A time-varying transfer function for balancing the exploration and exploitation ability of a binary PSO

An illustration of different shapes of the time-varying transfer function with different values of the control parameter φ. [Display omitted] •Analyse how transfer function in BPSO affects the balance between exploration and exploitation.•Propose a time-varying transfer function for BPSO to achieve...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied soft computing Ročník 59; s. 182 - 196
Hlavní autoři: Islam, Md. Jakirul, Li, Xiaodong, Mei, Yi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.10.2017
Témata:
ISSN:1568-4946, 1872-9681
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract An illustration of different shapes of the time-varying transfer function with different values of the control parameter φ. [Display omitted] •Analyse how transfer function in BPSO affects the balance between exploration and exploitation.•Propose a time-varying transfer function for BPSO to achieve a better such balance.•Validate the advantage of the new transfer function on knapsack instances and a truss design problem. Many real-world problems belong to the family of discrete optimization problems. Most of these problems are NP-hard and difficult to solve efficiently using classical linear and convex optimization methods. In addition, the computational difficulties of these optimization tasks increase rapidly with the increasing number of decision variables. A further difficulty can be also caused by the search space being intrinsically multimodal and non-convex. In such a case, it is more desirable to have an effective optimization method that can cope better with these problem characteristics. Binary particle swarm optimization (BPSO) is a simple and effective discrete optimization method. The original BPSO and its variants have been used to solve a number of classic discrete optimization problems. However, it is reported that the original BPSO and its variants are unable to provide satisfactory results due to the use of inappropriate transfer functions. More specifically, these transfer functions are unable to provide BPSO a good balance between exploration and exploitation in the search space, limiting their performances. To overcome this problem, this paper proposes to employ a time-varying transfer function in the BPSO, namely TVT-BPSO. To understand the search behaviour of the TVT-BPSO, we provide a systematic analysis of its exploration and exploitation capability. Our experimental results demonstrate that TVT-BPSO outperforms existing BPSO variants on both low-dimensional and high-dimensional classical 0–1 knapsack problems, as well as a 200-member truss problem, suggesting that TVT-BPSO is able to better scale to high dimensional combinatorial problems than the existing BPSO variants and other metaheuristic algorithms.
AbstractList An illustration of different shapes of the time-varying transfer function with different values of the control parameter φ. [Display omitted] •Analyse how transfer function in BPSO affects the balance between exploration and exploitation.•Propose a time-varying transfer function for BPSO to achieve a better such balance.•Validate the advantage of the new transfer function on knapsack instances and a truss design problem. Many real-world problems belong to the family of discrete optimization problems. Most of these problems are NP-hard and difficult to solve efficiently using classical linear and convex optimization methods. In addition, the computational difficulties of these optimization tasks increase rapidly with the increasing number of decision variables. A further difficulty can be also caused by the search space being intrinsically multimodal and non-convex. In such a case, it is more desirable to have an effective optimization method that can cope better with these problem characteristics. Binary particle swarm optimization (BPSO) is a simple and effective discrete optimization method. The original BPSO and its variants have been used to solve a number of classic discrete optimization problems. However, it is reported that the original BPSO and its variants are unable to provide satisfactory results due to the use of inappropriate transfer functions. More specifically, these transfer functions are unable to provide BPSO a good balance between exploration and exploitation in the search space, limiting their performances. To overcome this problem, this paper proposes to employ a time-varying transfer function in the BPSO, namely TVT-BPSO. To understand the search behaviour of the TVT-BPSO, we provide a systematic analysis of its exploration and exploitation capability. Our experimental results demonstrate that TVT-BPSO outperforms existing BPSO variants on both low-dimensional and high-dimensional classical 0–1 knapsack problems, as well as a 200-member truss problem, suggesting that TVT-BPSO is able to better scale to high dimensional combinatorial problems than the existing BPSO variants and other metaheuristic algorithms.
