Stability estimates for radial basis function methods applied to linear scalar conservation laws
We derive stability estimates for three commonly used radial basis function (RBF) methods to solve hyperbolic time-dependent PDEs: the RBF generated finite difference (RBF-FD) method, the RBF partition of unity method (RBF-PUM) and Kansa's (global) RBF method. We give the estimates in the discr...
Gespeichert in:
| Veröffentlicht in: | Applied mathematics and computation Jg. 485; S. 129020 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
15.01.2025
|
| Schlagworte: | |
| ISSN: | 0096-3003, 1873-5649 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We derive stability estimates for three commonly used radial basis function (RBF) methods to solve hyperbolic time-dependent PDEs: the RBF generated finite difference (RBF-FD) method, the RBF partition of unity method (RBF-PUM) and Kansa's (global) RBF method. We give the estimates in the discrete ℓ2-norm intrinsic to each of the three methods. The results show that Kansa's method and RBF-PUM can be ℓ2-stable in time under a sufficiently large oversampling of the discretized system of equations. The RBF-FD method in addition requires stabilization of the spurious jump terms due to the discontinuous RBF-FD cardinal basis functions. Numerical experiments show an agreement with our theoretical observations.
•Stability estimates for RBF methods discretizing linear conservation laws.•Spurious terms in Kansa's method, RBF-PUM, RBF-FD arise from lack of exact quadrature.•The RBF-FD estimate also entails a spurious term due to discontinuous trial space.•Oversampling and jump stabilization are possible stabilizations. |
|---|---|
| ISSN: | 0096-3003 1873-5649 |
| DOI: | 10.1016/j.amc.2024.129020 |