A time-varying transfer function for balancing the exploration and exploitation ability of a binary PSO
An illustration of different shapes of the time-varying transfer function with different values of the control parameter φ. [Display omitted] •Analyse how transfer function in BPSO affects the balance between exploration and exploitation.•Propose a time-varying transfer function for BPSO to achieve...
Uloženo v:
| Vydáno v: | Applied soft computing Ročník 59; s. 182 - 196 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.10.2017
|
| Témata: | |
| ISSN: | 1568-4946, 1872-9681 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | An illustration of different shapes of the time-varying transfer function with different values of the control parameter φ.
[Display omitted]
•Analyse how transfer function in BPSO affects the balance between exploration and exploitation.•Propose a time-varying transfer function for BPSO to achieve a better such balance.•Validate the advantage of the new transfer function on knapsack instances and a truss design problem.
Many real-world problems belong to the family of discrete optimization problems. Most of these problems are NP-hard and difficult to solve efficiently using classical linear and convex optimization methods. In addition, the computational difficulties of these optimization tasks increase rapidly with the increasing number of decision variables. A further difficulty can be also caused by the search space being intrinsically multimodal and non-convex. In such a case, it is more desirable to have an effective optimization method that can cope better with these problem characteristics. Binary particle swarm optimization (BPSO) is a simple and effective discrete optimization method. The original BPSO and its variants have been used to solve a number of classic discrete optimization problems. However, it is reported that the original BPSO and its variants are unable to provide satisfactory results due to the use of inappropriate transfer functions. More specifically, these transfer functions are unable to provide BPSO a good balance between exploration and exploitation in the search space, limiting their performances. To overcome this problem, this paper proposes to employ a time-varying transfer function in the BPSO, namely TVT-BPSO. To understand the search behaviour of the TVT-BPSO, we provide a systematic analysis of its exploration and exploitation capability. Our experimental results demonstrate that TVT-BPSO outperforms existing BPSO variants on both low-dimensional and high-dimensional classical 0–1 knapsack problems, as well as a 200-member truss problem, suggesting that TVT-BPSO is able to better scale to high dimensional combinatorial problems than the existing BPSO variants and other metaheuristic algorithms. |
|---|---|
| AbstractList | An illustration of different shapes of the time-varying transfer function with different values of the control parameter φ.
[Display omitted]
•Analyse how transfer function in BPSO affects the balance between exploration and exploitation.•Propose a time-varying transfer function for BPSO to achieve a better such balance.•Validate the advantage of the new transfer function on knapsack instances and a truss design problem.
Many real-world problems belong to the family of discrete optimization problems. Most of these problems are NP-hard and difficult to solve efficiently using classical linear and convex optimization methods. In addition, the computational difficulties of these optimization tasks increase rapidly with the increasing number of decision variables. A further difficulty can be also caused by the search space being intrinsically multimodal and non-convex. In such a case, it is more desirable to have an effective optimization method that can cope better with these problem characteristics. Binary particle swarm optimization (BPSO) is a simple and effective discrete optimization method. The original BPSO and its variants have been used to solve a number of classic discrete optimization problems. However, it is reported that the original BPSO and its variants are unable to provide satisfactory results due to the use of inappropriate transfer functions. More specifically, these transfer functions are unable to provide BPSO a good balance between exploration and exploitation in the search space, limiting their performances. To overcome this problem, this paper proposes to employ a time-varying transfer function in the BPSO, namely TVT-BPSO. To understand the search behaviour of the TVT-BPSO, we provide a systematic analysis of its exploration and exploitation capability. Our experimental results demonstrate that TVT-BPSO outperforms existing BPSO variants on both low-dimensional and high-dimensional classical 0–1 knapsack problems, as well as a 200-member truss problem, suggesting that TVT-BPSO is able to better scale to high dimensional combinatorial problems than the existing BPSO variants and other metaheuristic algorithms. |