Author Mei, Yi
Islam, Md. Jakirul
Li, Xiaodong
Author_xml – sequence: 1
  givenname: Md. Jakirul
  surname: Islam
  fullname: Islam, Md. Jakirul
  email: md.jakirul.islam@rmit.edu.au
  organization: School of Science, RMIT University, Melbourne, Australia
– sequence: 2
  givenname: Xiaodong
  surname: Li
  fullname: Li, Xiaodong
  email: xiaodong.li@rmit.edu.au
  organization: School of Science, RMIT University, Melbourne, Australia
– sequence: 3
  givenname: Yi
  surname: Mei
  fullname: Mei, Yi
  email: yi.mei@ecs.vuw.ac.nz
  organization: School of Engineering and Computer Science, Victoria University of Wellington, New Zealand
BookMark eNp9kM9qAyEQh6Wk0CTtC_TkC-xWd82uQi8h9B8EUmh7FtcdU8NGg25D8_Y1yZ56yMlxfnzDzDdBI-cdIHRPSU4JrR42uYpe5wWhdU5YTmbkCo0pr4tMVJyOUj2reMYEq27QJMYNSZAo-Bit57i3W8j2KhysW-M-KBcNBGx-nO6td9j4gBvVKadP-Tdg-N11PqhTqlx7_tt-aDS2s_0Be4MVbqxLc_H7x-oWXRvVRbgb3in6en76XLxmy9XL22K-zDSjrM8UM2WpGk604Gk_XSpd8FLUtW4r03AjFKFcMF6mBKACw0QxM1VBW90YkrpTVJzn6uBjDGDkLthtWkJSIo-q5EYeVcmjKkmYTKoSxP9Bejgn6bDdZfTxjEI6am8hyKgtOA2tDaB72Xp7Cf8DU2qJGQ
CitedBy_id crossref_primary_10_1016_j_chemolab_2020_104170
crossref_primary_10_1109_ACCESS_2021_3124710
crossref_primary_10_1080_1062936X_2023_2261855
crossref_primary_10_1007_s10479_024_06112_3
crossref_primary_10_1088_1748_0221_15_01_P01025
crossref_primary_10_1007_s00521_019_04266_x
crossref_primary_10_1016_j_ins_2023_119529
crossref_primary_10_1007_s11042_024_19548_3
crossref_primary_10_1007_s40031_018_0323_y
crossref_primary_10_3390_app11188387
crossref_primary_10_3390_biomimetics8050400
crossref_primary_10_1016_j_knosys_2023_111191
crossref_primary_10_3390_biomimetics8020266
crossref_primary_10_1080_1062936X_2019_1607899
crossref_primary_10_3390_math10244776
crossref_primary_10_1016_j_eswa_2022_116550
crossref_primary_10_1109_ACCESS_2019_2953800
crossref_primary_10_1109_TCYB_2019_2944141
crossref_primary_10_1007_s13042_024_02308_y
crossref_primary_10_1007_s00500_023_08425_0
crossref_primary_10_1016_j_jksuci_2023_101757
crossref_primary_10_1016_j_knosys_2018_08_003
crossref_primary_10_1016_j_knosys_2023_110697
crossref_primary_10_3390_app11146516
crossref_primary_10_1016_j_eswa_2025_129364
crossref_primary_10_1016_j_ins_2019_10_029
crossref_primary_10_1109_ACCESS_2023_3263584
crossref_primary_10_1016_j_asoc_2022_108816
crossref_primary_10_1007_s00500_020_05360_2
crossref_primary_10_1016_j_knosys_2022_109446
crossref_primary_10_1016_j_eswa_2017_12_034
crossref_primary_10_1007_s11277_024_11584_4
crossref_primary_10_1109_ACCESS_2023_3322650
crossref_primary_10_1007_s00500_023_07988_2
crossref_primary_10_1088_1742_6596_1879_2_022097
crossref_primary_10_3390_math11010129
crossref_primary_10_1016_j_chemolab_2022_104635
crossref_primary_10_1007_s00521_020_04955_y
crossref_primary_10_3390_app12178562
crossref_primary_10_1007_s00500_018_3627_6
crossref_primary_10_1109_TGRS_2019_2958812
crossref_primary_10_1007_s11030_022_10410_y
crossref_primary_10_1038_s41598_023_46865_8
crossref_primary_10_1007_s11042_022_12078_w
crossref_primary_10_1016_j_eswa_2023_120802
crossref_primary_10_1080_1062936X_2023_2208374
crossref_primary_10_3390_app9132589
crossref_primary_10_3233_JIFS_189149
crossref_primary_10_1109_ACCESS_2020_2975981
crossref_primary_10_1007_s10878_021_00818_x
crossref_primary_10_3390_sym11111423
crossref_primary_10_1016_j_chemolab_2021_104288
crossref_primary_10_1109_TC_2018_2818144
crossref_primary_10_1109_ACCESS_2022_3142859
crossref_primary_10_3390_e24060777
crossref_primary_10_1007_s11063_020_10336_2
crossref_primary_10_1016_j_asoc_2023_110583
crossref_primary_10_32604_cmes_2022_022985
crossref_primary_10_1016_j_knosys_2025_114119
crossref_primary_10_1016_j_comcom_2022_06_016
crossref_primary_10_1016_j_asoc_2020_106870
crossref_primary_10_1016_j_asoc_2021_107346
crossref_primary_10_1016_j_iswa_2022_200114
crossref_primary_10_1007_s12065_023_00819_1
Cites_doi 10.1109/TAP.2010.2090460
10.1016/j.asoc.2012.05.029
10.1016/j.compstruc.2012.12.010
10.1109/JSEN.2012.2196430
10.1002/j.1538-7305.1950.tb00463.x
10.1016/j.camwa.2008.02.006
10.1109/TPWRS.2009.2021219
10.1016/j.patrec.2014.10.007
