_primary_10_1002_cam4_4109
crossref_primary_10_1111_pbi_12991
crossref_primary_10_1007_s00439_020_02230_7
crossref_primary_10_1093_conphys_coz018
crossref_primary_10_1097_MD_0000000000037645
crossref_primary_10_1186_s12935_020_01361_1
crossref_primary_10_1016_j_marenvres_2024_106544
crossref_primary_10_1093_nargab_lqae006
crossref_primary_10_1371_journal_pone_0277033
crossref_primary_10_1096_fj_201800534R
crossref_primary_10_1016_j_scitotenv_2023_162393
crossref_primary_10_1186_s12931_021_01896_5
crossref_primary_10_7554_eLife_80500
crossref_primary_10_1016_j_catena_2022_106809
crossref_primary_10_1016_j_still_2025_106450
crossref_primary_10_1038_s43705_022_00156_x
crossref_primary_10_3390_nu15143101
crossref_primary_10_1038_s41598_020_77318_1
crossref_primary_10_1111_1365_2435_70131
crossref_primary_10_3389_fpls_2024_1404889
crossref_primary_10_1111_odi_12593
crossref_primary_10_1016_j_cell_2025_05_001
crossref_primary_10_1038_s41559_016_0014
crossref_primary_10_1111_mec_15835
crossref_primary_10_1038_nn_4256
crossref_primary_10_1155_2020_4612158
crossref_primary_10_1016_j_scitotenv_2024_175561
crossref_primary_10_1186_s12864_020_6467_6
crossref_primary_10_1038_s41467_025_58027_7
crossref_primary_10_3389_fendo_2022_1032064
crossref_primary_10_1093_femsec_fiz033
crossref_primary_10_1093_bib_bby008
crossref_primary_10_1016_j_jhazmat_2022_128589
crossref_primary_10_1126_science_aat6720
crossref_primary_10_1016_j_scitotenv_2021_145008
crossref_primary_10_1016_j_rhisph_2022_100593
crossref_primary_10_3390_microorganisms11051212
crossref_primary_10_1093_gigascience_giaf039
crossref_primary_10_3390_microorganisms9030465
crossref_primary_10_3390_plants13172352
crossref_primary_10_1093_pcp_pcaf011
crossref_primary_10_3389_fpls_2021_775051
crossref_primary_10_3390_ijms23052715
crossref_primary_10_3389_fpls_2019_01325
crossref_primary_10_3389_fimmu_2022_937832
crossref_primary_10_1186_s12862_020_01633_4
crossref_primary_10_1186_s12967_021_03078_9
crossref_primary_10_3390_genes12050665
crossref_primary_10_7554_eLife_58993
crossref_primary_10_1186_s12986_022_00665_5
crossref_primary_10_1111_mec_13626
crossref_primary_10_1007_s00299_025_03503_z
crossref_primary_10_1016_j_molmet_2025_102159
crossref_primary_10_1016_j_aquaculture_2021_736393
crossref_primary_10_1016_j_scitotenv_2022_156202
crossref_primary_10_1038_s41523_021_00329_2
crossref_primary_10_1016_j_ecolind_2025_113316
crossref_primary_10_1111_jora_12535
crossref_primary_10_3390_ijms25073863
crossref_primary_10_3389_fimmu_2021_659193
crossref_primary_10_1007_s13580_020_00306_x
crossref_primary_10_1038_s41598_021_03777_9
crossref_primary_10_3390_jcm8081160
crossref_primary_10_1186_s13068_024_02569_3
crossref_primary_10_3390_ijms26052331
crossref_primary_10_1038_s41467_021_23649_0
crossref_primary_10_3389_fgene_2020_00981
crossref_primary_10_1016_j_scitotenv_2022_157820
crossref_primary_10_3390_cancers16132429
crossref_primary_10_7717_peerj_7304
crossref_primary_10_3389_fimmu_2024_1401733
crossref_primary_10_3389_fimmu_2019_00180
crossref_primary_10_3389_fimmu_2022_1067075
crossref_primary_10_1186_s12985_021_01643_8
crossref_primary_10_1371_journal_pone_0308585
crossref_primary_10_3389_fimmu_2022_1048774
