Fast R Functions for Robust Correlations and Hierarchical Clustering
Many high-throughput biological data analyses require the calculation of large correlation matrices and/or clustering of a large number of objects. The standard R function for calculating Pearson correlation can handle calculations without missing values efficiently, but is inefficient when applied...
Uložené v:
| Vydané v: | Journal of statistical software Ročník 46; číslo 11 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Foundation for Open Access Statistics
01.03.2012
|
| Predmet: | |
| ISSN: | 1548-7660, 1548-7660 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Many high-throughput biological data analyses require the calculation of large correlation matrices and/or clustering of a large number of objects. The standard R function for calculating Pearson correlation can handle calculations without missing values efficiently, but is inefficient when applied to data sets with a relatively small number of missing data. We present an implementation of Pearson correlation calculation that can lead to substantial speedup on data with relatively small number of missing entries. Further, we parallelize all calculations and thus achieve further speedup on systems where parallel processing is available. A robust correlation measure, the biweight midcorrelation, is implemented in a similar manner and provides comparable speed. The functions cor and bicor for fast Pearson and biweight midcorrelation, respectively, are part of the updated, freely available R package WGCNA.The hierarchical clustering algorithm implemented in R function hclust is an order n(3) (n is the number of clustered objects) version of a publicly available clustering algorithm (Murtagh 2012). We present the package flashClust that implements the original algorithm which in practice achieves order approximately n(2), leading to substantial time savings when clustering large data sets. |
|---|---|
| AbstractList | Many high-throughput biological data analyses require the calculation of large correlation matrices and/or clustering of a large number of objects. The standard R function for calculating Pearson correlation can handle calculations without missing values efficiently, but is inefficient when applied to data sets with a relatively small number of missing data. We present an implementation of Pearson correlation calculation that can lead to substantial speedup on data with relatively small number of missing entries. Further, we parallelize all calculations and thus achieve further speedup on systems where parallel processing is available. A robust correlation measure, the biweight midcorrelation, is implemented in a similar manner and provides comparable speed. The functions cor and bicor for fast Pearson and biweight midcorrelation, respectively, are part of the updated, freely available R package WGCNA.The hierarchical clustering algorithm implemented in R function hclust is an order n(3) (n is the number of clustered objects) version of a publicly available clustering algorithm (Murtagh 2012). We present the package flashClust that implements the original algorithm which in practice achieves order approximately n(2), leading to substantial time savings when clustering large data sets. Many high-throughput biological data analyses require the calculation of large correlation matrices and/or clustering of a large number of objects. The standard R function for calculating Pearson correlation can handle calculations without missing values efficiently, but is inefficient when applied to data sets with a relatively small number of missing data. We present an implementation of Pearson correlation calculation that can lead to substantial speedup on data with relatively small number of missing entries. Further, we parallelize all calculations and thus achieve further speedup on systems where parallel processing is available. A robust correlation measure, the biweight midcorrelation, is implemented in a similar manner and provides comparable speed. The functions cor and bicor for fast Pearson and biweight midcorrelation, respectively, are part of the updated, freely available R package WGCNA. The hierarchical clustering algorithm implemented in R function hclust is an order n3 (n is the number of clustered objects) version of a publicly available clustering algorithm (Murtagh 2012). We present the package flashClust that implements the original algorithm which in practice achieves order approximately n2, leading to substantial time savings when clustering large data sets. Many high-throughput biological data analyses require the calculation of large correlation matrices and/or clustering of a large number of objects. The standard R function for calculating Pearson correlation can handle calculations without missing values efficiently, but is inefficient when applied to data sets with a relatively small number of missing data. We present an implementation of Pearson correlation calculation that can lead to substantial speedup on data with relatively small number of missing entries. Further, we parallelize all calculations and thus achieve further speedup on systems where parallel processing is available. A robust correlation measure, the biweight midcorrelation, is implemented in a similar manner and provides comparable speed. The functions cor and bicor for fast Pearson and biweight midcorrelation, respectively, are part of the updated, freely available R package WGCNA.The hierarchical clustering algorithm implemented in R function hclust is an order n(3) (n is the number of clustered objects) version of a publicly available clustering algorithm (Murtagh 2012). We present the package flashClust that implements the original algorithm which in practice achieves order approximately n(2), leading to substantial time savings when clustering large data sets.Many high-throughput biological data analyses require the calculation of large correlation matrices and/or clustering of a