10.1109/TEVC.2007.896686
10.1109/TCBB.2015.2465906
10.1109/JSEN.2013.2290433
10.1016/j.cor.2005.11.017
10.1016/j.ins.2012.12.043
10.1016/j.asoc.2011.01.039
10.1109/TAP.2007.891552
10.1016/j.asoc.2014.12.007
10.1109/TPWRS.2005.860907
10.1016/j.asoc.2015.08.037
10.1007/s10462-012-9373-8
10.1016/j.ejps.2004.03.002
10.4304/jsw.3.9.28-35
10.1007/s10898-012-0006-1
10.1016/j.pnsc.2008.03.018
10.1016/j.compbiolchem.2007.09.005
10.1049/iet-map.2015.0071
10.1016/j.asoc.2010.09.003
10.1016/j.amc.2012.05.001
10.1016/j.cor.2004.03.002
10.1007/s11760-016-0883-8
10.1109/TPWRS.2010.2042472
10.1016/j.asoc.2010.07.019
10.1016/j.advengsoft.2013.09.006
10.1016/j.swevo.2012.09.002
10.1016/j.eswa.2011.12.013
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2017.04.050
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 196
ExternalDocumentID 10_1016_j_asoc_2017_04_050
S1568494617302326
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c414t-a4f33ab80c98928c3ac283977cd6fb8f9a0189483c3aee6ef4925f621dcbf03c3
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000407732600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Tue Nov 18 22:42:20 EST 2025
Sat Nov 29 03:05:32 EST 2025
Fri Feb 23 02:24:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Binary particle swarm optimization
The truss optimization problem
The 0–1 knapsack problem
Transfer function
Discrete optimization problems
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c414t-a4f33ab80c98928c3ac283977cd6fb8f9a0189483c3aee6ef4925f621dcbf03c3
PageCount 15
ParticipantIDs crossref_primary_10_1016_j_asoc_2017_04_050
crossref_citationtrail_10_1016_j_asoc_2017_04_050
elsevier_sciencedirect_doi_10_1016_j_asoc_2017_04_050
PublicationCentury 2000
PublicationDate 2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yang (bib0035) 2010
Liu, Jiang, Chen (bib0100) 2015; 9
Wang, Wang, Fu, Zhen (bib0120) 2008; 3
Suganthan, Hansen, Liang, Deb, Chen, Auger, Tiwari (bib0170) 2005
Jeong, Park, Jang, Lee (bib0125) 2010; 25
Lee, Soak, Oh, Pedrycz, Jeon (bib0155) 2008; 18
Chen, Kuo, Chen, Chen (bib0025) 2009
Jin, Rahmat-Samii (bib0185) 2007; 55
Naeem, Pareek, Lee (bib0055) 2012; 12
del Valle, Venayagamoorthy, Mohagheghi, Hernandez, Harley (bib0180) 2008; 12
Ting, Rao, Loo (bib0085) 2006; 21
Hamming (bib0210) 1950; 29
Kennedy, Eberhart (bib0040) 1997
Kaveh, Sheikholeslami, Talatahari, Keshvari-Ilkhichi (bib0230) 2014; 67
Montalvo, Izquierdo, Prez, Tung (bib0190) 2008; 56
Liao, Tseng, Luarn (bib0045) 2007; 34
Jarboui, Damak, Siarry, Rebai (bib0050) 2008; 195
Tassopoulos, Beligiannis (bib0090) 2012; 39
Kaveh, Khayatazad (bib0225) 2013; 117
Wang, Wang, Fu, Zhen (bib0165) 2008; 3
Eberhart, Shi (bib0175) 2001
Liu, Mei, Li (bib0110) 2015
Mirjalili, Lewis (bib0075) 2013; 9
Han, Yang, Wu, Zhu, Ling, Song, Huang (bib0105) 2017; 14
Parker, Rardin (bib0030) 1988
Bansal, Deep (bib0070) 2012; 218
Jian-Hua, Rong-Hua, Shui-Hua (bib0080) 2011; 47
Zou, Gao, Li, Wu (bib0005) 2011; 11
Han, Huang, Zheng, Zhang, Xu (bib0065) 2017; 11
Beheshti, Shamsuddin, Yuhaniz (bib0135) 2013; 57
Modiri, Kiasaleh (bib0130) 2011; 59
Pisinger (bib0010) 2005; 32
Yang, Zhang, Ling, Pan, Sun (bib0205) 2014; 14
Banka, Dara (bib0140) 2015; 52
Pedrasa, Spooner, MacGill (bib0020) 2009; 24
Bekdas, Nigdeli, Yang (bib0235) 2015; 37
Wang, Yang, Xu, Niu, Pardalos, Fei (bib0115) 2013; 232
Jordehi, Jasni (bib0145) 2015; 43
Lin, Yang, Fournier-Viger, Hong, Voznak (bib0060) 2016
Tassopoulos, Beligiannis (bib0095) 2012; 12
Shen, Jiang, Jiao, Li Shen, Yu (bib0160) 2004; 22
Geng, Chen, Yang, Shi, Zhao (bib0015) 2011; 11
Wang, Tan, Liu (bib0150) 2017
Chuang, Chang, Tu, Yang (bib0195) 2008; 32
Spillers, MacBain (bib0215) 2009
Dede, Ayvaz (bib0240) 2015; 28
Sonmez (bib0220) 2011; 11
Shahzad, Baig, Masood, Kamran, Naveed (bib0200) 2009
Bansal (10.1016/j.asoc.2017.04.050_bib0070) 2012; 218
Liu (10.1016/j.asoc.2017.04.050_bib0100) 2015; 9
del Valle (10.1016/j.asoc.2017.04.050_bib0180) 2008; 12
Tassopoulos (10.1016/j.asoc.2017.04.050_bib0090) 2012; 39
Yang (10.1016/j.asoc.2017.04.050_bib0035) 2010
Ting (10.1016/j.asoc.2017.04.050_bib0085) 2006; 21