| Author | Mei, Yi Islam, Md. Jakirul Li, Xiaodong |
| Author_xml | – sequence: 1 givenname: Md. Jakirul surname: Islam fullname: Islam, Md. Jakirul email: md.jakirul.islam@rmit.edu.au organization: School of Science, RMIT University, Melbourne, Australia – sequence: 2 givenname: Xiaodong surname: Li fullname: Li, Xiaodong email: xiaodong.li@rmit.edu.au organization: School of Science, RMIT University, Melbourne, Australia – sequence: 3 givenname: Yi surname: Mei fullname: Mei, Yi email: yi.mei@ecs.vuw.ac.nz organization: School of Engineering and Computer Science, Victoria University of Wellington, New Zealand |
| BookMark | eNp9kM9qAyEQh6Wk0CTtC_TkC-xWd82uQi8h9B8EUmh7FtcdU8NGg25D8_Y1yZ56yMlxfnzDzDdBI-cdIHRPSU4JrR42uYpe5wWhdU5YTmbkCo0pr4tMVJyOUj2reMYEq27QJMYNSZAo-Bit57i3W8j2KhysW-M-KBcNBGx-nO6td9j4gBvVKadP-Tdg-N11PqhTqlx7_tt-aDS2s_0Be4MVbqxLc_H7x-oWXRvVRbgb3in6en76XLxmy9XL22K-zDSjrM8UM2WpGk604Gk_XSpd8FLUtW4r03AjFKFcMF6mBKACw0QxM1VBW90YkrpTVJzn6uBjDGDkLthtWkJSIo-q5EYeVcmjKkmYTKoSxP9Bejgn6bDdZfTxjEI6am8hyKgtOA2tDaB72Xp7Cf8DU2qJGQ |
| CitedBy_id | crossref_primary_10_1016_j_chemolab_2020_104170 crossref_primary_10_1109_ACCESS_2021_3124710 crossref_primary_10_1080_1062936X_2023_2261855 crossref_primary_10_1007_s10479_024_06112_3 crossref_primary_10_1088_1748_0221_15_01_P01025 crossref_primary_10_1007_s00521_019_04266_x crossref_primary_10_1016_j_ins_2023_119529 crossref_primary_10_1007_s11042_024_19548_3 crossref_primary_10_1007_s40031_018_0323_y crossref_primary_10_3390_app11188387 crossref_primary_10_3390_biomimetics8050400 crossref_primary_10_1016_j_knosys_2023_111191 crossref_primary_10_3390_biomimetics8020266 crossref_primary_10_1080_1062936X_2019_1607899 crossref_primary_10_3390_math10244776 crossref_primary_10_1016_j_eswa_2022_116550 crossref_primary_10_1109_ACCESS_2019_2953800 crossref_primary_10_1109_TCYB_2019_2944141 crossref_primary_10_1007_s13042_024_02308_y crossref_primary_10_1007_s00500_023_08425_0 crossref_primary_10_1016_j_jksuci_2023_101757 crossref_primary_10_1016_j_knosys_2018_08_003 crossref_primary_10_1016_j_knosys_2023_110697 crossref_primary_10_3390_app11146516 crossref_primary_10_1016_j_eswa_2025_129364 crossref_primary_10_1016_j_ins_2019_10_029 crossref_primary_10_1109_ACCESS_2023_3263584 crossref_primary_10_1016_j_asoc_2022_108816 crossref_primary_10_1007_s00500_020_05360_2 crossref_primary_10_1016_j_knosys_2022_109446 crossref_primary_10_1016_j_eswa_2017_12_034 crossref_primary_10_1007_s11277_024_11584_4 crossref_primary_10_1109_ACCESS_2023_3322650 crossref_primary_10_1007_s00500_023_07988_2 crossref_primary_10_1088_1742_6596_1879_2_022097 crossref_primary_10_3390_math11010129 crossref_primary_10_1016_j_chemolab_2022_104635 crossref_primary_10_1007_s00521_020_04955_y crossref_primary_10_3390_app12178562 crossref_primary_10_1007_s00500_018_3627_6 crossref_primary_10_1109_TGRS_2019_2958812 crossref_primary_10_1007_s11030_022_10410_y crossref_primary_10_1038_s41598_023_46865_8 crossref_primary_10_1007_s11042_022_12078_w crossref_primary_10_1016_j_eswa_2023_120802 crossref_primary_10_1080_1062936X_2023_2208374 crossref_primary_10_3390_app9132589 crossref_primary_10_3233_JIFS_189149 crossref_primary_10_1109_ACCESS_2020_2975981 crossref_primary_10_1007_s10878_021_00818_x crossref_primary_10_3390_sym11111423 crossref_primary_10_1016_j_chemolab_2021_104288 crossref_primary_10_1109_TC_2018_2818144 crossref_primary_10_1109_ACCESS_2022_3142859 crossref_primary_10_3390_e24060777 crossref_primary_10_1007_s11063_020_10336_2 crossref_primary_10_1016_j_asoc_2023_110583 crossref_primary_10_32604_cmes_2022_022985 crossref_primary_10_1016_j_knosys_2025_114119 crossref_primary_10_1016_j_comcom_2022_06_016 crossref_primary_10_1016_j_asoc_2020_106870 crossref_primary_10_1016_j_asoc_2021_107346 crossref_primary_10_1016_j_iswa_2022_200114 crossref_primary_10_1007_s12065_023_00819_1 |