crossref_primary_10_1007_s11104_024_07072_0
crossref_primary_10_3390_f14061207
crossref_primary_10_1210_clinem_dgab146
crossref_primary_10_1002_ijc_32001
crossref_primary_10_1186_s12920_023_01432_y
crossref_primary_10_1016_j_bbi_2022_04_015
crossref_primary_10_1093_jhered_esab014
crossref_primary_10_1016_j_envpol_2022_119477
crossref_primary_10_1371_journal_pone_0185682
crossref_primary_10_1371_journal_pone_0061505
crossref_primary_10_1186_s12929_022_00867_2
crossref_primary_10_1111_cts_12690
crossref_primary_10_1186_s12917_024_04331_1
crossref_primary_10_1016_j_soilbio_2022_108916
crossref_primary_10_1016_j_tmrv_2024_150837
crossref_primary_10_1186_s13027_023_00492_0
crossref_primary_10_1007_s10460_019_09930_5
crossref_primary_10_1007_s11663_024_03187_y
crossref_primary_10_1534_g3_118_200910
crossref_primary_10_1038_srep40218
crossref_primary_10_2217_epi_2019_0003
crossref_primary_10_3233_CBM_200594
crossref_primary_10_1038_s41598_022_12257_7
crossref_primary_10_1159_000524196
crossref_primary_10_1038_s41598_019_41298_8
crossref_primary_10_1111_nph_70101
crossref_primary_10_1016_j_scitotenv_2021_146430
crossref_primary_10_1534_g3_117_300169
crossref_primary_10_3389_fmolb_2021_622643
crossref_primary_10_3389_fmicb_2022_904451
crossref_primary_10_3389_fpls_2018_01155
crossref_primary_10_1182_bloodadvances_2024015085
crossref_primary_10_1016_j_watres_2025_123757
crossref_primary_10_1016_j_jrp_2014_07_003
crossref_primary_10_1016_j_scitotenv_2022_153257
crossref_primary_10_1080_17474124_2021_1845142
crossref_primary_10_1016_j_scitotenv_2024_172575
crossref_primary_10_1111_mec_16644
crossref_primary_10_7554_eLife_39188
crossref_primary_10_1038_srep16767
crossref_primary_10_1093_llc_fqv034
crossref_primary_10_1128_AEM_00349_21
crossref_primary_10_1111_ppl_70157
crossref_primary_10_1186_s12864_016_3070_y
crossref_primary_10_1007_s00360_023_01513_5
crossref_primary_10_1007_s00438_020_01735_0
crossref_primary_10_3389_fcell_2021_793793
crossref_primary_10_1016_j_jenvman_2023_118710
crossref_primary_10_1038_s41417_022_00577_9
crossref_primary_10_3390_f14040770
crossref_primary_10_1016_j_apsoil_2024_105854
crossref_primary_10_1093_bib_bbad067
crossref_primary_10_1093_pnasnexus_pgae029
crossref_primary_10_1186_s12870_020_02578_y
crossref_primary_10_1038_s41598_019_50952_0
crossref_primary_10_1128_msphere_00845_24
crossref_primary_10_1016_j_soilbio_2020_108047
crossref_primary_10_3390_microorganisms13081934
crossref_primary_10_3892_mmr_2016_5018
crossref_primary_10_1038_nbt_4152
crossref_primary_10_1016_j_jad_2022_08_108
crossref_primary_10_1038_s41593_020_0592_z
crossref_primary_10_1002_jbmr_2781
crossref_primary_10_1016_j_jhazmat_2023_133236
crossref_primary_10_1007_s00468_025_02605_1
crossref_primary_10_1002_jnr_24082
crossref_primary_10_1096_fj_202201413R
crossref_primary_10_1038_s41438_020_00421_x
crossref_primary_10_3390_biom14060630
crossref_primary_10_3892_ol_2019_10725
crossref_primary_10_3389_fcimb_2018_00326
crossref_primary_10_1038_s41392_020_00457_4
crossref_primary_10_2217_epi_15_98
crossref_primary_10_1038_s41598_019_46491_3
crossref_primary_10_1186_s12885_018_4848_x
crossref_primary_10_2337_dc20_2975