Yang (10.1016/j.asoc.2017.04.050_bib0205) 2014; 14
Jarboui (10.1016/j.asoc.2017.04.050_bib0050) 2008; 195
Mirjalili (10.1016/j.asoc.2017.04.050_bib0075) 2013; 9
Montalvo (10.1016/j.asoc.2017.04.050_bib0190) 2008; 56
Parker (10.1016/j.asoc.2017.04.050_bib0030) 1988
Beheshti (10.1016/j.asoc.2017.04.050_bib0135) 2013; 57
Wang (10.1016/j.asoc.2017.04.050_bib0150) 2017
Wang (10.1016/j.asoc.2017.04.050_bib0165) 2008; 3
Tassopoulos (10.1016/j.asoc.2017.04.050_bib0095) 2012; 12
Jeong (10.1016/j.asoc.2017.04.050_bib0125) 2010; 25
Pedrasa (10.1016/j.asoc.2017.04.050_bib0020) 2009; 24
Spillers (10.1016/j.asoc.2017.04.050_bib0215) 2009
Bekdas (10.1016/j.asoc.2017.04.050_bib0235) 2015; 37
Pisinger (10.1016/j.asoc.2017.04.050_bib0010) 2005; 32
Kaveh (10.1016/j.asoc.2017.04.050_bib0230) 2014; 67
Han (10.1016/j.asoc.2017.04.050_bib0065) 2017; 11
Liao (10.1016/j.asoc.2017.04.050_bib0045) 2007; 34
Jordehi (10.1016/j.asoc.2017.04.050_bib0145) 2015; 43
Chen (10.1016/j.asoc.2017.04.050_bib0025) 2009
Chuang (10.1016/j.asoc.2017.04.050_bib0195) 2008; 32
Hamming (10.1016/j.asoc.2017.04.050_bib0210) 1950; 29
Lin (10.1016/j.asoc.2017.04.050_bib0060) 2016
Jin (10.1016/j.asoc.2017.04.050_bib0185) 2007; 55
Eberhart (10.1016/j.asoc.2017.04.050_bib0175) 2001
Wang (10.1016/j.asoc.2017.04.050_bib0115) 2013; 232
Kennedy (10.1016/j.asoc.2017.04.050_bib0040) 1997
Modiri (10.1016/j.asoc.2017.04.050_bib0130) 2011; 59
Banka (10.1016/j.asoc.2017.04.050_bib0140) 2015; 52
Liu (10.1016/j.asoc.2017.04.050_bib0110) 2015
Jian-Hua (10.1016/j.asoc.2017.04.050_bib0080) 2011; 47
Naeem (10.1016/j.asoc.2017.04.050_bib0055) 2012; 12
Shahzad (10.1016/j.asoc.2017.04.050_bib0200) 2009
Dede (10.1016/j.asoc.2017.04.050_bib0240) 2015; 28
Zou (10.1016/j.asoc.2017.04.050_bib0005) 2011; 11
Han (10.1016/j.asoc.2017.04.050_bib0105) 2017; 14
Lee (10.1016/j.asoc.2017.04.050_bib0155) 2008; 18
Sonmez (10.1016/j.asoc.2017.04.050_bib0220) 2011; 11
Wang (10.1016/j.asoc.2017.04.050_bib0120) 2008; 3
Shen (10.1016/j.asoc.2017.04.050_bib0160) 2004; 22
Suganthan (10.1016/j.asoc.2017.04.050_bib0170) 2005
Kaveh (10.1016/j.asoc.2017.04.050_bib0225) 2013; 117
Geng (10.1016/j.asoc.2017.04.050_bib0015) 2011; 11
References_xml – volume: 11
  start-page: 1556
  year: 2011
  end-page: 1564
  ident: bib0005
  article-title: Solving 0–1 knapsack problem by a novel global harmony search algorithm
  publication-title: Appl. Soft Comput.
– volume: 32
  start-page: 2271
  year: 2005
  end-page: 2284
  ident: bib0010
  article-title: Where are the hard knapsack problems?
  publication-title: Comput. Oper. Res.
– volume: 25
  start-page: 1486
  year: 2010
  end-page: 1495
  ident: bib0125
  article-title: A new quantum-inspired binary PSO: application to unit commitment problems for power systems
  publication-title: IEEE Trans. Power Syst.
– year: 2015
  ident: bib0110
  article-title: An analysis of the inertia weight parameter for binary particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 9
  start-page: 1
  year: 2013
  end-page: 14
  ident: bib0075
  article-title: S-shaped versus v-shaped transfer functions for binary particle swarm optimization
  publication-title: Swarm Evol. Comput.
– volume: 218
  start-page: 11042
  year: 2012
  end-page: 11061
  ident: bib0070
  article-title: A modified binary particle swarm optimization for knapsack problems
  publication-title: Appl. Math. Comput.
– volume: 52
  start-page: 94
  year: 2015
  end-page: 100
  ident: bib0140
  article-title: A hamming distance based binary particle swarm optimization (HDBPSO) algorithm for high dimensional feature selection, classification and validation
  publication-title: Pattern Recognit. Lett.
– start-page: 81
  year: 2001
  end-page: 86
  ident: bib0175
  article-title: Particle swarm optimization: developments, applications and resources
  publication-title: Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1
– volume: 34
  start-page: 3099
  year: 2007
  end-page: 3111
  ident: bib0045
  article-title: A discrete version of particle swarm optimization for flowshop scheduling problems
  publication-title: Comput. Oper. Res.