| Cites_doi | 10.1109/TAP.2010.2090460 10.1016/j.asoc.2012.05.029 10.1016/j.compstruc.2012.12.010 10.1109/JSEN.2012.2196430 10.1002/j.1538-7305.1950.tb00463.x 10.1016/j.camwa.2008.02.006 10.1109/TPWRS.2009.2021219 10.1016/j.patrec.2014.10.007 10.1109/TEVC.2007.896686 10.1109/TCBB.2015.2465906 10.1109/JSEN.2013.2290433 10.1016/j.cor.2005.11.017 10.1016/j.ins.2012.12.043 10.1016/j.asoc.2011.01.039 10.1109/TAP.2007.891552 10.1016/j.asoc.2014.12.007 10.1109/TPWRS.2005.860907 10.1016/j.asoc.2015.08.037 10.1007/s10462-012-9373-8 10.1016/j.ejps.2004.03.002 10.4304/jsw.3.9.28-35 10.1007/s10898-012-0006-1 10.1016/j.pnsc.2008.03.018 10.1016/j.compbiolchem.2007.09.005 10.1049/iet-map.2015.0071 10.1016/j.asoc.2010.09.003 10.1016/j.amc.2012.05.001 10.1016/j.cor.2004.03.002 10.1007/s11760-016-0883-8 10.1109/TPWRS.2010.2042472 10.1016/j.asoc.2010.07.019 10.1016/j.advengsoft.2013.09.006 10.1016/j.swevo.2012.09.002 10.1016/j.eswa.2011.12.013 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. |
| Copyright_xml | – notice: 2017 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2017.04.050 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| EndPage | 196 |
| ExternalDocumentID | 10_1016_j_asoc_2017_04_050 S1568494617302326 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c414t-a4f33ab80c98928c3ac283977cd6fb8f9a0189483c3aee6ef4925f621dcbf03c3 |
| ISICitedReferencesCount | 74 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000407732600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1568-4946 |
| IngestDate | Tue Nov 18 22:42:20 EST 2025 Sat Nov 29 03:05:32 EST 2025 Fri Feb 23 02:24:53 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Binary particle swarm optimization The truss optimization problem The 0–1 knapsack problem Transfer function Discrete optimization problems |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c414t-a4f33ab80c98928c3ac283977cd6fb8f9a0189483c3aee6ef4925f621dcbf03c3 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1016_j_asoc_2017_04_050 crossref_citationtrail_10_1016_j_asoc_2017_04_050 elsevier_sciencedirect_doi_10_1016_j_asoc_2017_04_050 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-10-01 |
| PublicationDateYYYYMMDD | 2017-10-01 |
| PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Yang (bib0035) 2010 Liu, Jiang, Chen (bib0100) 2015; 9 Wang, Wang, Fu, Zhen (bib0120) 2008; 3 Suganthan, Hansen, Liang, Deb, Chen, Auger, Tiwari (bib0170) 2005 Jeong, Park, Jang, Lee (bib0125) 2010; 25 Lee, Soak, Oh, Pedrycz, Jeon (bib0155) 2008; 18 Chen, Kuo, Chen, Chen (bib0025) 2009 Jin, Rahmat-Samii (bib0185) 2007; 55 Naeem, Pareek, Lee (bib0055) 2012; 12 del Valle, Venayagamoorthy, Mohagheghi, Hernandez, Harley (bib0180) 2008; 12 Ting, Rao, Loo (bib0085) 2006; 21 Hamming (bib0210) 1950; 29 Kennedy, Eberhart (bib0040) 1997 Kaveh, Sheikholeslami, Talatahari, Keshvari-Ilkhichi (bib0230) 2014; 67 Montalvo, Izquierdo, Prez, Tung (bib0190) 2008; 56 Liao, Tseng, Luarn (bib0045) 2007; 34 Jarboui, Damak, Siarry, Rebai (bib0050) 2008; 195 Tassopoulos, Beligiannis (bib0090) 2012; 39 Kaveh, Khayatazad (bib0225) 2013; 117 Wang, Wang, Fu, Zhen (bib0165) 2008; 3 Eberhart, Shi (bib0175) 2001 Liu, Mei, Li (bib0110) 2015 Mirjalili, Lewis (bib0075) 2013; 9 Han, Yang, Wu, Zhu, Ling, Song, Huang (bib0105) 2017; 14 Parker, Rardin (bib0030) 1988 Bansal, Deep (bib0070) 2012; 218 Jian-Hua, Rong-Hua, Shui-Hua (bib0080) 2011; 47 Zou, Gao, Li, Wu (bib0005) 2011; 11 Han, Huang, Zheng, Zhang, Xu (bib0065) 2017; 11 Beheshti, Shamsuddin, Yuhaniz (bib0135) 2013; 57 Modiri, Kiasaleh (bib0130) 2011; 59 Pisinger (bib0010) 2005; 32 Yang, Zhang, Ling, Pan, Sun (bib0205) 2014; 14 Banka, Dara (bib0140) 2015; 52 Pedrasa, Spooner, MacGill (bib0020) 2009; 24 Bekdas, Nigdeli, Yang (bib0235) 2015; 37 Wang, Yang, Xu, Niu, Pardalos, Fei (bib0115) 2013; 232 Jordehi, Jasni (bib0145) 2015; 43 Lin, Yang, Fournier-Viger, Hong, Voznak (bib0060) 2016 Tassopoulos, Beligiannis (bib0095) 2012; 12 Shen, Jiang, Jiao, Li Shen, Yu (bib0160) 2004; 22 Geng, Chen, Yang, Shi, Zhao (bib0015) 2011; 11 Wang, Tan, Liu (bib0150) 2017 Chuang, Chang, Tu, Yang (bib0195) 2008; 32 Spillers, MacBain (bib0215) 2009 Dede, Ayvaz (bib0240) 2015; 28 Sonmez (bib0220) 2011; 11 Shahzad, Baig, Masood, Kamran, Naveed (bib0200) 2009 Bansal (10.1016/j.asoc.2017.04.050_bib0070) 2012; 218 Liu (10.1016/j.asoc.2017.04.050_bib0100) 2015; 9 del Valle (10.1016/j.asoc.2017.04.050_bib0180) 2008; 12 Tassopoulos (10.1016/j.asoc.2017.04.050_bib0090) 2012; 39 Yang (10.1016/j.asoc.2017.04.050_bib0035) 2010 Ting (10.1016/j.asoc.2017.04.050_bib0085) 2006; 21 Yang (10.1016/j.asoc.2017.04.050_bib0205) 2014; 14 Jarboui (10.1016/j.asoc.2017.04.050_bib0050) 2008; 195 Mirjalili (10.1016/j.asoc.2017.04.050_bib0075) 2013; 9 Montalvo (10.1016/j.asoc.2017.04.050_bib0190) 2008; 56 Parker (10.1016/j.asoc.2017.04.050_bib0030) 1988 Beheshti (10.1016/j.asoc.2017.04.050_bib0135) 2013; 57 Wang (10.1016/j.asoc.2017.04.050_bib0150) 2017 Wang (10.1016/j.asoc.2017.04.050_bib0165) 2008; 3 Tassopoulos (10.1016/j.asoc.2017.04.050_bib0095) 2012; 12 Jeong (10.1016/j.asoc.2017.04.050_bib0125) 2010; 25 Pedrasa (10.1016/j.asoc.2017.04.050_bib0020) 2009; 24 Spillers (10.1016/j.asoc.2017.04.050_bib0215) 2009 Bekdas (10.1016/j.asoc.2017.04.050_bib0235) 2015; 37 Pisinger (10.1016/j.asoc.2017.04.050_bib0010) 2005; 32 Kaveh (10.1016/j.asoc.2017.04.050_bib0230) 2014; 67 Han (10.1016/j.asoc.2017.04.050_bib0065) 2017; 11 Liao (10.1016/j.asoc.2017.04.050_bib0045) 2007; 34 Jordehi (10.1016/j.asoc.2017.04.050_bib0145) 2015; 43 Chen (10.1016/j.asoc.2017.04.050_bib0025) 2009 Chuang (10.1016/j.asoc.2017.04.050_bib0195) 2008; 32 Hamming (10.1016/j.asoc.2017.04.050_bib0210) 1950; 29 Lin (10.1016/j.asoc.2017.04.050_bib0060) 2016 Jin (10.1016/j.asoc.2017.04.050_bib0185) 2007; 55 Eberhart (10.1016/j.asoc.2017.04.050_bib0175) 2001 Wang (10.1016/j.asoc.2017.04.050_bib0115) 2013; 232 Kennedy (10.1016/j.asoc.2017.04.050_bib0040) 1997 Modiri (10.1016/j.asoc.2017.04.050_bib0130) 2011; 59 Banka (10.1016/j.asoc.2017.04.050_bib0140) 2015; 52 Liu (10.1016/j.asoc.2017.04.050_bib0110) 2015 Jian-Hua (10.1016/j.asoc.2017.04.050_bib0080) 2011; 47 Naeem (10.1016/j.asoc.2017.04.050_bib0055) 2012; 12 Shahzad (10.1016/j.asoc.2017.04.050_bib0200) 2009 Dede (10.1016/j.asoc.2017.04.050_bib0240) 2015; 28 Zou (10.1016/j.asoc.2017.04.050_bib0005) 2011; 11 Han (10.1016/j.asoc.2017.04.050_bib0105) 2017; 14 Lee (10.1016/j.asoc.2017.04.050_bib0155) 2008; 18 Sonmez (10.1016/j.asoc.2017.04.050_bib0220) 2011; 11 Wang (10.1016/j.asoc.2017.04.050_bib0120) 2008; 3 Shen (10.1016/j.asoc.2017.04.050_bib0160) 2004; 22 Suganthan (10.1016/j.asoc.2017.04.050_bib0170) 2005 Kaveh (10.1016/j.asoc.2017.04.050_bib0225) 2013; 117 Geng (10.1016/j.asoc.2017.04.050_bib0015) 2011; 11 |
| References_xml | – volume: 11 start-page: 1556 year: 2011 end-page: 1564 ident: bib0005 article-title: Solving 0–1 knapsack problem by a novel global harmony search algorithm publication-title: Appl. Soft Comput. – volume: 32 start-page: 2271 year: 2005 end-page: 2284 ident: bib0010 article-title: Where are the hard knapsack problems? publication-title: Comput. Oper. Res. – volume: 25 start-page: 1486 year: 2010 end-page: 1495 ident: bib0125 article-title: A new quantum-inspired binary PSO: application to unit commitment problems for power systems publication-title: IEEE Trans. Power Syst. – year: 2015 ident: bib0110 article-title: An analysis of the inertia weight parameter for binary particle swarm optimization publication-title: IEEE Trans. Evol. Comput. – volume: 9 start-page: 1 year: 2013 end-page: 14 ident: bib0075 article-title: S-shaped versus v-shaped transfer functions for binary particle swarm optimization publication-title: Swarm Evol. Comput. – volume: 218 start-page: 11042 year: 2012 end-page: 11061 ident: bib0070 article-title: A modified binary particle swarm optimization for knapsack problems publication-title: Appl. Math. Comput. – volume: 52 start-page: 94 year: 2015 end-page: 100 ident: bib0140 article-title: A hamming distance based binary particle swarm optimization (HDBPSO) algorithm for high dimensional feature selection, classification and validation publication-title: Pattern Recognit. Lett. – start-page: 81 year: 2001 end-page: 86 ident: bib0175 article-title: Particle swarm optimization: developments, applications and resources publication-title: Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1 – volume: 34 start-page: 3099 year: 2007 end-page: 3111 ident: bib0045 article-title: A discrete version of particle swarm optimization for flowshop scheduling problems publication-title: Comput. Oper. Res. – volume: 11 start-page: 3680 year: 2011 end-page: 3689 ident: bib0015 article-title: Solving the traveling salesman problem based on an adaptive simulated annealing algorithm with greedy search publication-title: Appl. Soft Comput. – volume: 67 start-page: 136 year: 2014 end-page: 147 ident: bib0230 article-title: Chaotic swarming of particles: a new method for size optimization of truss structures publication-title: Adv. Eng. Softw. – volume: 28 start-page: 250 year: 2015 end-page: 258 ident: bib0240 article-title: Combined size and shape optimization of structures with a new meta-heuristic algorithm publication-title: Appl. Soft Comput. – start-page: 4104 year: 1997 end-page: 4108 ident: bib0040 article-title: A discrete binary version of the particle swarm algorithm publication-title: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, vol. 5 – volume: 232 start-page: 58 year: 2013 end-page: 87 ident: bib0115 article-title: An improved adaptive binary harmony search algorithm publication-title: Inf. Sci. – volume: 14 start-page: 85 year: 2017 end-page: 96 ident: bib0105 article-title: A gene selection method for microarray data based on binary PSO encoding gene-to-class sensitivity information publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. – volume: 11 start-page: 17 year: 2017 end-page: 24 ident: bib0065 article-title: Vanishing point detection and line classification with BPSO publication-title: Signal Image Video Process. – volume: 21 start-page: 411 year: 2006 end-page: 418 ident: bib0085 article-title: A novel approach for unit commitment problem via an effective hybrid particle swarm optimization publication-title: IEEE Trans. Power Syst. – volume: 57 start-page: 549 year: 2013 end-page: 573 ident: bib0135 article-title: Binary accelerated particle swarm algorithm (BAPSA) for discrete optimization problems publication-title: J. Global Optim. – start-page: 169 year: 2009 end-page: 178 ident: bib0025 article-title: Refined binary particle swarm optimization and application in power system publication-title: WSEAS Trans. Syst. – volume: 9 start-page: 1386 year: 2015 end-page: 1391 ident: bib0100 article-title: Binary inheritance learning particle swarm optimisation and its application in thinned antenna array synthesis with the minimum sidelobe level publication-title: IET Microw. Antennas Propag. – volume: 56 start-page: 769 year: 2008 end-page: 776 ident: bib0190 article-title: Particle swarm optimization applied to the design of water supply systems publication-title: Comput. Math. Appl. – volume: 55 start-page: 556 year: 2007 end-page: 567 ident: bib0185 article-title: Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations publication-title: IEEE Trans. Antennas Propag. – volume: 117 start-page: 82 year: 2013 end-page: 94 ident: bib0225 article-title: Ray optimization for size and shape optimization of truss structures publication-title: Comput. Struct. – volume: 12 start-page: 171 year: 2008 end-page: 195 ident: bib0180 article-title: Particle swarm optimization: basic concepts, variants and applications in power systems publication-title: IEEE Trans. Evol. Comput. – volume: 3 start-page: 28 year: 2008 end-page: 35 ident: bib0120 article-title: A novel probability binary particle swarm optimization algorithm and its application publication-title: J. Softw. – volume: 29 start-page: 147 year: 1950 end-page: 160 ident: bib0210 article-title: Error detecting and error correcting codes publication-title: Bell Syst. Tech. J. – volume: 14 start-page: 882 year: 2014 end-page: 892 ident: bib0205 article-title: Task allocation for wireless sensor network using modified binary particle swarm optimization publication-title: IEEE Sens. J. – volume: 47 start-page: 504 year: 2011 end-page: 514 ident: bib0080 article-title: The analysis of binary particle swarm optimization publication-title: J. Nanjing Univ. (Nat. Sci.) – volume: 24 start-page: 1173 year: 2009 end-page: 1181 ident: bib0020 article-title: Scheduling of demand side resources using binary particle swarm optimization publication-title: IEEE Trans. Power Syst. – volume: 43 start-page: 243 year: 2015 end-page: 258 ident: bib0145 article-title: Particle swarm optimisation for discrete optimisation problems: a review publication-title: Artif. Intell. Rev. – year: 2009 ident: bib0215 article-title: Structural Optimization – year: 2010 ident: bib0035 article-title: Nature-inspired Metaheuristic Algorithms – year: 1988 ident: bib0030 article-title: Discrete Optimization. Computer Science and Applied Mathematics – volume: 195 start-page: 299 year: 2008 end-page: 308 ident: bib0050 article-title: A combinatorial particle swarm optimization for solving multi-mode resource-constrained project scheduling problems publication-title: Appl. Math. Comput. – volume: 59 start-page: 214 year: 2011 end-page: 224 ident: bib0130 article-title: Modification of real-number and binary PSO algorithms for accelerated convergence publication-title: IEEE Trans. Antennas Propag. – volume: 18 start-page: 1161 year: 2008 end-page: 1166 ident: bib0155 article-title: Modified binary particle swarm optimization publication-title: Prog. Nat. Sci. – volume: 32 start-page: 29 year: 2008 end-page: 38 ident: bib0195 article-title: Improved binary PSO for feature selection using gene expression data publication-title: Comput. Biol. Chem. – volume: 37 start-page: 322 year: 2015 end-page: 331 ident: bib0235 article-title: Sizing optimization of truss structures using flower pollination algorithm publication-title: Appl. Soft Comput. – volume: 22 start-page: 145 year: 2004 end-page: 152 ident: bib0160 article-title: Modified particle swarm optimization algorithm for variable selection in MLR and PLS model: QSAR studies of antagonism of angiotensin II antagonists publication-title: Eur. J. Pharm. Sci. – start-page: 1 year: 2016 end-page: 19 ident: bib0060 