Convolutional Neural Networks for Diabetic Retinopathy

The diagnosis of diabetic retinopathy (DR) through colour fundus images requires experienced clinicians to identify the presence and significance of many small features which, along with a complex grading system, makes this a difficult and time consuming task. In this paper, we propose a CNN approac...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Procedia computer science Ročník 90; s. 200 - 205
Hlavní autoři: Pratt, Harry, Coenen, Frans, Broadbent, Deborah M., Harding, Simon P., Zheng, Yalin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 2016
Témata:
ISSN:1877-0509, 1877-0509
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The diagnosis of diabetic retinopathy (DR) through colour fundus images requires experienced clinicians to identify the presence and significance of many small features which, along with a complex grading system, makes this a difficult and time consuming task. In this paper, we propose a CNN approach to diagnosing DR from digital fundus images and accurately classifying its severity. We develop a network with CNN architecture and data augmentation which can identify the intricate features involved in the classification task such as micro-aneurysms, exudate and haemorrhages on the retina and consequently provide a diagnosis automatically and without user input. We train this network using a high-end graphics processor unit (GPU) on the publicly available Kaggle dataset and demonstrate impressive results, particularly for a high-level classification task. On the data set of 80,000 images used our proposed CNN achieves a sensitivity of 95% and an accuracy of 75% on 5,000 validation images.
ISSN:1877-0509
1877-0509
DOI:10.1016/j.procs.2016.07.014