large number of objects. The standard R function for calculating Pearson correlation can handle calculations without missing values efficiently, but is inefficient when applied to data sets with a relatively small number of missing data. We present an implementation of Pearson correlation calculation that can lead to substantial speedup on data with relatively small number of missing entries. Further, we parallelize all calculations and thus achieve further speedup on systems where parallel processing is available. A robust correlation measure, the biweight midcorrelation, is implemented in a similar manner and provides comparable speed. The functions cor and bicor for fast Pearson and biweight midcorrelation, respectively, are part of the updated, freely available R package WGCNA.The hierarchical clustering algorithm implemented in R function hclust is an order n(3) (n is the number of clustered objects) version of a publicly available clustering algorithm (Murtagh 2012). We present the package flashClust that implements the original algorithm which in practice achieves order approximately n(2), leading to substantial time savings when clustering large data sets. Many high-throughput biological data analyses require the calculation of large correlation matrices and/or clustering of a large number of objects. The standard R function for calculating Pearson correlation can handle calculations without missing values efficiently, but is inefficient when applied to data sets with a relatively small number of missing data. We present an implementation of Pearson correlation calculation that can lead to substantial speedup on data with relatively small number of missing entries. Further, we parallelize all calculations and thus achieve further speedup on systems where parallel processing is available. A robust correlation measure, the biweight midcorrelation, is implemented in a similar manner and provides comparable speed. The functions cor and bicor for fast Pearson and biweight midcorrelation, respectively, are part of the updated, freely available R package WGCNA.The hierarchical clustering algorithm implemented in R function hclustis an order n^3 (n is the number of clustered objects) version of a publicly available clustering algorithm (Murtagh 2012). We present the package flashClust that implements the original algorithm which in practice achieves order approximately n^2, leading to substantial time savings when clustering large data sets. |
| Author | Langfelder, Peter Horvath, Steve |
| Author_xml | – sequence: 1 givenname: Peter surname: Langfelder fullname: Langfelder, Peter – sequence: 2 givenname: Steve surname: Horvath fullname: Horvath, Steve |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23050260$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kc1rFDEYh4NU7Icevcocvcyaz5nMRZDVtYWCUHoPb762WbJJTWYK_vfG3VpawVPCmyfP74XfOTpJOTmE3hO8InJg46ddrasHzIdVIOQVOiOCy34cBnzy7H6KzmvdYUwxn8QbdEoZFpgO-Ax93UCdu5tusyQzh5xq53PpbrJe2nidS3ERjnNItrsMrkAxd8FA7NaxMa6EtH2LXnuI1b17PC_Q7ebb7fqyv_7x_Wr95bo3nPC5N5MfiGTAjJbUwmQJjJRqqjXh0jtN2OjBDthPkguHJyqJNIw7PWHBANgFujpqbYadui9hD-WXyhDUYZDLVkGZg4lOea-t0NICnoBrP4HXI0hrWg7xgrrm-nx03S9676xxaS4QX0hfvqRwp7b5QTE-iJGQJvj4KCj55-LqrPahGhcjJJeXqoikDWSC04Z-eJ71FPK3hQb0R8CUXGtx_gkhWB1aVq1l9adlFQ7Z7B_ehPlQU1s1xP_8-g0lja5t |
| CitedBy_id | crossref_primary_10_3390_sym16111510 crossref_primary_10_1126_sciimmunol_abl9165 crossref_primary_10_1038_srep26815 crossref_primary_10_1016_j_actatropica_2022_106749 crossref_primary_10_1093_infdis_jiz121 crossref_primary_10_1093_hr_uhae290 crossref_primary_10_1371_journal_pone_0090962 crossref_primary_10_1016_j_jenvman_2018_06_085 crossref_primary_10_1038_s41420_022_00824_w crossref_primary_10_1016_j_scitotenv_2022_156177 crossref_primary_10_1534_g3_118_200017 crossref_primary_10_1007_s00253_023_12752_5 crossref_primary_10_1186_s12891_024_07707_4 crossref_primary_10_1038_s41598_024_53890_8 crossref_primary_10_3390_cells8030216 crossref_primary_10_3389_fmicb_2023_1194871 crossref_primary_10_1016_j_scitotenv_2021_149368 crossref_primary_10_3389_fgene_2019_01120 crossref_primary_10_3389_fcell_2022_915198 crossref_primary_10_1016_j_jhazmat_2021_127958 crossref_primary_10_3389_fsurg_2022_963850 crossref_primary_10_1186_s12864_018_4738_2 crossref_primary_10_1186_s12864_022_08953_3 crossref_primary_10_3389_fimmu_2022_978851 crossref_primary_10_1128_spectrum_01489_25 crossref_primary_10_1038_s41590_020_00817_w crossref_primary_10_1155_2020_2137319 crossref_primary_10_1007_s11357_021_00329_x crossref_primary_10_1016_j_scitotenv_2023_169740 crossref_primary_10_1093_bioadv_vbac006 crossref_primary_10_1016_j_scitotenv_2018_12_144 crossref_primary_10_1016_j_scitotenv_2022_155051 crossref_primary_10_3389_fanim_2023_1179773 crossref_primary_10_1038_s41398_020_00979_z crossref_primary_10_1016_j_neuron_2022_09_028 crossref_primary_10_1186_s12859_022_04605_1 crossref_primary_10_3389_fpls_2022_1038109 crossref_primary_10_1111_jcmm_70424 crossref_primary_10_1038_s41598_023_44183_7 crossref_primary_10_1038_s41598_019_51627_6 crossref_primary_10_1111_ppl_13746 crossref_primary_10_1016_j_cbd_2021_100884 crossref_primary_10_1038_s41467_019_10591_5 crossref_primary_10_1038_s41564_023_01432_9 crossref_primary_10_1002_joc_6754 crossref_primary_10_1111_1462_2920_15091 crossref_primary_10_1016_j_soilbio_2022_108573 crossref_primary_10_1002_jgm_3620 crossref_primary_10_7554_eLife_60100 crossref_primary_10_3389_fonc_2025_1519533 crossref_primary_10_1534_genetics_116_198051 crossref_primary_10_1155_2021_7430315 crossref_primary_10_1111_nph_70089 crossref_primary_10_1002_ece3_70953 crossref_primary_10_3389_fnut_2022_992331 crossref_primary_10_1111_pce_14522 crossref_primary_10_1038_s41598_025_05792_6 crossref_primary_10_3389_fgene_2022_939328 crossref_primary_10_1177_11769351251323239 crossref_primary_10_1038_s41586_019_1917_5 crossref_primary_10_1002_hbm_25654 crossref_primary_10_1016_j_soilbio_2018_05_003 crossref_primary_10_1016_j_jpsychires_2018_09_017 crossref_primary_10_1038_s41598_020_57467_z