article-title: A binary PSO approach to mine high-utility itemsets publication-title: Soft Comput. – start-page: 339 year: 2009 end-page: 348 ident: bib0200 article-title: Opposition-based particle swarm optimization with velocity clamping (OVCPSO) publication-title: Advances in Computational Intelligence – volume: 11 start-page: 2406 year: 2011 end-page: 2418 ident: bib0220 article-title: Artificial bee colony algorithm for optimization of truss structures publication-title: Appl. Soft Comput. – volume: 3 start-page: 28 year: 2008 end-page: 35 ident: bib0165 article-title: A novel probability binary particle swarm optimization algorithm and its application publication-title: J. Softw. – volume: 39 start-page: 6029 year: 2012 end-page: 6040 ident: bib0090 article-title: Solving effectively the school timetabling problem using particle swarm optimization publication-title: Expert Syst. Appl. – start-page: 2005 year: 2005 ident: bib0170 article-title: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization – volume: 12 start-page: 3472 year: 2012 end-page: 3489 ident: bib0095 article-title: A hybrid particle swarm optimization based algorithm for high school timetabling problems publication-title: Appl. Soft Comput. – volume: 12 start-page: 2577 year: 2012 end-page: 2585 ident: bib0055 article-title: Swarm intelligence for sensor selection problems publication-title: IEEE Sens. J. – start-page: 1 year: 2017 end-page: 22 ident: bib0150 article-title: Particle swarm optimization algorithm: an overview publication-title: Soft Comput. – year: 1988 ident: 10.1016/j.asoc.2017.04.050_bib0030 – volume: 195 start-page: 299 year: 2008 ident: 10.1016/j.asoc.2017.04.050_bib0050 article-title: A combinatorial particle swarm optimization for solving multi-mode resource-constrained project scheduling problems publication-title: Appl. Math. Comput. – volume: 59 start-page: 214 year: 2011 ident: 10.1016/j.asoc.2017.04.050_bib0130 article-title: Modification of real-number and binary PSO algorithms for accelerated convergence publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2010.2090460 – volume: 12 start-page: 3472 year: 2012 ident: 10.1016/j.asoc.2017.04.050_bib0095 article-title: A hybrid particle swarm optimization based algorithm for high school timetabling problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.05.029 – volume: 117 start-page: 82 year: 2013 ident: 10.1016/j.asoc.2017.04.050_bib0225 article-title: Ray optimization for size and shape optimization of truss structures publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2012.12.010 – start-page: 4104 year: 1997 ident: 10.1016/j.asoc.2017.04.050_bib0040 article-title: A discrete binary version of the particle swarm algorithm publication-title: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, vol. 5 – start-page: 1 year: 2016 ident: 10.1016/j.asoc.2017.04.050_bib0060 article-title: A binary PSO approach to mine high-utility itemsets publication-title: Soft Comput. – volume: 12 start-page: 2577 year: 2012 ident: 10.1016/j.asoc.2017.04.050_bib0055 article-title: Swarm intelligence for sensor selection problems publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2012.2196430 – year: 2015 ident: 10.1016/j.asoc.2017.04.050_bib0110 article-title: An analysis of the inertia weight parameter for binary particle swarm optimization publication-title: IEEE Trans. Evol. Comput. – volume: 29 start-page: 147 year: 1950 ident: 10.1016/j.asoc.2017.04.050_bib0210 article-title: Error detecting and error correcting codes publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1950.tb00463.x – volume: 56 start-page: 769 year: 2008 ident: 10.1016/j.asoc.2017.04.050_bib0190 article-title: Particle swarm optimization applied to the design of water supply systems publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2008.02.006 – volume: 24 start-page: 1173 year: 2009 ident: 10.1016/j.asoc.2017.04.050_bib0020 article-title: Scheduling of demand side resources using binary particle swarm optimization publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2009.2021219 – volume: 52 start-page: 94 year: 2015 ident: 10.1016/j.asoc.2017.04.050_bib0140 article-title: A hamming distance based binary particle swarm optimization (HDBPSO) algorithm for high dimensional feature selection, classification and validation publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2014.10.007 – volume: 12 start-page: 171 year: 2008 ident: 10.1016/j.asoc.2017.04.050_bib0180 article-title: Particle swarm optimization: basic concepts, variants and applications in power systems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.896686 – volume: 14 start-page: 