crossref_primary_10_3389_fonc_2014_00147
crossref_primary_10_3389_fgene_2022_891301
crossref_primary_10_1016_j_soilbio_2018_03_017
crossref_primary_10_1371_journal_pone_0272117
crossref_primary_10_1038_s44320_025_00121_5
crossref_primary_10_3389_fmicb_2020_579290
crossref_primary_10_1109_TCBBIO_2025_3568376
crossref_primary_10_1016_j_envpol_2022_120293
crossref_primary_10_1007_s11802_020_4461_x
crossref_primary_10_1038_s42003_023_05275_2
crossref_primary_10_1111_aji_70114
crossref_primary_10_3390_genes8120357
crossref_primary_10_1186_s12870_020_02383_7
crossref_primary_10_1093_plphys_kiad315
crossref_primary_10_1007_s00284_023_03608_2
crossref_primary_10_1016_j_scitotenv_2019_06_108
crossref_primary_10_1161_ATVBAHA_121_316615
crossref_primary_10_3389_fmicb_2022_831746
crossref_primary_10_1038_s41598_025_07738_4
crossref_primary_10_1016_j_foodchem_2016_04_107
crossref_primary_10_3389_fmicb_2017_02190
crossref_primary_10_1515_sagmb_2016_0059
crossref_primary_10_1007_s42832_023_0196_0
crossref_primary_10_1038_s41598_022_08102_6
crossref_primary_10_1016_j_scitotenv_2023_166190
crossref_primary_10_1038_s41467_023_44680_3
crossref_primary_10_1186_s12870_024_05697_y
crossref_primary_10_1016_j_jep_2024_118400
crossref_primary_10_1038_ismej_2015_261
crossref_primary_10_1038_s41598_024_75797_0
crossref_primary_10_1155_2021_6014202
crossref_primary_10_1038_s41396_020_00796_8
crossref_primary_10_1128_mSphere_00021_15
crossref_primary_10_3389_fgene_2023_1157258
crossref_primary_10_3390_ani14162395
crossref_primary_10_1038_s41598_022_17645_7
crossref_primary_10_1016_j_foodchem_2017_08_050
crossref_primary_10_3389_fonc_2022_905888
crossref_primary_10_1111_gbb_12560
crossref_primary_10_1016_j_catena_2022_106025
crossref_primary_10_1016_j_catena_2022_106026
crossref_primary_10_3892_mmr_2015_3903
crossref_primary_10_1007_s10142_025_01537_w
crossref_primary_10_3389_fpls_2023_1252885
crossref_primary_10_1016_j_bbi_2025_03_016
crossref_primary_10_1016_j_jalz_2017_08_012
crossref_primary_10_1111_mec_17588
crossref_primary_10_1002_dad2_12490
crossref_primary_10_3389_fmolb_2021_743012
crossref_primary_10_1038_s41598_021_91214_2
crossref_primary_10_1093_plcell_koaa017
crossref_primary_10_2147_OTT_S303544
crossref_primary_10_1111_1462_2920_13820
crossref_primary_10_1038_s41467_023_44264_1
crossref_primary_10_1016_j_watres_2024_122547
crossref_primary_10_1097_CJI_0000000000000463
crossref_primary_10_1093_jxb_erad348
crossref_primary_10_3389_fgene_2020_583124
crossref_primary_10_1007_s12672_025_02624_x
crossref_primary_10_1210_en_2018_00949
crossref_primary_10_1371_journal_pgen_1005064
crossref_primary_10_2147_JHC_S424545
crossref_primary_10_1097_MD_0000000000017100
crossref_primary_10_3390_ijms22179146
crossref_primary_10_7554_eLife_106239
crossref_primary_10_3390_foods12020376
crossref_primary_10_1172_JCI123726
crossref_primary_10_2147_COPD_S325300
crossref_primary_10_3389_fimmu_2022_952413
crossref_primary_10_3390_cancers17182942
crossref_primary_10_1080_15592324_2024_2371693
crossref_primary_10_3389_fimmu_2020_00715
crossref_primary_10_3389_fgene_2021_641100
crossref_primary_10_1186_s12870_020_2251_7
crossref_primary_10_3390_ijms22020574
crossref_primary_10_1186_s12864_017_4257_6
crossref_primary_10_1007_s00374_024_01804_1
crossref_primary_10_1186_s13059_020_02257_z
crossref_primary_10_1111_ppl_14056
crossref_primary_10_1016_j_pedsph_2023_07_004
crossref_primary_10_1111_pai_14274
crossref_primary_10_1002_2211_5463_13134
crossref_primary_10_1111_mec_17552
crossref_primary_10_1177_15330338211035270
crossref_primary_10_1016_j_jid_2019_07_725
crossref_primary_10_1038_s41598_022_14077_1
crossref_primary_10_1038_s42003_021_02335_3
crossref_primary_10_1093_femsle_fny269
crossref_primary_10_26508_lsa_202101108
crossref_primary_10_1002_tpg2_20364
crossref_primary_10_1038_ijo_2017_95
crossref_primary_10_1093_hmg_ddaa132
crossref_primary_10_1038_nm_4055
crossref_primary_10_1038_s42255_025_01351_5
crossref_primary_10_1016_j_jare_2025_04_043
crossref_primary_10_1007_s00439_016_1638_x
crossref_primary_10_1016_j_plaphy_2023_02_016
crossref_primary_10_1038_npjsba_2015_10
crossref_primary_10_3390_metabo13060683
crossref_primary_10_3389_fimmu_2021_789317
crossref_primary_10_3390_cells10092367
crossref_primary_10_1186_s13195_023_01184_y
crossref_primary_10_1371_journal_pone_0240523
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.18637/jss.v046.i11
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1548-7660
ExternalDocumentID oai_doaj_org_article_ffbd5b8da09a4bf9afb7a8dc48f1f52e
PMC3465711
23050260
10_18637_jss_v046_i11
Genre Journal Article
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R01 DK072206
– fundername: NIA NIH HHS
  grantid: RC1 AG035610
– fundername: NIAID NIH HHS
  grantid: U19 AI063603
– fundername: NIDCR NIH HHS
  grantid: R01 DE019255
– fundername: NCI NIH HHS
  grantid: P50 CA092131
– fundername: National Cancer Institute : NCI
  grantid: P50 CA092131 || CA
GroupedDBID 29L
2WC
5GY
5VS
AAFWJ
AAKPC
AAYXX
ACGFO
ACIPV
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
C1A
CITATION
E3Z
EBS
EJD
F5P
GROUPED_DOAJ
GX1
IPNFZ
KQ8
M~E
OK1
OVT
P2P
RIG
RNS
TR2
XSB
NPM
7X8
5PM
ID FETCH-LOGICAL-c414t-c9f6183a3cb82da9d1a722b2bb148feb137fad60f9845e092818c34eb9053aa3
IEDL.DBID DOA
ISICitedReferencesCount 936
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000301231300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1548-7660
IngestDate Fri Oct 03 12:53:28 EDT 2025
Tue Sep 30 15:44:05 EDT 2025
Thu Oct 02 10:41:05 EDT 2025
Thu May 23 23:19:05 EDT 2024
Tue Nov 18 22:26:25 EST 2025
Sat Nov 29 04:37:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-c9f6183a3cb82da9d1a722b2bb148feb137fad60f9845e092818c34eb9053aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/ffbd5b8da09a4bf9afb7a8dc48f1f52e
PMID 23050260
PQID 1826573542
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_ffbd5b8da09a4bf9afb7a8dc48f1f52e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3465711
proquest_miscellaneous_1826573542
pubmed_primary_23050260
crossref_primary_10_18637_jss_v046_i11
crossref_citationtrail_10_18637_jss_v046_i11
PublicationCentury 2000
PublicationDate 2012-03-01
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of statistical software
PublicationTitleAlternate J Stat Softw
PublicationYear 2012
Publisher Foundation for Open Access Statistics
Publisher_xml – name: Foundation for Open Access Statistics