crossref_primary_10_1186_s12865_017_0238_4 crossref_primary_10_1371_journal_pone_0088669 crossref_primary_10_1158_2159_8290_CD_20_0706 crossref_primary_10_1016_j_alcohol_2013_08_004 crossref_primary_10_1152_japplphysiol_00680_2023 crossref_primary_10_1186_s12918_018_0644_0 crossref_primary_10_1038_s41598_019_52883_2 crossref_primary_10_3389_fpls_2022_864605 crossref_primary_10_1128_msystems_01337_21 crossref_primary_10_3389_fpls_2020_00224 crossref_primary_10_1021_acs_est_5c01206 crossref_primary_10_1007_s00401_018_1900_5 crossref_primary_10_1007_s00253_021_11666_4 crossref_primary_10_1186_s13287_022_02988_9 crossref_primary_10_1007_s11596_017_1734_8 crossref_primary_10_2983_035_044_0109 crossref_primary_10_3758_s13428_021_01772_6 crossref_primary_10_1016_j_apsoil_2025_106421 crossref_primary_10_1016_j_neo_2024_101013 crossref_primary_10_3390_ijms21010292 crossref_primary_10_1016_j_scitotenv_2022_160418 crossref_primary_10_1016_j_still_2021_105169 crossref_primary_10_1177_14703203251356435 crossref_primary_10_3389_fmicb_2019_02463 crossref_primary_10_1016_j_envint_2020_105869 crossref_primary_10_1371_journal_pgen_1005305 crossref_primary_10_1007_s11684_024_1122_2 crossref_primary_10_1016_j_geoderma_2025_117419 crossref_primary_10_1111_cpr_12386 crossref_primary_10_1186_s12935_020_01179_x crossref_primary_10_1038_s41598_025_90744_3 crossref_primary_10_1128_msystems_00529_22 crossref_primary_10_1186_s12891_024_07967_0 crossref_primary_10_3724_abbs_2025067 crossref_primary_10_3892_mmr_2019_10443 crossref_primary_10_1038_s42003_025_08578_8 crossref_primary_10_1088_1742_6596_1955_1_012108 crossref_primary_10_3389_fgene_2018_00228 crossref_primary_10_3389_fgene_2022_922074 crossref_primary_10_1016_j_soilbio_2018_07_022 crossref_primary_10_1038_s43588_023_00429_y crossref_primary_10_1016_j_intimp_2025_114836 crossref_primary_10_1111_acel_13450 crossref_primary_10_1016_j_ecoenv_2020_111749 crossref_primary_10_1007_s43032_023_01363_0 crossref_primary_10_3389_fgene_2020_600097 crossref_primary_10_14814_phy2_15068 crossref_primary_10_1016_j_molmet_2025_102219 crossref_primary_10_1111_tpj_15726 crossref_primary_10_1111_wrr_12963 crossref_primary_10_1016_j_jaci_2024_04_022 crossref_primary_10_1038_s41598_019_52712_6 crossref_primary_10_1161_ATVBAHA_123_319332 crossref_primary_10_1186_s12859_021_04256_8 crossref_primary_10_1016_j_scitotenv_2024_171269 crossref_primary_10_1016_j_apsoil_2025_105942 crossref_primary_10_1186_s12915_023_01558_6 crossref_primary_10_3389_fcell_2023_1198949 crossref_primary_10_1016_j_bbadis_2016_11_014 crossref_primary_10_3390_ijms241411304 crossref_primary_10_3390_jof7040270 crossref_primary_10_1186_s12859_018_2351_7 crossref_primary_10_3390_cancers12010037 crossref_primary_10_1186_s12864_021_07742_8 crossref_primary_10_3389_fphar_2023_1173961 crossref_primary_10_3389_fbioe_2017_00084 crossref_primary_10_1186_s12885_021_08660_4 crossref_primary_10_1007_s11104_025_07553_w crossref_primary_10_1038_s41467_023_37246_w crossref_primary_10_3389_fimmu_2022_970950 crossref_primary_10_3390_agriculture11111113 crossref_primary_10_3389_fmicb_2022_858508 crossref_primary_10_1016_j_jhazmat_2024_134032 crossref_primary_10_1186_s13229_019_0262_8 crossref_primary_10_1007_s11307_023_01828_3 crossref_primary_10_3389_fcell_2023_1159355 crossref_primary_10_1186_s12885_019_6462_y crossref_primary_10_1016_j_compbiomed_2023_106703 crossref_primary_10_1038_nature20612 crossref_primary_10_1038_s41598_023_44884_z crossref_primary_10_3389_fmicb_2021_802201 crossref_primary_10_1016_j_yexcr_2024_114196 crossref_primary_10_3390_nu11061265 crossref_primary_10_1016_j_apsoil_2024_105441 crossref_primary_10_3389_fimmu_2023_1257652 crossref_primary_10_3389_fmicb_2022_1084452 crossref_primary_10_1111_nph_20039 crossref_primary_10_1038_s41398_021_01536_y crossref_primary_10_1038_s41598_025_03111_7 crossref_primary_10_1093_burnst_tkad020 crossref_primary_10_3389_fcell_2024_1478757 crossref_primary_10_1038_s41467_024_48106_6 crossref_primary_10_1007_s10528_023_10601_8 crossref_primary_10_1007_s12602_022_09974_w crossref_primary_10_1038_s41467_021_23111_1 crossref_primary_10_15672_hujms_1679033 crossref_primary_10_1186_1471_2164_15_845 crossref_primary_10_1177_1744806920918057 crossref_primary_10_1016_j_catena_2022_106520 crossref_primary_10_1086_729927 crossref_primary_10_1038_s41598_018_30779_x crossref_primary_10_1186_s40168_022_01318_8 crossref_primary_10_2217_bmm_2020_0325 crossref_primary_10_1007_s42832_025_0336_9 crossref_primary_10_1016_j_csbj_2019_12_009 crossref_primary_10_1007_s00253_023_12676_0 crossref_primary_10_1007_s13167_023_00334_4 crossref_primary_10_1128_AEM_00533_21 crossref_primary_10_3390_vaccines10040612 crossref_primary_10_1007_s42832_025_0301_7 crossref_primary_10_1016_j_jhazmat_2022_128465 crossref_primary_10_1007_s00122_025_05032_5 crossref_primary_10_1093_molbev_msaf078 crossref_primary_10_3389_fpls_2023_1212559 crossref_primary_10_1038_s41598_020_67753_5 crossref_primary_10_2136_sssaj2018_11_0426 crossref_primary_10_3389_fcell_2021_702974 crossref_primary_10_1016_j_bbi_2023_03_004 crossref_primary_10_1186_s41065_020_00151_z crossref_primary_10_1093_plcell_koae095 crossref_primary_10_1186_s12885_022_09290_0 crossref_primary_10_1111_cas_15303 crossref_primary_10_1016_j_soilbio_2021_108517 crossref_primary_10_1016_j_ygeno_2021_12_011 crossref_primary_10_1016_j_ygeno_2020_05_026 crossref_primary_10_1016_j_ygeno_2024_110879 crossref_primary_10_3389_fonc_2021_622880 crossref_primary_10_1016_j_apsoil_2020_103796 crossref_primary_10_1038_srep45303 crossref_primary_10_3389_fnagi_2022_968190 crossref_primary_10_3390_genes11091067 crossref_primary_10_1016_j_apsoil_2025_105976 crossref_primary_10_1371_journal_pone_0152648 crossref_primary_10_1038_s41467_018_06891_x crossref_primary_10_1097_FPC_0000000000000461 crossref_primary_10_1038_s41598_022_07132_4 crossref_primary_10_3389_fbioe_2021_651895 crossref_primary_10_3390_brainsci12091138 crossref_primary_10_1038_s41598_017_17735_x crossref_primary_10_1038_srep10237 