85 year: 2017 ident: 10.1016/j.asoc.2017.04.050_bib0105 article-title: A gene selection method for microarray data based on binary PSO encoding gene-to-class sensitivity information publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. doi: 10.1109/TCBB.2015.2465906 – volume: 14 start-page: 882 year: 2014 ident: 10.1016/j.asoc.2017.04.050_bib0205 article-title: Task allocation for wireless sensor network using modified binary particle swarm optimization publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2013.2290433 – volume: 34 start-page: 3099 year: 2007 ident: 10.1016/j.asoc.2017.04.050_bib0045 article-title: A discrete version of particle swarm optimization for flowshop scheduling problems publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2005.11.017 – volume: 232 start-page: 58 year: 2013 ident: 10.1016/j.asoc.2017.04.050_bib0115 article-title: An improved adaptive binary harmony search algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2012.12.043 – volume: 11 start-page: 3680 year: 2011 ident: 10.1016/j.asoc.2017.04.050_bib0015 article-title: Solving the traveling salesman problem based on an adaptive simulated annealing algorithm with greedy search publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2011.01.039 – start-page: 81 year: 2001 ident: 10.1016/j.asoc.2017.04.050_bib0175 article-title: Particle swarm optimization: developments, applications and resources – volume: 55 start-page: 556 year: 2007 ident: 10.1016/j.asoc.2017.04.050_bib0185 article-title: Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2007.891552 – volume: 28 start-page: 250 year: 2015 ident: 10.1016/j.asoc.2017.04.050_bib0240 article-title: Combined size and shape optimization of structures with a new meta-heuristic algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.12.007 – volume: 21 start-page: 411 year: 2006 ident: 10.1016/j.asoc.2017.04.050_bib0085 article-title: A novel approach for unit commitment problem via an effective hybrid particle swarm optimization publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2005.860907 – volume: 37 start-page: 322 year: 2015 ident: 10.1016/j.asoc.2017.04.050_bib0235 article-title: Sizing optimization of truss structures using flower pollination algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.08.037 – volume: 43 start-page: 243 year: 2015 ident: 10.1016/j.asoc.2017.04.050_bib0145 article-title: Particle swarm optimisation for discrete optimisation problems: a review publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-012-9373-8 – volume: 47 start-page: 504 year: 2011 ident: 10.1016/j.asoc.2017.04.050_bib0080 article-title: The analysis of binary particle swarm optimization publication-title: J. Nanjing Univ. (Nat. Sci.) – volume: 22 start-page: 145 year: 2004 ident: 10.1016/j.asoc.2017.04.050_bib0160 article-title: Modified particle swarm optimization algorithm for variable selection in MLR and PLS model: QSAR studies of antagonism of angiotensin II antagonists publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2004.03.002 – volume: 3 start-page: 28 year: 2008 ident: 10.1016/j.asoc.2017.04.050_bib0120 article-title: A novel probability binary particle swarm optimization algorithm and its application publication-title: J. Softw. doi: 10.4304/jsw.3.9.28-35 – volume: 57 start-page: 549 year: 2013 ident: 10.1016/j.asoc.2017.04.050_bib0135 article-title: Binary accelerated particle swarm algorithm (BAPSA) for discrete optimization problems publication-title: J. Global Optim. doi: 10.1007/s10898-012-0006-1 – start-page: 2005 year: 2005 ident: 10.1016/j.asoc.2017.04.050_bib0170 – volume: 3 start-page: 28 year: 2008 ident: 10.1016/j.asoc.2017.04.050_bib0165 article-title: A novel probability binary particle swarm optimization algorithm and its application publication-title: J. Softw. doi: 10.4304/jsw.3.9.28-35 – start-page: 169 year: 2009 ident: 10.1016/j.asoc.2017.04.050_bib0025 article-title: Refined binary particle swarm optimization and application in power system publication-title: WSEAS Trans. Syst. – volume: 18 start-page: 1161 year: 2008 ident: 10.1016/j.asoc.2017.04.050_bib0155 article-title: Modified binary particle swarm optimization publication-title: Prog. Nat. Sci. doi: 10.1016/j.pnsc.2008.03.018 – start-page: 339 year: 2009 ident: 10.1016/j.asoc.2017.04.050_bib0200 article-title: Opposition-based particle swarm optimization with velocity clamping (OVCPSO) – start-page: 1 year: 2017 ident: 10.1016/j.asoc.2017.04.050_bib0150 article-title: Particle swarm optimization algorithm: an overview publication-title: Soft Comput. – volume: 32 start-page: 29 year: 2008 ident: 10.1016/j.asoc.2017.04.050_bib0195 