References 18024473 - Bioinformatics. 2008 Mar 1;24(5):719-20
12202830 - Science. 2002 Aug 30;297(5586):1551-5
17250769 - BMC Bioinformatics. 2007 Jan 24;8:22
19114008 - BMC Bioinformatics. 2008 Dec 29;9:559
16646834 - Stat Appl Genet Mol Biol. 2005;4:Article17
16934000 - PLoS Genet. 2006 Aug 18;2(8):e130
17090670 - Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17402-7
17592643 - BMC Bioinformatics. 2007 Jun 25;8:220
References_xml – reference: 19114008 - BMC Bioinformatics. 2008 Dec 29;9:559
– reference: 16934000 - PLoS Genet. 2006 Aug 18;2(8):e130
– reference: 17250769 - BMC Bioinformatics. 2007 Jan 24;8:22
– reference: 18024473 - Bioinformatics. 2008 Mar 1;24(5):719-20
– reference: 12202830 - Science. 2002 Aug 30;297(5586):1551-5
– reference: 16646834 - Stat Appl Genet Mol Biol. 2005;4:Article17
– reference: 17090670 - Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17402-7
– reference: 17592643 - BMC Bioinformatics. 2007 Jun 25;8:220
SSID ssj0020495
Score 2.5740864
Snippet Many high-throughput biological data analyses require the calculation of large correlation matrices and/or clustering of a large number of objects. The...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms hierarchical clustering
Pearson correlation
robust correlation
Title Fast R Functions for Robust Correlations and Hierarchical Clustering
URI https://www.ncbi.nlm.nih.gov/pubmed/23050260
https://www.proquest.com/docview/1826573542
https://pubmed.ncbi.nlm.nih.gov/PMC3465711
https://doaj.org/article/ffbd5b8da09a4bf9afb7a8dc48f1f52e
Volume 46
WOSCitedRecordID wos000301231300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1548-7660
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020495
  issn: 1548-7660
  databaseCode: DOA
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1548-7660
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020495
  issn: 1548-7660
  databaseCode: M~E
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5B1QMcEC2vAK2MhDiRNokdP46wdNUDrVDVw96i8UtstcqiZrdHfjvjJLvqIhAXLlHkWMnom7FnRhl_A_AefSA_RxpAyUMugqE7XmAefXBCuYhF7Elcv6rLSz2bmW_3Wn2lmrCBHngA7jRG62urPRYGhY0Go1WovRM6lrGuQtp9KerZJFNjqkVxb90zpQqdKymLkV1TS65Ob7ru5I7SwpN5We54o560_0-R5u8Fk_c80PQpPBlDR_ZpEPkAHoT2EB5fbHlXu2fwZYrdil2xKXmr3qAYxaTsamnXNDxJjTjG0jeGrWfn83T6uG-GsmCTxTpxJpAnew7X07PryXk-9knInSjFKncmSlqZyJ3VlUfjS1RVZStrKdeJtBlzFdHLIhot6lCYRADluAjW0ApE5C9gr1224RUwgejTiSYllRex1FpGTvGUxKiL6HWdwccNXI0bOcRTK4tFk3KJhG5D6DYJ3YbQzeDDdvqPgTzjbxM_J-y3kxLndT9AltCMltD8yxIyeLfRXENrJP34wDYs112Tcqha8VpUGbwcNLn9FKVgdeJVy0Dt6HhHlt0n7fx7z8PNBb21LF__D-HfwCMKxaqhuu0t7K1u1-EI9t3dat7dHsNDNdPHvYnT9eLn2S_eIQZr
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+R+Functions+for+Robust+Correlations+and+Hierarchical+Clustering&rft.jtitle=Journal+of+statistical+software&rft.au=Langfelder%2C+Peter&rft.au=Horvath%2C+Steve&rft.date=2012-03-01&rft.issn=1548-7660&rft.eissn=1548-7660&rft.volume=46&rft.issue=11&rft_id=info:doi/10.18637%2Fjss.v046.i11&rft_id=info%3Apmid%2F23050260&rft.externalDocID=23050260
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7660&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7660&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7660&client=summon