crossref_primary_10_3390_microorganisms11051116 crossref_primary_10_1155_2022_1661334 crossref_primary_10_1073_pnas_1806760115 crossref_primary_10_1007_s11427_023_2432_9 crossref_primary_10_1111_mec_17653 crossref_primary_10_1038_s41598_020_67894_7 crossref_primary_10_3390_ijms26189234 crossref_primary_10_1007_s11103_021_01122_2 crossref_primary_10_1016_j_anbehav_2024_10_011 crossref_primary_10_3389_fmicb_2022_895687 crossref_primary_10_1038_s41587_019_0298_5 crossref_primary_10_7717_peerj_11427 crossref_primary_10_1093_ismeco_ycaf044 crossref_primary_10_1177_11779322241281652 crossref_primary_10_1177_1744806919878088 crossref_primary_10_1111_jcmm_70083 crossref_primary_10_1186_s13637_017_0059_z crossref_primary_10_1186_s13148_023_01457_1 crossref_primary_10_1186_s12864_021_08163_3 crossref_primary_10_1186_s12974_022_02462_6 crossref_primary_10_12688_f1000research_18705_2 crossref_primary_10_1007_s11356_025_36002_5 crossref_primary_10_1080_21691401_2019_1613421 crossref_primary_10_1186_s12967_020_02502_w crossref_primary_10_1186_s13148_022_01272_0 crossref_primary_10_12688_f1000research_18705_1 crossref_primary_10_1128_mSystems_00195_16 crossref_primary_10_1186_s12920_021_01012_y crossref_primary_10_1038_s44183_024_00083_5 crossref_primary_10_1186_s12864_021_08054_7 crossref_primary_10_1155_2022_4629419 crossref_primary_10_3389_fimmu_2023_1264093 crossref_primary_10_1007_s11802_023_5344_8 crossref_primary_10_3389_fmicb_2025_1528865 crossref_primary_10_1007_s10265_025_01631_x crossref_primary_10_3390_genes9020092 crossref_primary_10_1177_20552076221147433 crossref_primary_10_1371_journal_pone_0227258 crossref_primary_10_1186_s12864_015_1741_8 crossref_primary_10_3389_fpls_2025_1547897 crossref_primary_10_1016_j_imbio_2023_152750 crossref_primary_10_1007_s11104_022_05797_4 crossref_primary_10_1038_s41598_024_53327_2 crossref_primary_10_1002_ctm2_479 crossref_primary_10_1007_s00374_024_01884_z crossref_primary_10_1016_j_envpol_2022_119572 crossref_primary_10_1002_alz_14460 crossref_primary_10_3389_fonc_2020_576565 crossref_primary_10_1038_s41536_021_00179_3 crossref_primary_10_1016_j_cej_2021_130489 crossref_primary_10_1111_1462_2920_16629 crossref_primary_10_3389_fpls_2023_1087707 crossref_primary_10_1038_s41598_024_63588_6 crossref_primary_10_1016_j_chemosphere_2023_140377 crossref_primary_10_1016_j_jenvman_2025_124846 crossref_primary_10_1038_s41598_025_90578_z crossref_primary_10_1016_j_foreco_2023_120901 crossref_primary_10_1111_rda_14231 crossref_primary_10_1038_s41598_022_26395_5 crossref_primary_10_3389_fendo_2021_820463 crossref_primary_10_1016_j_pedsph_2023_12_016 crossref_primary_10_3390_horticulturae11080974 crossref_primary_10_1016_j_neurobiolaging_2022_12_014 crossref_primary_10_1016_j_foodchem_2022_132438 crossref_primary_10_1038_s41597_025_04771_w crossref_primary_10_1093_treephys_tpx054 crossref_primary_10_1111_gcb_16211 crossref_primary_10_1007_s42832_024_0289_4 crossref_primary_10_1186_s40168_023_01539_5 crossref_primary_10_1111_tpj_17111 crossref_primary_10_1111_tpj_70305 crossref_primary_10_1038_s41398_017_0044_z crossref_primary_10_1016_j_envpol_2022_119360 crossref_primary_10_1164_rccm_201607_1407OC crossref_primary_10_1002_glia_23176 crossref_primary_10_1016_j_nmd_2016_10_011 crossref_primary_10_1038_s41398_019_0488_4 crossref_primary_10_7717_peerj_11691 crossref_primary_10_1016_j_jhazmat_2023_131175 crossref_primary_10_3389_fcvm_2024_1475991 crossref_primary_10_3389_fnmol_2018_00454 crossref_primary_10_3389_fonc_2022_990398 crossref_primary_10_1016_j_ibmb_2024_104115 crossref_primary_10_3389_fnins_2022_823741 crossref_primary_10_1016_j_alcohol_2013_04_002 crossref_primary_10_3390_cancers12071809 crossref_primary_10_1016_j_apsoil_2024_105712 crossref_primary_10_4251_wjgo_v15_i10_1717 crossref_primary_10_3390_biology12091230 crossref_primary_10_1038_s41522_023_00369_5 crossref_primary_10_1016_j_ecolind_2025_113394 crossref_primary_10_1016_j_heliyon_2024_e31528 crossref_primary_10_3390_ijms25158154 crossref_primary_10_3389_fvets_2025_1577028 crossref_primary_10_14814_phy2_12208 crossref_primary_10_3897_imafungus_16_e140187 crossref_primary_10_1093_bioadv_vbaf055 crossref_primary_10_1038_s41598_023_27378_w crossref_primary_10_3389_fmicb_2021_667632 crossref_primary_10_1128_msystems_00066_18 crossref_primary_10_3389_fnins_2021_680530 crossref_primary_10_1007_s11103_018_0754_5 crossref_primary_10_1111_tpj_16248 crossref_primary_10_1155_2022_7117014 crossref_primary_10_1016_j_scitotenv_2023_162972 crossref_primary_10_7554_eLife_106239_3 crossref_primary_10_1186_s12870_014_0307_2 crossref_primary_10_3389_fpls_2021_666075 crossref_primary_10_3389_fgene_2021_756471 crossref_primary_10_1093_carcin_bgz040 crossref_primary_10_1186_s12859_022_04909_2 crossref_primary_10_3390_cancers14133284 crossref_primary_10_3390_jox13030024 crossref_primary_10_3389_fbioe_2015_00106 crossref_primary_10_1007_s00253_016_7774_3 crossref_primary_10_1016_j_ecss_2024_108949 crossref_primary_10_1016_j_cryobiol_2025_105258 crossref_primary_10_1111_pce_15009 crossref_primary_10_1038_s41467_023_41926_y crossref_primary_10_1038_srep23805 crossref_primary_10_1007_s42832_023_0197_z crossref_primary_10_1038_s43587_024_00730_z crossref_primary_10_1186_s12870_024_05804_z crossref_primary_10_1016_j_rsma_2025_104175 crossref_primary_10_3390_cancers10090307 crossref_primary_10_1186_s12915_022_01398_w crossref_primary_10_1186_s12959_025_00750_8 crossref_primary_10_1007_s11104_022_05829_z crossref_primary_10_1134_S0026261722020102 crossref_primary_10_1371_journal_pone_0156006 crossref_primary_10_1111_jcmm_17477 crossref_primary_10_1007_s12672_025_03497_w crossref_primary_10_1007_s42729_025_02575_w crossref_primary_10_1126_science_abb2494 crossref_primary_10_1038_s41598_017_05044_2 crossref_primary_10_1177_19450265251375945 crossref_primary_10_2147_JIR_S439779 crossref_primary_10_1186_s12263_019_0639_5 crossref_primary_10_1111_gbb_12697 crossref_primary_10_3390_cells12131685 crossref_primary_10_1007_s10482_025_02085_w crossref_primary_10_1007_s42995_025_00279_9 crossref_primary_10_3389_fpls_2023_1096225 crossref_primary_10_1016_j_pedsph_2025_01_011 crossref_primary_10_1007_s11104_024_06993_0 crossref_primary_10_1093_nar_gky750 crossref_primary_10_1007_s00253_019_09867_z crossref_primary_10_1016_j_funeco_2024_101357 crossref_primary_10_1038_sdata_2018_233 crossref_primary_10_1038_s41598_017_13176_8 crossref_primary_10_3389_fcimb_2019_00297 crossref_primary_10_1093_treephys_tpac115 crossref_primary_10_1093_bjd_ljac007 crossref_primary_10_3389_fgene_2020_622659 crossref_primary_10_3389_fnagi_2022_838436 crossref_primary_10_1186_s12872_020_01838_x crossref_primary_10_1038_s41477_023_01491_0 crossref_primary_10_1007_s11103_024_01422_3 crossref_primary_10_1007_s11104_024_07134_3 crossref_primary_10_1016_j_scitotenv_2022_159004 crossref_primary_10_1016_j_gpb_2018_04_008 crossref_primary_10_3389_fpls_2020_00524 crossref_primary_10_1038_s41374_022_00830_7 crossref_primary_10_1016_S1002_0160_19_60838_6 crossref_primary_10_1038_s41396_019_0567_9 crossref_primary_10_1016_j_jad_2024_01_173 crossref_primary_10_1016_j_pbb_2013_12_009 crossref_primary_10_1145_3757060 crossref_primary_10_3389_fpsyt_2024_1425552 crossref_primary_10_7717_peerj_12394 crossref_primary_10_1016_j_fmre_2025_03_018 crossref_primary_10_1186_s13098_023_01136_4 crossref_primary_10_1038_s41401_023_01137_z crossref_primary_10_1038_s41420_023_01635_3 crossref_primary_10_3389_fpls_2024_1451215 crossref_primary_10_7554_eLife_37059 crossref_primary_10_1038_s41598_024_60137_z crossref_primary_10_3390_s22186826 crossref_primary_10_1164_rccm_202103_0569OC crossref_primary_10_1186_s12859_020_03914_7 crossref_primary_10_1007_s11368_022_03301_0 crossref_primary_10_3390_admsci14020026 crossref_primary_10_1371_journal_pone_0191407 crossref_primary_10_1111_mec_17676 crossref_primary_10_1016_j_molimm_2013_08_008 crossref_primary_10_1016_j_apsoil_2022_104416 crossref_primary_10_3389_fnagi_2024_1352681 crossref_primary_10_1038_s41598_023_48002_x crossref_primary_10_1038_srep28663 crossref_primary_10_1002_ueg2_70064 crossref_primary_10_7554_eLife_29655 crossref_primary_10_1038_s41598_021_86970_0 crossref_primary_10_1038_s41598_018_35704_w crossref_primary_10_1038_s41598_022_27326_0 crossref_primary_10_1021_acs_jafc_5c04171 crossref_primary_10_1038_srep30981 crossref_primary_10_1111_gcb_17160 crossref_primary_10_1016_j_apsoil_2025_106275 crossref_primary_10_1111_1462_2920_15922 crossref_primary_10_3390_ijms242115819 crossref_primary_10_1186_s13073_021_00924_9 crossref_primary_10_3390_genes13050749 crossref_primary_10_1038_s41467_020_14999_2 crossref_primary_10_1093_plcell_koaf208 crossref_primary_10_1136_bmjinnov_2020_000547 crossref_primary_10_1177_13872877241299104 crossref_primary_10_1186_s13059_019_1866_1 crossref_primary_10_1038_s41420_024_01968_7 crossref_primary_10_1038_srep33460 crossref_primary_10_3389_fonc_2022_914078 crossref_primary_10_1016_j_fcr_2022_108712 crossref_primary_10_3389_fimmu_2017_00445 crossref_primary_10_1186_s13048_024_01556_4 crossref_primary_10_1002_glia_24633 crossref_primary_10_1038_s41586_018_0623_z crossref_primary_10_3847_1538_3881_ac174c crossref_primary_10_3389_fmicb_2021_684386 crossref_primary_10_1016_j_envint_2022_107279 crossref_primary_10_1186_s12920_023_01439_5 crossref_primary_10_1177_13872877251378778 crossref_primary_10_1016_j_neuron_2022_01_006 crossref_primary_10_3389_fonc_2020_01716 crossref_primary_10_1371_journal_pone_0273982 crossref_primary_10_1016_j_envint_2023_107789 crossref_primary_10_1111_tpj_15656 crossref_primary_10_1002_wcms_70042 crossref_primary_10_1186_s12864_020_6706_x crossref_primary_10_1016_j_jaci_2019_06_025 crossref_primary_10_1016_j_micres_2024_127931 crossref_primary_10_1016_j_pedsph_2022_06_044 crossref_primary_10_1038_s41598_023_29101_1 crossref_primary_10_3892_etm_2019_7973 crossref_primary_10_3389_fgene_2021_696956 crossref_primary_10_3897_imafungus_16_140187 crossref_primary_10_1186_s12974_021_02296_8 crossref_primary_10_1016_j_pedsph_2024_08_007 crossref_primary_10_1159_000503828 crossref_primary_10_1016_j_jtrangeo_2019_102474 crossref_primary_10_1186_s12864_016_3176_2 crossref_primary_10_2147_JIR_S507274 crossref_primary_10_1111_mec_17186 crossref_primary_10_1093_pcp_pcx193 crossref_primary_10_1186_s42397_022_00129_4 crossref_primary_10_1038_s41593_025_02007_z crossref_primary_10_1161_CIRCRESAHA_123_323464 crossref_primary_10_1089_omi_2016_0177 crossref_primary_10_1109_JBHI_2025_3548263 crossref_primary_10_1186_s13195_022_01044_1 crossref_primary_10_1186_s40478_019_0797_0 crossref_primary_10_1007_s00374_023_01719_3 crossref_primary_10_1016_j_agee_2021_107651 crossref_primary_10_1186_s12864_019_5747_5 crossref_primary_10_1038_nature18646 crossref_primary_10_3389_fimmu_2023_1178193 crossref_primary_10_1016_j_scitotenv_2025_178960 crossref_primary_10_1016_j_compbiomed_2023_107085 crossref_primary_10_1371_journal_pone_0315014 crossref_primary_10_1111_nph_17132 crossref_primary_10_3389_fendo_2023_1193622 crossref_primary_10_3390_antiox11081506 crossref_primary_10_1016_j_soilbio_2023_108989 crossref_primary_10_1016_j_jenvman_2022_115859 crossref_primary_10_3389_fimmu_2022_873871 crossref_primary_10_1093_bib_bbab314 crossref_primary_10_1016_j_scitotenv_2023_167499 crossref_primary_10_1093_advances_nmz022 crossref_primary_10_1038_nature18637 crossref_primary_10_3389_fimmu_2020_609900 crossref_primary_10_1016_j_plgene_2020_100234 crossref_primary_10_1002_pmic_201600057 crossref_primary_10_1093_hmg_ddx014 crossref_primary_10_1016_j_gecco_2024_e03171 crossref_primary_10_1038_s41598_022_18396_1 crossref_primary_10_1016_j_jhazmat_2025_138843 crossref_primary_10_3390_en16041984 crossref_primary_10_1016_j_jhazmat_2022_129482 crossref_primary_10_1007_s10528_025_11211_2 crossref_primary_10_3389_fcell_2020_577032 crossref_primary_10_1093_molbev_msae035 crossref_primary_10_3389_fgene_2021_726670 crossref_primary_10_1038_nm_4213 crossref_primary_10_7554_eLife_58597 crossref_primary_10_1038_s41598_020_75322_z crossref_primary_10_3389_fimmu_2022_988303 crossref_primary_10_1073_pnas_2319811121 crossref_primary_10_12688_wellcomeopenres_15115_1 crossref_primary_10_3389_fgene_2022_895587 crossref_primary_10_1016_j_pedobi_2020_150699 crossref_primary_10_1016_j_ejsobi_2021_103378 crossref_primary_10_1038_s41522_022_00277_0 crossref_primary_10_1038_s41598_023_50938_z crossref_primary_10_1016_j_scitotenv_2023_165056 crossref_primary_10_15252_emmm_201708202 crossref_primary_10_1007_s42773_023_00247_5 crossref_primary_10_1109_TNB_2023_3283462 crossref_primary_10_1038_s41559_018_0682_4 crossref_primary_10_1073_pnas_2004945117 crossref_primary_10_1186_1756_0381_5_19 crossref_primary_10_3390_ijms232415932 crossref_primary_10_1093_cercor_bhz115 crossref_primary_10_1002_mco2_180 crossref_primary_10_1016_j_ygeno_2021_08_014 crossref_primary_10_3390_horticulturae8090793 crossref_primary_10_1038_s41467_023_44182_2 crossref_primary_10_1186_s12870_019_2012_7 crossref_primary_10_1371_journal_pbio_3000046 crossref_primary_10_1016_j_scitotenv_2018_10_277 crossref_primary_10_1186_s40478_021_01306_3 crossref_primary_10_1186_s40478_022_01494_6 crossref_primary_10_1111_ecog_07110 crossref_primary_10_1186_s12864_019_6002_9 crossref_primary_10_1038_s41598_017_11928_0 crossref_primary_10_3389_fpls_2016_01229 crossref_primary_10_3389_pore_2021_609083 crossref_primary_10_1186_s40945_021_00125_y crossref_primary_10_1016_j_isci_2025_113133 crossref_primary_10_1371_journal_pone_0193334 crossref_primary_10_1111_mec_14531 crossref_primary_10_3389_fpls_2017_01217 crossref_primary_10_3389_fimmu_2021_616967 crossref_primary_10_3389_fmolb_2023_1000248 crossref_primary_10_1093_jpe_rtaf069 crossref_primary_10_1093_nar_gkab352 crossref_primary_10_1186_s12864_022_08912_y crossref_primary_10_1007_s00403_022_02522_0 crossref_primary_10_1016_j_jhazmat_2019_122002 crossref_primary_10_1159_000529376 crossref_primary_10_1002_cam4_4109 crossref_primary_10_1111_pbi_12991 crossref_primary_10_1007_s00439_020_02230_7 crossref_primary_10_1093_conphys_coz018 crossref_primary_10_1097_MD_0000000000037645 crossref_primary_10_1186_s12935_020_01361_1 crossref_primary_10_1016_j_marenvres_2024_106544 crossref_primary_10_1093_nargab_lqae006 crossref_primary_10_1371_journal_pone_0277033 crossref_primary_10_1096_fj_201800534R crossref_primary_10_1016_j_scitotenv_2023_162393 crossref_primary_10_1186_s12931_021_01896_5 crossref_primary_10_7554_eLife_80500 crossref_primary_10_1016_j_catena_2022_106809 crossref_primary_10_1016_j_still_2025_106450 crossref_primary_10_1038_s43705_022_00156_x crossref_primary_10_3390_nu15143101 crossref_primary_10_1038_s41598_020_77318_1 crossref_primary_10_1111_1365_2435_70131 crossref_primary_10_3389_fpls_2024_1404889 crossref_primary_10_1111_odi_12593 crossref_primary_10_1016_j_cell_2025_05_001 crossref_primary_10_1038_s41559_016_0014 crossref_primary_10_1111_mec_15835 crossref_primary_10_1038_nn_4256 crossref_primary_10_1155_2020_4612158 crossref_primary_10_1016_j_scitotenv_2024_175561 crossref_primary_10_1186_s12864_020_6467_6 crossref_primary_10_1038_s41467_025_58027_7 crossref_primary_10_3389_fendo_2022_1032064 crossref_primary_10_1093_femsec_fiz033 crossref_primary_10_1093_bib_bby008 crossref_primary_10_1016_j_jhazmat_2022_128589 crossref_primary_10_1126_science_aat6720 crossref_primary_10_1016_j_scitotenv_2021_145008 crossref_primary_10_1016_j_rhisph_2022_100593 crossref_primary_10_3390_microorganisms11051212 crossref_primary_10_1093_gigascience_giaf039 crossref_primary_10_3390_microorganisms9030465 crossref_primary_10_3390_plants13172352 crossref_primary_10_1093_pcp_pcaf011 crossref_primary_10_3389_fpls_2021_775051 crossref_primary_10_3390_ijms23052715 crossref_primary_10_3389_fpls_2019_01325 crossref_primary_10_3389_fimmu_2022_937832 crossref_primary_10_1186_s12862_020_01633_4 crossref_primary_10_1186_s12967_021_03078_9 crossref_primary_10_3390_genes12050665 crossref_primary_10_7554_eLife_58993 crossref_primary_10_1186_s12986_022_00665_5 crossref_primary_10_1111_mec_13626 crossref_primary_10_1007_s00299_025_03503_z crossref_primary_10_1016_j_molmet_2025_102159 crossref_primary_10_1016_j_aquaculture_2021_736393 crossref_primary_10_1016_j_scitotenv_2022_156202 crossref_primary_10_1038_s41523_021_00329_2 crossref_primary_10_1016_j_ecolind_2025_113316 crossref_primary_10_1111_jora_12535 crossref_primary_10_3390_ijms25073863 crossref_primary_10_3389_fimmu_2021_659193 crossref_primary_10_1007_s13580_020_00306_x crossref_primary_10_1038_s41598_021_03777_9 crossref_primary_10_3390_jcm8081160 crossref_primary_10_1186_s13068_024_02569_3 crossref_primary_10_3390_ijms26052331 crossref_primary_10_1038_s41467_021_23649_0 crossref_primary_10_3389_fgene_2020_00981 crossref_primary_10_1016_j_scitotenv_2022_157820 crossref_primary_10_3390_cancers16132429 crossref_primary_10_7717_peerj_7304 crossref_primary_10_3389_fimmu_2024_1401733 crossref_primary_10_3389_fimmu_2019_00180 crossref_primary_10_3389_fimmu_2022_1067075 crossref_primary_10_1186_s12985_021_01643_8 crossref_primary_10_1371_journal_pone_0308585 crossref_primary_10_3389_fimmu_2022_1048774 crossref_primary_10_1007_s11104_024_07072_0 crossref_primary_10_3390_f14061207 crossref_primary_10_1210_clinem_dgab146 crossref_primary_10_1002_ijc_32001 crossref_primary_10_1186_s12920_023_01432_y crossref_primary_10_1016_j_bbi_2022_04_015 crossref_primary_10_1093_jhered_esab014 crossref_primary_10_1016_j_envpol_2022_119477 crossref_primary_10_1371_journal_pone_0185682 crossref_primary_10_1371_journal_pone_0061505 crossref_primary_10_1186_s12929_022_00867_2 crossref_primary_10_1111_cts_12690 crossref_primary_10_1186_s12917_024_04331_1 crossref_primary_10_1016_j_soilbio_2022_108916 crossref_primary_10_1016_j_tmrv_2024_150837 crossref_primary_10_1186_s13027_023_00492_0 crossref_primary_10_1007_s10460_019_09930_5 crossref_primary_10_1007_s11663_024_03187_y crossref_primary_10_1534_g3_118_200910 crossref_primary_10_1038_srep40218 crossref_primary_10_2217_epi_2019_0003 crossref_primary_10_3233_CBM_200594 crossref_primary_10_1038_s41598_022_12257_7 crossref_primary_10_1159_000524196 crossref_primary_10_1038_s41598_019_41298_8 crossref_primary_10_1111_nph_70101 crossref_primary_10_1016_j_scitotenv_2021_146430 crossref_primary_10_1534_g3_117_300169 crossref_primary_10_3389_fmolb_2021_622643 crossref_primary_10_3389_fmicb_2022_904451 crossref_primary_10_3389_fpls_2018_01155 crossref_primary_10_1182_bloodadvances_2024015085 crossref_primary_10_1016_j_watres_2025_123757 crossref_primary_10_1016_j_jrp_2014_07_003 crossref_primary_10_1016_j_scitotenv_2022_153257 crossref_primary_10_1080_17474124_2021_1845142 crossref_primary_10_1016_j_scitotenv_2024_172575 crossref_primary_10_1111_mec_16644 crossref_primary_10_7554_eLife_39188 crossref_primary_10_1038_srep16767 crossref_primary_10_1093_llc_fqv034 crossref_primary_10_1128_AEM_00349_21 crossref_primary_10_1111_ppl_70157 crossref_primary_10_1186_s12864_016_3070_y crossref_primary_10_1007_s00360_023_01513_5 crossref_primary_10_1007_s00438_020_01735_0 crossref_primary_10_3389_fcell_2021_793793 crossref_primary_10_1016_j_jenvman_2023_118710 crossref_primary_10_1038_s41417_022_00577_9 crossref_primary_10_3390_f14040770 crossref_primary_10_1016_j_apsoil_2024_105854 crossref_primary_10_1093_bib_bbad067 crossref_primary_10_1093_pnasnexus_pgae029 crossref_primary_10_1186_s12870_020_02578_y crossref_primary_10_1038_s41598_019_50952_0 crossref_primary_10_1128_msphere_00845_24 crossref_primary_10_1016_j_soilbio_2020_108047 crossref_primary_10_3390_microorganisms13081934 crossref_primary_10_3892_mmr_2016_5018 crossref_primary_10_1038_nbt_4152 crossref_primary_10_1016_j_jad_2022_08_108 crossref_primary_10_1038_s41593_020_0592_z crossref_primary_10_1002_jbmr_2781 crossref_primary_10_1016_j_jhazmat_2023_133236 crossref_primary_10_1007_s00468_025_02605_1 crossref_primary_10_1002_jnr_24082 crossref_primary_10_1096_fj_202201413R crossref_primary_10_1038_s41438_020_00421_x crossref_primary_10_3390_biom14060630 crossref_primary_10_3892_ol_2019_10725 crossref_primary_10_3389_fcimb_2018_00326 crossref_primary_10_1038_s41392_020_00457_4 crossref_primary_10_2217_epi_15_98 crossref_primary_10_1038_s41598_019_46491_3 crossref_primary_10_1186_s12885_018_4848_x crossref_primary_10_2337_dc20_2975 crossref_primary_10_3389_fonc_2014_00147 crossref_primary_10_3389_fgene_2022_891301 crossref_primary_10_1016_j_soilbio_2018_03_017 crossref_primary_10_1371_journal_pone_0272117 crossref_primary_10_1038_s44320_025_00121_5 crossref_primary_10_3389_fmicb_2020_579290 crossref_primary_10_1109_TCBBIO_2025_3568376 crossref_primary_10_1016_j_envpol_2022_120293 crossref_primary_10_1007_s11802_020_4461_x crossref_primary_10_1038_s42003_023_05275_2 crossref_primary_10_1111_aji_70114 crossref_primary_10_3390_genes8120357 crossref_primary_10_1186_s12870_020_02383_7 crossref_primary_10_1093_plphys_kiad315 crossref_primary_10_1007_s00284_023_03608_2 crossref_primary_10_1016_j_scitotenv_2019_06_108 crossref_primary_10_1161_ATVBAHA_121_316615 crossref_primary_10_3389_fmicb_2022_831746 crossref_primary_10_1038_s41598_025_07738_4 crossref_primary_10_1016_j_foodchem_2016_04_107 crossref_primary_10_3389_fmicb_2017_02190 crossref_primary_10_1515_sagmb_2016_0059 crossref_primary_10_1007_s42832_023_0196_0 crossref_primary_10_1038_s41598_022_08102_6 crossref_primary_10_1016_j_scitotenv_2023_166190 crossref_primary_10_1038_s41467_023_44680_3 crossref_primary_10_1186_s12870_024_05697_y crossref_primary_10_1016_j_jep_2024_118400 crossref_primary_10_1038_ismej_2015_261 crossref_primary_10_1038_s41598_024_75797_0 crossref_primary_10_1155_2021_6014202 crossref_primary_10_1038_s41396_020_00796_8 crossref_primary_10_1128_mSphere_00021_15 crossref_primary_10_3389_fgene_2023_1157258 crossref_primary_10_3390_ani14162395 crossref_primary_10_1038_s41598_022_17645_7 crossref_primary_10_1016_j_foodchem_2017_08_050 crossref_primary_10_3389_fonc_2022_905888 crossref_primary_10_1111_gbb_12560 crossref_primary_10_1016_j_catena_2022_106025 crossref_primary_10_1016_j_catena_2022_106026 crossref_primary_10_3892_mmr_2015_3903 crossref_primary_10_1007_s10142_025_01537_w crossref_primary_10_3389_fpls_2023_1252885 crossref_primary_10_1016_j_bbi_2025_03_016 crossref_primary_10_1016_j_jalz_2017_08_012 crossref_primary_10_1111_mec_17588 crossref_primary_10_1002_dad2_12490 crossref_primary_10_3389_fmolb_2021_743012 crossref_primary_10_1038_s41598_021_91214_2 crossref_primary_10_1093_plcell_koaa017 crossref_primary_10_2147_OTT_S303544 crossref_primary_10_1111_1462_2920_13820 crossref_primary_10_1038_s41467_023_44264_1 crossref_primary_10_1016_j_watres_2024_122547 crossref_primary_10_1097_CJI_0000000000000463 crossref_primary_10_1093_jxb_erad348 crossref_primary_10_3389_fgene_2020_583124 crossref_primary_10_1007_s12672_025_02624_x crossref_primary_10_1210_en_2018_00949 crossref_primary_10_1371_journal_pgen_1005064 crossref_primary_10_2147_JHC_S424545 crossref_primary_10_1097_MD_0000000000017100 crossref_primary_10_3390_ijms22179146 crossref_primary_10_7554_eLife_106239 crossref_primary_10_3390_foods12020376 crossref_primary_10_1172_JCI123726 crossref_primary_10_2147_COPD_S325300 crossref_primary_10_3389_fimmu_2022_952413 crossref_primary_10_3390_cancers17182942 crossref_primary_10_1080_15592324_2024_2371693 crossref_primary_10_3389_fimmu_2020_00715 crossref_primary_10_3389_fgene_2021_641100 crossref_primary_10_1186_s12870_020_2251_7 crossref_primary_10_3390_ijms22020574 crossref_primary_10_1186_s12864_017_4257_6 crossref_primary_10_1007_s00374_024_01804_1 crossref_primary_10_1186_s13059_020_02257_z crossref_primary_10_1111_ppl_14056 crossref_primary_10_1016_j_pedsph_2023_07_004 crossref_primary_10_1111_pai_14274 crossref_primary_10_1002_2211_5463_13134 crossref_primary_10_1111_mec_17552 crossref_primary_10_1177_15330338211035270 crossref_primary_10_1016_j_jid_2019_07_725 crossref_primary_10_1038_s41598_022_14077_1 crossref_primary_10_1038_s42003_021_02335_3 crossref_primary_10_1093_femsle_fny269 crossref_primary_10_26508_lsa_202101108 crossref_primary_10_1002_tpg2_20364 crossref_primary_10_1038_ijo_2017_95 crossref_primary_10_1093_hmg_ddaa132 crossref_primary_10_1038_nm_4055 crossref_primary_10_1038_s42255_025_01351_5 crossref_primary_10_1016_j_jare_2025_04_043 crossref_primary_10_1007_s00439_016_1638_x crossref_primary_10_1016_j_plaphy_2023_02_016 crossref_primary_10_1038_npjsba_2015_10 crossref_primary_10_3390_metabo13060683 crossref_primary_10_3389_fimmu_2021_789317 crossref_primary_10_3390_cells10092367 crossref_primary_10_1186_s13195_023_01184_y crossref_primary_10_1371_journal_pone_0240523 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.18637/jss.v046.i11 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1548-7660 |