article-title: Improved binary PSO for feature selection using gene expression data publication-title: Comput. Biol. Chem. doi: 10.1016/j.compbiolchem.2007.09.005 – volume: 9 start-page: 1386 year: 2015 ident: 10.1016/j.asoc.2017.04.050_bib0100 article-title: Binary inheritance learning particle swarm optimisation and its application in thinned antenna array synthesis with the minimum sidelobe level publication-title: IET Microw. Antennas Propag. doi: 10.1049/iet-map.2015.0071 – year: 2009 ident: 10.1016/j.asoc.2017.04.050_bib0215 – volume: 11 start-page: 2406 year: 2011 ident: 10.1016/j.asoc.2017.04.050_bib0220 article-title: Artificial bee colony algorithm for optimization of truss structures publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.09.003 – volume: 218 start-page: 11042 year: 2012 ident: 10.1016/j.asoc.2017.04.050_bib0070 article-title: A modified binary particle swarm optimization for knapsack problems publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2012.05.001 – volume: 32 start-page: 2271 year: 2005 ident: 10.1016/j.asoc.2017.04.050_bib0010 article-title: Where are the hard knapsack problems? publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2004.03.002 – volume: 11 start-page: 17 year: 2017 ident: 10.1016/j.asoc.2017.04.050_bib0065 article-title: Vanishing point detection and line classification with BPSO publication-title: Signal Image Video Process. doi: 10.1007/s11760-016-0883-8 – volume: 25 start-page: 1486 year: 2010 ident: 10.1016/j.asoc.2017.04.050_bib0125 article-title: A new quantum-inspired binary PSO: application to unit commitment problems for power systems publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2010.2042472 – volume: 11 start-page: 1556 year: 2011 ident: 10.1016/j.asoc.2017.04.050_bib0005 article-title: Solving 0–1 knapsack problem by a novel global harmony search algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.07.019 – year: 2010 ident: 10.1016/j.asoc.2017.04.050_bib0035 – volume: 67 start-page: 136 year: 2014 ident: 10.1016/j.asoc.2017.04.050_bib0230 article-title: Chaotic swarming of particles: a new method for size optimization of truss structures publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.09.006 – volume: 9 start-page: 1 year: 2013 ident: 10.1016/j.asoc.2017.04.050_bib0075 article-title: S-shaped versus v-shaped transfer functions for binary particle swarm optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2012.09.002 – volume: 39 start-page: 6029 year: 2012 ident: 10.1016/j.asoc.2017.04.050_bib0090 article-title: Solving effectively the school timetabling problem using particle swarm optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.12.013 |
| SSID | ssj0016928 |
| Score | 2.4648755 |
| Snippet | An illustration of different shapes of the time-varying transfer function with different values of the control parameter φ.
[Display omitted]
•Analyse how... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 182 |
| SubjectTerms | Binary particle swarm optimization Discrete optimization problems The 0–1 knapsack problem The truss optimization problem Transfer function |
| Title | A time-varying transfer function for balancing the exploration and exploitation ability of a binary PSO |
| URI | https://dx.doi.org/10.1016/j.asoc.2017.04.050 |
| Volume | 59 |
| WOSCitedRecordID | wos000407732600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxELbS0EMvBfpQKQ_50FtktK947WNUgQCVhwSV0tPK9tpVEFrQEiJQ_3zHr80KKlQq9bLaOPHG8nwZf3Zm5kPoS80FlzSnRJhaEeD_CWG1FkTWSnFNbQUR5cQmypMTNp3ys8HgV8yFWVyVTcPu7_nNfzU1tIGxbersC8zdPRQa4B6MDlcwO1z_yvATpxdPFqJ9CBoQwEx1O7IrWBdYKG1Eo4qpUtoF4nko2IN09zoU7x75Qt4PPpFS-vTds_PTPquNVPYWfLoLUr-bxxWxj7rjend0BIy1XQYjfnPBBNOZgN3xssexds0_Zv0zCVjnYnRbOCh7kizjfStlpODhxFH7NlZmhFOv2hIdcigR7j1q6rWJwuKcevnbJ37fH0Fc7gqAtI3XK139Wl_S9lE97XM7DjuMtLSCSRl9hVaycszZEK1MDvemR92fUJQ7ad5u3CHnyocHPv6mP_OaHle5WENvwyYDTzw41tFAN-_QahTwwMGfv0c_J7iPFRyxgiNWMGAFd1jBgBXcwwoGrOA-VnDACr42WGCPFQxY-YC-7-9dfD0gQXmDqCIt5kQUJs-FZIniDCZB5UIBDYWtgqqpkcxwkaSMFyyHd7Sm2tgSl4Zmaa2kSaD1Ixo2143-hHBpGbYcq1prWZSGSdifJxncQwdNmdlAaZy3SoXRWnWUqyrGH15Wdq4rO9dVUlQw1xto1PW58UVZnv30OJqjCrTS08UK0PNMv8__2G8TvVn-JrbQcN7e6W30Wi3ms9t2J4DsN0Wan3A |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+time-varying+transfer+function+for+balancing+the+exploration+and+exploitation+ability+of+a+binary+PSO&rft.jtitle=Applied+soft+computing&rft.au=Islam%2C+Md.+Jakirul&rft.au=Li%2C+Xiaodong&rft.au=Mei%2C+Yi&rft.date=2017-10-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=59&rft.spage=182&rft.epage=196&rft_id=info:doi/10.1016%2Fj.asoc.2017.04.050&rft.externalDocID=S1568494617302326 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |