Fast R Functions for Robust Correlations and Hierarchical Clustering

Many high-throughput biological data analyses require the calculation of large correlation matrices and/or clustering of a large number of objects. The standard R function for calculating Pearson correlation can handle calculations without missing values efficiently, but is inefficient when applied...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of statistical software Ročník 46; číslo 11
Hlavní autoři: Langfelder, Peter, Horvath, Steve
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Foundation for Open Access Statistics 01.03.2012
Témata:
ISSN:1548-7660, 1548-7660
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Many high-throughput biological data analyses require the calculation of large correlation matrices and/or clustering of a large number of objects. The standard R function for calculating Pearson correlation can handle calculations without missing values efficiently, but is inefficient when applied to data sets with a relatively small number of missing data. We present an implementation of Pearson correlation calculation that can lead to substantial speedup on data with relatively small number of missing entries. Further, we parallelize all calculations and thus achieve further speedup on systems where parallel processing is available. A robust correlation measure, the biweight midcorrelation, is implemented in a similar manner and provides comparable speed. The functions cor and bicor for fast Pearson and biweight midcorrelation, respectively, are part of the updated, freely available R package WGCNA.The hierarchical clustering algorithm implemented in R function hclust is an order n(3) (n is the number of clustered objects) version of a publicly available clustering algorithm (Murtagh 2012). We present the package flashClust that implements the original algorithm which in practice achieves order approximately n(2), leading to substantial time savings when clustering large data sets.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1548-7660
1548-7660
DOI:10.18637/jss.v046.i11