| ExternalDocumentID | oai_doaj_org_article_ffbd5b8da09a4bf9afb7a8dc48f1f52e PMC3465711 23050260 10_18637_jss_v046_i11 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK072206 – fundername: NIA NIH HHS grantid: RC1 AG035610 – fundername: NIAID NIH HHS grantid: U19 AI063603 – fundername: NIDCR NIH HHS grantid: R01 DE019255 – fundername: NCI NIH HHS grantid: P50 CA092131 – fundername: National Cancer Institute : NCI grantid: P50 CA092131 || CA |
| GroupedDBID | 29L 2WC 5GY 5VS AAFWJ AAKPC AAYXX ACGFO ACIPV ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV C1A CITATION E3Z EBS EJD F5P GROUPED_DOAJ GX1 IPNFZ KQ8 M~E OK1 OVT P2P RIG RNS TR2 XSB NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c414t-c9f6183a3cb82da9d1a722b2bb148feb137fad60f9845e092818c34eb9053aa3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 936 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000301231300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1548-7660 |
| IngestDate | Fri Oct 03 12:53:28 EDT 2025 Tue Sep 30 15:44:05 EDT 2025 Thu Oct 02 10:41:05 EDT 2025 Thu May 23 23:19:05 EDT 2024 Tue Nov 18 22:26:25 EST 2025 Sat Nov 29 04:37:58 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c414t-c9f6183a3cb82da9d1a722b2bb148feb137fad60f9845e092818c34eb9053aa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/ffbd5b8da09a4bf9afb7a8dc48f1f52e |
| PMID | 23050260 |
| PQID | 1826573542 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ffbd5b8da09a4bf9afb7a8dc48f1f52e pubmedcentral_primary_oai_pubmedcentral_nih_gov_3465711 proquest_miscellaneous_1826573542 pubmed_primary_23050260 crossref_primary_10_18637_jss_v046_i11 crossref_citationtrail_10_18637_jss_v046_i11 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-03-01 |
| PublicationDateYYYYMMDD | 2012-03-01 |
| PublicationDate_xml | – month: 03 year: 2012 text: 2012-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of statistical software |
| PublicationTitleAlternate | J Stat Softw |
| PublicationYear | 2012 |
| Publisher | Foundation for Open Access Statistics |
| Publisher_xml | – name: Foundation for Open Access Statistics |
| References | 18024473 - Bioinformatics. 2008 Mar 1;24(5):719-20 12202830 - Science. 2002 Aug 30;297(5586):1551-5 17250769 - BMC Bioinformatics. 2007 Jan 24;8:22 19114008 - BMC Bioinformatics. 2008 Dec 29;9:559 16646834 - Stat Appl Genet Mol Biol. 2005;4:Article17 16934000 - PLoS Genet. 2006 Aug 18;2(8):e130 17090670 - Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17402-7 17592643 - BMC Bioinformatics. 2007 Jun 25;8:220 |
| References_xml | – reference: 19114008 - BMC Bioinformatics. 2008 Dec 29;9:559 – reference: 16934000 - PLoS Genet. 2006 Aug 18;2(8):e130 – reference: 17250769 - BMC Bioinformatics. 2007 Jan 24;8:22 – reference: 18024473 - Bioinformatics. 2008 Mar 1;24(5):719-20 – reference: 12202830 - Science. 2002 Aug 30;297(5586):1551-5 – reference: 16646834 - Stat Appl Genet Mol Biol. 2005;4:Article17 – reference: 17090670 - Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17402-7 – reference: 17592643 - BMC Bioinformatics. 2007 Jun 25;8:220 |
| SSID | ssj0020495 |
| Score | 2.5740864 |
| Snippet | Many high-throughput biological data analyses require the calculation of large correlation matrices and/or clustering of a large number of objects. The... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| SubjectTerms | hierarchical clustering Pearson correlation robust correlation |
| Title | Fast R Functions for Robust Correlations and Hierarchical Clustering |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/23050260 https://www.proquest.com/docview/1826573542 https://pubmed.ncbi.nlm.nih.gov/PMC3465711 https://doaj.org/article/ffbd5b8da09a4bf9afb7a8dc48f1f52e |
| Volume | 46 |
| WOSCitedRecordID | wos000301231300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1548-7660 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020495 issn: 1548-7660 databaseCode: DOA dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1548-7660 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020495 issn: 1548-7660 databaseCode: M~E dateStart: 19960101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5B1QMcEC2vAK2MhDiRNokdP46wdNUDrVDVw96i8UtstcqiZrdHfjvjJLvqIhAXLlHkWMnom7FnRhl_A_AefSA_RxpAyUMugqE7XmAefXBCuYhF7Elcv6rLSz2bmW_3Wn2lmrCBHngA7jRG62urPRYGhY0Go1WovRM6lrGuQtp9KerZJFNjqkVxb90zpQqdKymLkV1TS65Ob7ru5I7SwpN5We54o560_0-R5u8Fk_c80PQpPBlDR_ZpEPkAHoT2EB5fbHlXu2fwZYrdil2xKXmr3qAYxaTsamnXNDxJjTjG0jeGrWfn83T6uG-GsmCTxTpxJpAnew7X07PryXk-9knInSjFKncmSlqZyJ3VlUfjS1RVZStrKdeJtBlzFdHLIhot6lCYRADluAjW0ApE5C9gr1224RUwgejTiSYllRex1FpGTvGUxKiL6HWdwccNXI0bOcRTK4tFk3KJhG5D6DYJ3YbQzeDDdvqPgTzjbxM_J-y3kxLndT9AltCMltD8yxIyeLfRXENrJP34wDYs112Tcqha8VpUGbwcNLn9FKVgdeJVy0Dt6HhHlt0n7fx7z8PNBb21LF__D-HfwCMKxaqhuu0t7K1u1-EI9t3dat7dHsNDNdPHvYnT9eLn2S_eIQZr |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+R+Functions+for+Robust+Correlations+and+Hierarchical+Clustering&rft.jtitle=Journal+of+statistical+software&rft.au=Langfelder%2C+Peter&rft.au=Horvath%2C+Steve&rft.date=2012-03-01&rft.issn=1548-7660&rft.eissn=1548-7660&rft.volume=46&rft.issue=11&rft_id=info:doi/10.18637%2Fjss.v046.i11&rft_id=info%3Apmid%2F23050260&rft.externalDocID=23050260 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7660&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7660&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7660&client=summon |