– volume: 11
  start-page: 3680
  year: 2011
  end-page: 3689
  ident: bib0015
  article-title: Solving the traveling salesman problem based on an adaptive simulated annealing algorithm with greedy search
  publication-title: Appl. Soft Comput.
– volume: 67
  start-page: 136
  year: 2014
  end-page: 147
  ident: bib0230
  article-title: Chaotic swarming of particles: a new method for size optimization of truss structures
  publication-title: Adv. Eng. Softw.
– volume: 28
  start-page: 250
  year: 2015
  end-page: 258
  ident: bib0240
  article-title: Combined size and shape optimization of structures with a new meta-heuristic algorithm
  publication-title: Appl. Soft Comput.
– start-page: 4104
  year: 1997
  end-page: 4108
  ident: bib0040
  article-title: A discrete binary version of the particle swarm algorithm
  publication-title: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, vol. 5
– volume: 232
  start-page: 58
  year: 2013
  end-page: 87
  ident: bib0115
  article-title: An improved adaptive binary harmony search algorithm
  publication-title: Inf. Sci.
– volume: 14
  start-page: 85
  year: 2017
  end-page: 96
  ident: bib0105
  article-title: A gene selection method for microarray data based on binary PSO encoding gene-to-class sensitivity information
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
– volume: 11
  start-page: 17
  year: 2017
  end-page: 24
  ident: bib0065
  article-title: Vanishing point detection and line classification with BPSO
  publication-title: Signal Image Video Process.
– volume: 21
  start-page: 411
  year: 2006
  end-page: 418
  ident: bib0085
  article-title: A novel approach for unit commitment problem via an effective hybrid particle swarm optimization
  publication-title: IEEE Trans. Power Syst.
– volume: 57
  start-page: 549
  year: 2013
  end-page: 573
  ident: bib0135
  article-title: Binary accelerated particle swarm algorithm (BAPSA) for discrete optimization problems
  publication-title: J. Global Optim.
– start-page: 169
  year: 2009
  end-page: 178
  ident: bib0025
  article-title: Refined binary particle swarm optimization and application in power system
  publication-title: WSEAS Trans. Syst.
– volume: 9
  start-page: 1386
  year: 2015
  end-page: 1391
  ident: bib0100
  article-title: Binary inheritance learning particle swarm optimisation and its application in thinned antenna array synthesis with the minimum sidelobe level
  publication-title: IET Microw. Antennas Propag.
– volume: 56
  start-page: 769
  year: 2008
  end-page: 776
  ident: bib0190
  article-title: Particle swarm optimization applied to the design of water supply systems
  publication-title: Comput. Math. Appl.
– volume: 55
  start-page: 556
  year: 2007
  end-page: 567
  ident: bib0185
  article-title: Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations
  publication-title: IEEE Trans. Antennas Propag.
– volume: 117
  start-page: 82
  year: 2013
  end-page: 94
  ident: bib0225
  article-title: Ray optimization for size and shape optimization of truss structures
  publication-title: Comput. Struct.
– volume: 12
  start-page: 171
  year: 2008
  end-page: 195
  ident: bib0180
  article-title: Particle swarm optimization: basic concepts, variants and applications in power systems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 3
  start-page: 28
  year: 2008
  end-page: 35
  ident: bib0120
  article-title: A novel probability binary particle swarm optimization algorithm and its application
  publication-title: J. Softw.
– volume: 29
  start-page: 147
  year: 1950
  end-page: 160
  ident: bib0210
  article-title: Error detecting and error correcting codes
  publication-title: Bell Syst. Tech. J.
– volume: 14
  start-page: 882
  year: 2014
  end-page: 892
  ident: bib0205
  article-title: Task allocation for wireless sensor network using modified binary particle swarm optimization
  publication-title: IEEE Sens. J.
– volume: 47
  start-page: 504
  year: 2011
  end-page: 514
  ident: bib0080
  article-title: The analysis of binary particle swarm optimization
  publication-title: J. Nanjing Univ. (Nat. Sci.)
– volume: 24
  start-page: 1173
  year: 2009
  end-page: 1181
  ident: bib0020
  article-title: Scheduling of demand side resources using binary particle swarm optimization
  publication-title: IEEE Trans. Power Syst.
– volume: 43
  start-page: 243
  year: 2015
  end-page: 258
  ident: bib0145
  article-title: Particle swarm optimisation for discrete optimisation problems: a review
  publication-title: Artif. Intell. Rev.
– year: 2009
  ident: bib0215
  article-title: Structural Optimization
– year: 2010
  ident: bib0035
  article-title: Nature-inspired Metaheuristic Algorithms
– year: 1988
  ident: bib0030
  article-title: Discrete Optimization. Computer Science and Applied Mathematics
– volume: 195
  start-page: 299
  year: 2008
  end-page: 308
  ident: bib0050
  article-title: A combinatorial particle swarm optimization for solving multi-mode resource-constrained project scheduling problems
  publication-title: Appl. Math. Comput.
– volume: 59
  start-page: 214
  year: 2011
  end-page: 224
  ident: bib0130
  article-title: Modification of real-number and binary PSO algorithms for accelerated convergence
  publication-title: IEEE Trans. Antennas Propag.
– volume: 18
  start-page: 1161
  year: 2008
  end-page: 1166
  ident: bib0155
  article-title: Modified binary particle swarm optimization
  publication-title: Prog. Nat. Sci.
– volume: 32
  start-page: 29
  year: 2008
  end-page: 38
  ident: bib0195
  article-title: Improved binary PSO for feature selection using gene expression data
  publication-title: Comput. Biol. Chem.
– volume: 37
  start-page: 322
  year: 2015
  end-page: 331
  ident: bib0235
  article-title: Sizing optimization of truss structures using flower pollination algorithm
  publication-title: Appl. Soft Comput.
– volume: 22
  start-page: 145
  year: 2004
  end-page: 152
  ident: bib0160
  article-title: Modified particle swarm optimization algorithm for variable selection in MLR and PLS model: QSAR studies of antagonism of angiotensin II antagonists
  publication-title: Eur. J. Pharm. Sci.
– start-page: 1
  year: 2016
  end-page: 19
  ident: bib0060
  article-title: A binary PSO approach to mine high-utility itemsets
  publication-title: Soft Comput.
– start-page: 339
  year: 2009
  end-page: 348
  ident: bib0200
  article-title: Opposition-based particle swarm optimization with velocity clamping (OVCPSO)
  publication-title: Advances in Computational Intelligence
– volume: 11
  start-page: 2406
  year: 2011
  end-page: 2418
  ident: bib0220
  article-title: Artificial bee colony algorithm for optimization of truss structures
  publication-title: Appl. Soft Comput.
– volume: 3
  start-page: 28
  year: 2008
  end-page: 35
  ident: bib0165
  article-title: A novel probability binary particle swarm optimization algorithm and its application
  publication-title: J. Softw.
– volume: 39
  start-page: 6029
  year: 2012
  end-page: 6040
  ident: bib0090
  article-title: Solving effectively the school timetabling problem using particle swarm optimization
  publication-title: Expert Syst. Appl.
– start-page: 2005
  year: 2005
  ident: bib0170
  article-title: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization
– volume: 12
  start-page: 3472
  year: 2012
  end-page: 3489
  ident: bib0095
  article-title: A hybrid particle swarm optimization based algorithm for high school timetabling problems
  publication-title: Appl. Soft Comput.
– volume: 12
  start-page: 2577
  year: 2012
  end-page: 2585
  ident: bib0055
  article-title: Swarm intelligence for sensor selection problems
  publication-title: IEEE Sens. J.
– start-page: 1
  year: 2017
  end-page: 22
  ident: bib0150
  article-title: Particle swarm optimization algorithm: an overview
  publication-title: Soft Comput.
– year: 1988
  ident: 10.1016/j.asoc.2017.04.050_bib0030
– volume: 195
  start-page: 299
  year: 2008
  ident: 10.1016/j.asoc.2017.04.050_bib0050
  article-title: A combinatorial particle swarm optimization for solving multi-mode resource-constrained project scheduling problems
  publication-title: Appl. Math. Comput.
– volume: 59
  start-page: 214
  year: 2011
  ident: 10.1016/j.asoc.2017.04.050_bib0130
  article-title: Modification of real-number and binary PSO algorithms for accelerated convergence
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2010.2090460
– volume: 12
  start-page: 3472
  year: 2012
  ident: 10.1016/j.asoc.2017.04.050_bib0095
  article-title: A hybrid particle swarm optimization based algorithm for high school timetabling problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.05.029
– volume: 117
  start-page: 82
  year: 2013
  ident: 10.1016/j.asoc.2017.04.050_bib0225
  article-title: Ray optimization for size and shape optimization of truss structures
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2012.12.010
– start-page: 4104
  year: 1997
  ident: 10.1016/j.asoc.2017.04.050_bib0040
  article-title: A discrete binary version of the particle swarm algorithm
  publication-title: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, vol. 5
– start-page: 1
  year: 2016
  ident: 10.1016/j.asoc.2017.04.050_bib0060
  article-title: A binary PSO approach to mine high-utility itemsets
  publication-title: Soft Comput.
– volume: 12
  start-page: 2577
  year: 2012
  ident: 10.1016/j.asoc.2017.04.050_bib0055
  article-title: Swarm intelligence for sensor selection problems
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2012.2196430
– year: 2015
  ident: 10.1016/j.asoc.2017.04.050_bib0110
  article-title: An analysis of the inertia weight parameter for binary particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 29
  start-page: 147
  year: 1950
  ident: 10.1016/j.asoc.2017.04.050_bib0210
  article-title: Error detecting and error correcting codes
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1950.tb00463.x
– volume: 56
  start-page: 769
  year: 2008
  ident: 10.1016/j.asoc.2017.04.050_bib0190
  article-title: Particle swarm optimization applied to the design of water supply systems
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2008.02.006
– volume: 24
  start-page: 1173
  year: 2009
  ident: 10.1016/j.asoc.2017.04.050_bib0020
  article-title: Scheduling of demand side resources using binary particle swarm optimization
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2009.2021219
– volume: 52
  start-page: 94
  year: 2015
  ident: 10.1016/j.asoc.2017.04.050_bib0140
  article-title: A hamming distance based binary particle swarm optimization (HDBPSO) algorithm for high dimensional feature selection, classification and validation
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2014.10.007
– volume: 12
  start-page: 171
  year: 2008
  ident: 10.1016/j.asoc.2017.04.050_bib0180
  article-title: Particle swarm optimization: basic concepts, variants and applications in power systems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.896686
– volume: 14
  start-page: 85
  year: 2017
  ident: 10.1016/j.asoc.2017.04.050_bib0105
  article-title: A gene selection method for microarray data based on binary PSO encoding gene-to-class sensitivity information
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
  doi: 10.1109/TCBB.2015.2465906
– volume: 14
  start-page: 882
  year: 2014
  ident: 10.1016/j.asoc.2017.04.050_bib0205
  article-title: Task allocation for wireless sensor network using modified binary particle swarm optimization
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2013.2290433
– volume: 34
  start-page: 3099
  year: 2007
  ident: 10.1016/j.asoc.2017.04.050_bib0045
  article-title: A discrete version of particle swarm optimization for flowshop scheduling problems
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2005.11.017
– volume: 232
  start-page: 58
  year: 2013
  ident: 10.1016/j.asoc.2017.04.050_bib0115
  article-title: An improved adaptive binary harmony search algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.12.043
– volume: 11
  start-page: 3680
  year: 2011
  ident: 10.1016/j.asoc.2017.04.050_bib0015
  article-title: Solving the traveling salesman problem based on an adaptive simulated annealing algorithm with greedy search
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2011.01.039
– start-page: 81
  year: 2001
  ident: 10.1016/j.asoc.2017.04.050_bib0175
  article-title: Particle swarm optimization: developments, applications and resources
– volume: 55
  start-page: 556
  year: 2007
  ident: 10.1016/j.asoc.2017.04.050_bib0185
  article-title: Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2007.891552
– volume: 28
  start-page: 250
  year: 2015
  ident: 10.1016/j.asoc.2017.04.050_bib0240
  article-title: Combined size and shape optimization of structures with a new meta-heuristic algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.12.007
– volume: 21
  start-page: 411
  year: 2006
  ident: 10.1016/j.asoc.2017.04.050_bib0085
  article-title: A novel approach for unit commitment problem via an effective hybrid particle swarm optimization
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2005.860907
– volume: 37
  start-page: 322
  year: 2015
  ident: 10.1016/j.asoc.2017.04.050_bib0235
  article-title: Sizing optimization of truss structures using flower pollination algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.08.037
– volume: 43
  start-page: 243
  year: 2015
  ident: 10.1016/j.asoc.2017.04.050_bib0145
  article-title: Particle swarm optimisation for discrete optimisation problems: a review
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-012-9373-8
– volume: 47
  start-page: 504
  year: 2011
  ident: 10.1016/j.asoc.2017.04.050_bib0080
  article-title: The analysis of binary particle swarm optimization
  publication-title: J. Nanjing Univ. (Nat. Sci.)
– volume: 22
  start-page: 145
  year: 2004
  ident: 10.1016/j.asoc.2017.04.050_bib0160
  article-title: Modified particle swarm optimization algorithm for variable selection in MLR and PLS model: QSAR studies of antagonism of angiotensin II antagonists
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/j.ejps.2004.03.002
– volume: 3
  start-page: 28
  year: 2008
  ident: 10.1016/j.asoc.2017.04.050_bib0120
  article-title: A novel probability binary particle swarm optimization algorithm and its application
  publication-title: J. Softw.
  doi: 10.4304/jsw.3.9.28-35
– volume: 57
  start-page: 549
  year: 2013
  ident: 10.1016/j.asoc.2017.04.050_bib0135
  article-title: Binary accelerated particle swarm algorithm (BAPSA) for discrete optimization problems
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-012-0006-1
– start-page: 2005
  year: 2005
  ident: 10.1016/j.asoc.2017.04.050_bib0170
– volume: 3
  start-page: 28
  year: 2008
  ident: 10.1016/j.asoc.2017.04.050_bib0165
  article-title: A novel probability binary particle swarm optimization algorithm and its application
  publication-title: J. Softw.
  doi: 10.4304/jsw.3.9.28-35
– start-page: 169
  year: 2009
  ident: 10.1016/j.asoc.2017.04.050_bib0025
  article-title: Refined binary particle swarm optimization and application in power system
  publication-title: WSEAS Trans. Syst.
– volume: 18
  start-page: 1161
  year: 2008
  ident: 10.1016/j.asoc.2017.04.050_bib0155
  article-title: Modified binary particle swarm optimization
  publication-title: Prog. Nat. Sci.
  doi: 10.1016/j.pnsc.2008.03.018
– start-page: 339
  year: 2009
  ident: 10.1016/j.asoc.2017.04.050_bib0200
  article-title: Opposition-based particle swarm optimization with velocity clamping (OVCPSO)
– start-page: 1
  year: 2017
  ident: 10.1016/j.asoc.2017.04.050_bib0150
  article-title: Particle swarm optimization algorithm: an overview
  publication-title: Soft Comput.
– volume: 32
  start-page: 29
  year: 2008
  ident: 10.1016/j.asoc.2017.04.050_bib0195
  article-title: Improved binary PSO for feature selection using gene expression data
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2007.09.005
– volume: 9
  start-page: 1386
  year: 2015
  ident: 10.1016/j.asoc.2017.04.050_bib0100
  article-title: Binary inheritance learning particle swarm optimisation and its application in thinned antenna array synthesis with the minimum sidelobe level
  publication-title: IET Microw. Antennas Propag.
  doi: 10.1049/iet-map.2015.0071
– year: 2009
  ident: 10.1016/j.asoc.2017.04.050_bib0215
– volume: 11
  start-page: 2406
  year: 2011
  ident: 10.1016/j.asoc.2017.04.050_bib0220
  article-title: Artificial bee colony algorithm for optimization of truss structures
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.09.003
– volume: 218
  start-page: 11042
  year: 2012
  ident: 10.1016/j.asoc.2017.04.050_bib0070
  article-title: A modified binary particle swarm optimization for knapsack problems
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2012.05.001
– volume: 32
  start-page: 2271
  year: 2005
  ident: 10.1016/j.asoc.2017.04.050_bib0010
  article-title: Where are the hard knapsack problems?
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2004.03.002
– volume: 11
  start-page: 17
  year: 2017
  ident: 10.1016/j.asoc.2017.04.050_bib0065
  article-title: Vanishing point detection and line classification with BPSO
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-016-0883-8
– volume: 25
  start-page: 1486
  year: 2010
  ident: 10.1016/j.asoc.2017.04.050_bib0125
  article-title: A new quantum-inspired binary PSO: application to unit commitment problems for power systems
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2010.2042472
– volume: 11
  start-page: 1556
  year: 2011
  ident: 10.1016/j.asoc.2017.04.050_bib0005
  article-title: Solving 0–1 knapsack problem by a novel global harmony search algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.07.019
– year: 2010
  ident: 10.1016/j.asoc.2017.04.050_bib0035
– volume: 67
  start-page: 136
  year: 2014
  ident: 10.1016/j.asoc.2017.04.050_bib0230
  article-title: Chaotic swarming of particles: a new method for size optimization of truss structures
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.09.006
– volume: 9
  start-page: 1
  year: 2013
  ident: 10.1016/j.asoc.2017.04.050_bib0075
  article-title: S-shaped versus v-shaped transfer functions for binary particle swarm optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2012.09.002
– volume: 39
  start-page: 6029
  year: 2012
  ident: 10.1016/j.asoc.2017.04.050_bib0090
  article-title: Solving effectively the school timetabling problem using particle swarm optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.12.013
SSID ssj0016928
Score 2.4648755
Snippet An illustration of different shapes of the time-varying transfer function with different values of the control parameter φ. [Display omitted] •Analyse how...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 182
SubjectTerms Binary particle swarm optimization
Discrete optimization problems
The 0–1 knapsack problem
The truss optimization problem
Transfer function
Title A time-varying transfer function for balancing the exploration and exploitation ability of a binary PSO
URI https://dx.doi.org/10.1016/j.asoc.2017.04.050
Volume 59
WOSCitedRecordID wos000407732600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxELbS0EMvBfpQKQ_50FtktK947WNUgQCVhwSV0tPK9tpVEFrQEiJQ_3zHr80KKlQq9bLaOPHG8nwZf3Zm5kPoS80FlzSnRJhaEeD_CWG1FkTWSnFNbQUR5cQmypMTNp3ys8HgV8yFWVyVTcPu7_nNfzU1tIGxbersC8zdPRQa4B6MDlcwO1z_yvATpxdPFqJ9CBoQwEx1O7IrWBdYKG1Eo4qpUtoF4nko2IN09zoU7x75Qt4PPpFS-vTds_PTPquNVPYWfLoLUr-bxxWxj7rjend0BIy1XQYjfnPBBNOZgN3xssexds0_Zv0zCVjnYnRbOCh7kizjfStlpODhxFH7NlZmhFOv2hIdcigR7j1q6rWJwuKcevnbJ37fH0Fc7gqAtI3XK139Wl_S9lE97XM7DjuMtLSCSRl9hVaycszZEK1MDvemR92fUJQ7ad5u3CHnyocHPv6mP_OaHle5WENvwyYDTzw41tFAN-_QahTwwMGfv0c_J7iPFRyxgiNWMGAFd1jBgBXcwwoGrOA-VnDACr42WGCPFQxY-YC-7-9dfD0gQXmDqCIt5kQUJs-FZIniDCZB5UIBDYWtgqqpkcxwkaSMFyyHd7Sm2tgSl4Zmaa2kSaD1Ixo2143-hHBpGbYcq1prWZSGSdifJxncQwdNmdlAaZy3SoXRWnWUqyrGH15Wdq4rO9dVUlQw1xto1PW58UVZnv30OJqjCrTS08UK0PNMv8__2G8TvVn-JrbQcN7e6W30Wi3ms9t2J4DsN0Wan3A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+time-varying+transfer+function+for+balancing+the+exploration+and+exploitation+ability+of+a+binary+PSO&rft.jtitle=Applied+soft+computing&rft.au=Islam%2C+Md.+Jakirul&rft.au=Li%2C+Xiaodong&rft.au=Mei%2C+Yi&rft.date=2017-10-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=59&rft.spage=182&rft.epage=196&rft_id=info:doi/10.1016%2Fj.asoc.2017.04.050&rft.externalDocID=S1568494617302326
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon