Performance of ChatGPT on Specialty Certificate Examination in Dermatology multiple-choice questions

Abstract ChatGPT is a large language model trained on increasingly large datasets by OpenAI to perform language-based tasks. It is capable of answering multiple-choice questions, such as those posed by the Specialty Certificate Examination (SCE) in Dermatology. We asked two iterations of ChatGPT: Ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical and experimental dermatology Jg. 49; H. 7; S. 722 - 727
Hauptverfasser: Passby, Lauren, Jenko, Nathan, Wernham, Aaron
Format: Journal Article
Sprache:Englisch
Veröffentlicht: UK Oxford University Press 25.06.2024
Schlagworte:
ISSN:0307-6938, 1365-2230, 1365-2230
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Abstract ChatGPT is a large language model trained on increasingly large datasets by OpenAI to perform language-based tasks. It is capable of answering multiple-choice questions, such as those posed by the Specialty Certificate Examination (SCE) in Dermatology. We asked two iterations of ChatGPT: ChatGPT-3.5 and ChatGPT-4 84 multiple-choice sample questions from the sample SCE in Dermatology question bank. ChatGPT-3.5 achieved an overall score of 63%, and ChatGPT-4 scored 90% (a significant improvement in performance; P < 0.001). The typical pass mark for the SCE in Dermatology is 70–72%. ChatGPT-4 is therefore capable of answering clinical questions and achieving a passing grade in these sample questions. There are many possible educational and clinical implications for increasingly advanced artificial intelligence (AI) and its use in medicine, including in the diagnosis of dermatological conditions. Such advances should be embraced provided that patient safety is a core tenet, and the limitations of AI in the nuances of complex clinical cases are recognized. ChatGPT is a large language model trained on increasingly large datasets by OpenAI to perform language-based tasks. ChatGPT-4 was asked 84 sample Specialty Certificate Examination (SCE) in Dermatology questions and it answered 90% correctly. There are many possible educational and clinical implications for increasingly advanced artificial intelligence (AI) and its use in medicine, including in the diagnosis of dermatological conditions. Such advances should be embraced provided that patient safety is a core tenet, and the limitations of AI in the nuances of complex clinical cases are recognized.
AbstractList ChatGPT is a large language model trained on increasingly large datasets by OpenAI to perform language-based tasks. It is capable of answering multiple-choice questions, such as those posed by the Specialty Certificate Examination (SCE) in Dermatology. We asked two iterations of ChatGPT: ChatGPT-3.5 and ChatGPT-4 84 multiple-choice sample questions from the sample SCE in Dermatology question bank. ChatGPT-3.5 achieved an overall score of 63%, and ChatGPT-4 scored 90% (a significant improvement in performance; P < 0.001). The typical pass mark for the SCE in Dermatology is 70–72%. ChatGPT-4 is therefore capable of answering clinical questions and achieving a passing grade in these sample questions. There are many possible educational and clinical implications for increasingly advanced artificial intelligence (AI) and its use in medicine, including in the diagnosis of dermatological conditions. Such advances should be embraced provided that patient safety is a core tenet, and the limitations of AI in the nuances of complex clinical cases are recognized.
Abstract ChatGPT is a large language model trained on increasingly large datasets by OpenAI to perform language-based tasks. It is capable of answering multiple-choice questions, such as those posed by the Specialty Certificate Examination (SCE) in Dermatology. We asked two iterations of ChatGPT: ChatGPT-3.5 and ChatGPT-4 84 multiple-choice sample questions from the sample SCE in Dermatology question bank. ChatGPT-3.5 achieved an overall score of 63%, and ChatGPT-4 scored 90% (a significant improvement in performance; P < 0.001). The typical pass mark for the SCE in Dermatology is 70–72%. ChatGPT-4 is therefore capable of answering clinical questions and achieving a passing grade in these sample questions. There are many possible educational and clinical implications for increasingly advanced artificial intelligence (AI) and its use in medicine, including in the diagnosis of dermatological conditions. Such advances should be embraced provided that patient safety is a core tenet, and the limitations of AI in the nuances of complex clinical cases are recognized. ChatGPT is a large language model trained on increasingly large datasets by OpenAI to perform language-based tasks. ChatGPT-4 was asked 84 sample Specialty Certificate Examination (SCE) in Dermatology questions and it answered 90% correctly. There are many possible educational and clinical implications for increasingly advanced artificial intelligence (AI) and its use in medicine, including in the diagnosis of dermatological conditions. Such advances should be embraced provided that patient safety is a core tenet, and the limitations of AI in the nuances of complex clinical cases are recognized.
ChatGPT is a large language model trained on increasingly large datasets by OpenAI to perform language-based tasks. It is capable of answering multiple-choice questions, such as those posed by the Specialty Certificate Examination (SCE) in Dermatology. We asked two iterations of ChatGPT: ChatGPT-3.5 and ChatGPT-4 84 multiple-choice sample questions from the sample SCE in Dermatology question bank. ChatGPT-3.5 achieved an overall score of 63%, and ChatGPT-4 scored 90% (a significant improvement in performance; P < 0.001). The typical pass mark for the SCE in Dermatology is 70-72%. ChatGPT-4 is therefore capable of answering clinical questions and achieving a passing grade in these sample questions. There are many possible educational and clinical implications for increasingly advanced artificial intelligence (AI) and its use in medicine, including in the diagnosis of dermatological conditions. Such advances should be embraced provided that patient safety is a core tenet, and the limitations of AI in the nuances of complex clinical cases are recognized.ChatGPT is a large language model trained on increasingly large datasets by OpenAI to perform language-based tasks. It is capable of answering multiple-choice questions, such as those posed by the Specialty Certificate Examination (SCE) in Dermatology. We asked two iterations of ChatGPT: ChatGPT-3.5 and ChatGPT-4 84 multiple-choice sample questions from the sample SCE in Dermatology question bank. ChatGPT-3.5 achieved an overall score of 63%, and ChatGPT-4 scored 90% (a significant improvement in performance; P < 0.001). The typical pass mark for the SCE in Dermatology is 70-72%. ChatGPT-4 is therefore capable of answering clinical questions and achieving a passing grade in these sample questions. There are many possible educational and clinical implications for increasingly advanced artificial intelligence (AI) and its use in medicine, including in the diagnosis of dermatological conditions. Such advances should be embraced provided that patient safety is a core tenet, and the limitations of AI in the nuances of complex clinical cases are recognized.
ChatGPT is a large language model trained on increasingly large datasets by OpenAI to perform language-based tasks. It is capable of answering multiple-choice questions, such as those posed by the Specialty Certificate Examination (SCE) in Dermatology. We asked two iterations of ChatGPT: ChatGPT-3.5 and ChatGPT-4 84 multiple-choice sample questions from the sample SCE in Dermatology question bank. ChatGPT-3.5 achieved an overall score of 63%, and ChatGPT-4 scored 90% (a significant improvement in performance; P < 0.001). The typical pass mark for the SCE in Dermatology is 70-72%. ChatGPT-4 is therefore capable of answering clinical questions and achieving a passing grade in these sample questions. There are many possible educational and clinical implications for increasingly advanced artificial intelligence (AI) and its use in medicine, including in the diagnosis of dermatological conditions. Such advances should be embraced provided that patient safety is a core tenet, and the limitations of AI in the nuances of complex clinical cases are recognized.
Author Jenko, Nathan
Passby, Lauren
Wernham, Aaron
Author_xml – sequence: 1
  givenname: Lauren
  surname: Passby
  fullname: Passby, Lauren
  email: l.passby@nhs.net
– sequence: 2
  givenname: Nathan
  surname: Jenko
  fullname: Jenko, Nathan
– sequence: 3
  givenname: Aaron
  orcidid: 0000-0001-5920-6888
  surname: Wernham
  fullname: Wernham, Aaron
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37264670$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1r3DAQxUVJaTabnnIvhkIIBHclS5bkY9lsNoVAA9mehSyPEwXbciUZuv99tB-5hJLLzOX33gzvnaGTwQ2A0AXBPwiu6MJAs-g63ZBKfEIzQnmZFwXFJ2iGKRY5r6g8RWchvGBMKBHlF3RKRcEZF3iGmgfwrfO9Hgxkrs2WzzquHzaZG7LHEYzVXdxmS_DRttboCNnqn-7toKNNhB2yG0ja6Dr3tM36qYt27CA3z84mu78ThB0XztHnVncBvh73HP25XW2Wd_n97_Wv5c_73DDCYq6ZaGSVfpPcEFMKkLxoMRUVE5UBwAzqmtZEmBYDqzmDAreYmVI2IJkxms7R1cF39G5_XPU2GEjhDOCmoAqZghG8THOOvr9DX9zkh_SdogWTUvB0PFHfjtRU99Co0dte-616yy8B5AAY70Lw0Cpj4z6c6LXtFMFq15FKHaljR0lz_U7zZvt_-vJAu2n8EHwF0VWhXg
CitedBy_id crossref_primary_10_3390_ai5040126
crossref_primary_10_7759_cureus_58950
crossref_primary_10_2196_58758
crossref_primary_10_1093_ced_llae546
crossref_primary_10_1007_s12306_024_00846_w
crossref_primary_10_7759_cureus_40822
crossref_primary_10_1136_bmjopen_2023_080558
crossref_primary_10_1038_s41598_025_04309_5
crossref_primary_10_3389_frai_2025_1614874
crossref_primary_10_1186_s12909_024_05630_9
crossref_primary_10_3389_fpubh_2024_1360597
crossref_primary_10_1016_j_imed_2025_08_004
crossref_primary_10_1080_0142159X_2023_2249588
crossref_primary_10_7759_cureus_62643
crossref_primary_10_1016_j_abd_2025_501143
crossref_primary_10_1016_j_det_2025_05_003
crossref_primary_10_2196_63494
crossref_primary_10_1021_acs_jchemed_4c00165
crossref_primary_10_1038_s41746_024_01029_4
crossref_primary_10_1093_ced_llae158
crossref_primary_10_1111_jocd_70244
crossref_primary_10_1053_j_jvca_2024_01_032
crossref_primary_10_1080_01616412_2025_2481444
crossref_primary_10_1002_eng2_12890
crossref_primary_10_1038_s41443_025_01056_z
crossref_primary_10_3389_fmed_2023_1308229
crossref_primary_10_7759_cureus_58639
crossref_primary_10_1038_s41598_024_68996_2
crossref_primary_10_1111_bju_16806
crossref_primary_10_1007_s10462_024_10849_5
crossref_primary_10_1111_cup_14631
crossref_primary_10_1186_s12911_024_02709_7
crossref_primary_10_1007_s10157_023_02451_w
crossref_primary_10_1093_ced_llad430
crossref_primary_10_1111_ajd_14484
crossref_primary_10_1093_ced_llae174
crossref_primary_10_1080_02602938_2023_2299059
crossref_primary_10_1016_j_ijmedinf_2025_106088
crossref_primary_10_4103_idoj_idoj_1250_24
crossref_primary_10_3390_jcm13195909
crossref_primary_10_1016_j_surge_2023_12_005
crossref_primary_10_1007_s44186_025_00369_3
crossref_primary_10_1111_jdv_20237
crossref_primary_10_1177_23821205241263475
crossref_primary_10_7759_cureus_64768
crossref_primary_10_1177_12034754241266166
crossref_primary_10_2196_59258
crossref_primary_10_3390_diagnostics15121529
crossref_primary_10_2196_64486
crossref_primary_10_1093_ced_llad202
crossref_primary_10_1371_journal_pone_0332917
crossref_primary_10_1109_TLT_2025_3537802
crossref_primary_10_1111_jpc_70080
crossref_primary_10_1093_humrep_dead272
crossref_primary_10_3390_jcm12206655
crossref_primary_10_1093_bjd_ljae040
crossref_primary_10_1016_j_abdp_2025_501143
crossref_primary_10_3390_healthcare11142046
crossref_primary_10_1016_j_adaj_2023_07_016
crossref_primary_10_1192_bjp_2025_10339
crossref_primary_10_2340_actadv_v105_41208
Cites_doi 10.1016/S1470-2045(19)30333-X
10.1016/j.bja.2023.04.025
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press on behalf of British Association of Dermatologists. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2023
The Author(s) 2023. Published by Oxford University Press on behalf of British Association of Dermatologists. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The Author(s) 2023. Published by Oxford University Press on behalf of British Association of Dermatologists. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press on behalf of British Association of Dermatologists. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2023
– notice: The Author(s) 2023. Published by Oxford University Press on behalf of British Association of Dermatologists. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
– notice: The Author(s) 2023. Published by Oxford University Press on behalf of British Association of Dermatologists. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
H94
K9.
7X8
DOI 10.1093/ced/llad197
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
MEDLINE - Academic
DatabaseTitleList AIDS and Cancer Research Abstracts

MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1365-2230
EndPage 727
ExternalDocumentID 37264670
10_1093_ced_llad197
10.1093/ced/llad197
Genre Journal Article
Report
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
29B
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
5WD
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AABZA
AACZT
AAESR
AAEVG
AAHHS
AANHP
AAONW
AAPGJ
AAPXW
AARHZ
AASGY
AAUAY
AAVAP
AAWDT
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABGNP
ABJNI
ABNHQ
ABPQP
ABPTD
ABPVW
ABQNK
ABVGC
ABWST
ABXGK
ABXVV
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFRR
ACGFS
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACUTJ
ACVCV
ACXBN
ACXQS
ACYXJ
ACZBC
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADMTO
ADNBA
ADNMO
ADOZA
ADQBN
ADVEK
ADVOB
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIMD
AEMQT
AENEX
AEQDE
AFBPY
AFEBI
AFFNX
AFFQV
AFGKR
AFXAL
AFYAG
AFZJQ
AGMDO
AGORE
AGQPQ
AGQXC
AGUTN
AHEFC
AHGBF
AHMBA
AHMMS
AIACR
AIURR
AIWBW
AJAOE
AJBDE
AJBYB
AJDVS
AJEEA
AJNCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXQX
AMBMR
AMYDB
APJGH
ASPBG
ATGXG
ATUGU
AVNTJ
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BCRHZ
BDRZF
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EAS
EBB
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
H13
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
J5H
K48
KBYEO
KOP
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OAUYM
OBFPC
OCZFY
OIG
OJZSN
OPAEJ
OVD
OWPYF
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
Q~Q
R.K
RIWAO
RJQFR
ROL
ROX
RX1
SUPJJ
SV3
TEORI
TMA
TUS
UB1
V8K
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WVDHM
WXI
XG1
YFH
YOC
YUY
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7T5
H94
K9.
7X8
ID FETCH-LOGICAL-c414t-a47d8937286c1c57e862f0379479cee04ebb3b17cf0e4b64e20f04c58de84cca3
ISICitedReferencesCount 76
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001062527800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0307-6938
1365-2230
IngestDate Sat Sep 27 18:49:50 EDT 2025
Fri Oct 03 03:50:55 EDT 2025
Thu Apr 03 07:05:20 EDT 2025
Tue Nov 18 22:29:09 EST 2025
Sat Nov 29 02:20:37 EST 2025
Mon Jun 30 08:34:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights)
https://academic.oup.com/pages/standard-publication-reuse-rights
The Author(s) 2023. Published by Oxford University Press on behalf of British Association of Dermatologists. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c414t-a47d8937286c1c57e862f0379479cee04ebb3b17cf0e4b64e20f04c58de84cca3
Notes SourceType-Scholarly Journals-1
content type line 14
ObjectType-Report-1
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5920-6888
PMID 37264670
PQID 3248876862
PQPubID 4964
PageCount 6
ParticipantIDs proquest_miscellaneous_2822376522
proquest_journals_3248876862
pubmed_primary_37264670
crossref_citationtrail_10_1093_ced_llad197
crossref_primary_10_1093_ced_llad197
oup_primary_10_1093_ced_llad197
PublicationCentury 2000
PublicationDate 2024-Jun-25
PublicationDateYYYYMMDD 2024-06-25
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-Jun-25
  day: 25
PublicationDecade 2020
PublicationPlace UK
PublicationPlace_xml – name: UK
– name: England
– name: Oxford
PublicationTitle Clinical and experimental dermatology
PublicationTitleAlternate Clin Exp Dermatol
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References 2024062516183348400_llad197-B3
2024062516183348400_llad197-B4
2024062516183348400_llad197-B1
2024062516183348400_llad197-B2
Katz (2024062516183348400_llad197-B8)
Birkett (2024062516183348400_llad197-B7) 2023
2024062516183348400_llad197-B9
Nori (2024062516183348400_llad197-B5)
Tschandl (2024062516183348400_llad197-B6) 2019; 20
References_xml – ident: 2024062516183348400_llad197-B9
– ident: 2024062516183348400_llad197-B2
– ident: 2024062516183348400_llad197-B1
– volume: 20
  start-page: 938
  year: 2019
  ident: 2024062516183348400_llad197-B6
  article-title: Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(19)30333-X
– ident: 2024062516183348400_llad197-B3
– ident: 2024062516183348400_llad197-B4
– ident: 2024062516183348400_llad197-B8
  article-title: GPT-4 passes the bar exam. SSRN 2023
– ident: 2024062516183348400_llad197-B5
  article-title: Capabilities of GPT-4 on medical challenge problems
– volume-title: Br J Anaesth
  year: 2023
  ident: 2024062516183348400_llad197-B7
  article-title: Performance of ChatGPT on a primary FRCA multiple-choice question bank
  doi: 10.1016/j.bja.2023.04.025
SSID ssj0013175
Score 2.6112666
Snippet Abstract ChatGPT is a large language model trained on increasingly large datasets by OpenAI to perform language-based tasks. It is capable of answering...
ChatGPT is a large language model trained on increasingly large datasets by OpenAI to perform language-based tasks. It is capable of answering multiple-choice...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 722
SubjectTerms Artificial Intelligence
Certification - standards
Chatbots
Clinical Competence - standards
Dermatology
Dermatology - education
Educational Measurement - methods
Educational Measurement - standards
Humans
Multiple choice
Title Performance of ChatGPT on Specialty Certificate Examination in Dermatology multiple-choice questions
URI https://www.ncbi.nlm.nih.gov/pubmed/37264670
https://www.proquest.com/docview/3248876862
https://www.proquest.com/docview/2822376522
Volume 49
WOSCitedRecordID wos001062527800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1365-2230
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013175
  issn: 0307-6938
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6DiFeEN8UxjDSxANTNidxYudx2loQKqVCmdS3KB-ONDElpc2m_k38lZzjy0cZquCBl6hKLbv1ne_Od_e7I-SIqyDJPeZaCrS_xfMssKQfcwtscTtxmcxVXnctmYrZTC4WwXww-NlgYW6vRVHIzSZY_ldSwzsgtobO_gO520nhBXwGosMTyA7PvyL8vAcFqHMt4urjPNRBAew1D2b3uc6mzmv42_F4E-t0mCbp8UKL6spUZmqyDS2QkSBQjmsd0jr4mvoGDbZSu-C3GgZk3VRdpGqNtTw1ILuDoX1WxffSSHvty-_iRasCgdxn8Qo5CH0UDte5VAbPvAv72BN1ulSlH5g6LyfKiOI6_87BqA3KalPeFHlS9ASvMOhm1OHC1Bu4ox5M6axUu5EncMoy2-QGb5fhnn2NJpfTaRSOF-H75Q9LdyjTkXxs17JH9h3hBXJI9i--wcAuZmXXZZ3b_4JoUFjzFFY8xfW27J8tTOWdq01t4oSPyEO8m9Azw1OPyUAVT8j9L5h98ZRkPdaiZU6RtWhZ0Ja1aI-1aI-16FVBe6xFf2Mt2rLWM3I5GYfnnyzs0mGl3OaVFXORaaPXkX5qp55QcEfOmQtyXgRggTGuksRNbJHmTPHE58phOeOpJzMlOcgP9zkZFmWhXhJq20GSeJ6CLXN4wOLYlcyPtUvBSzIhsxH50OxdlGIJe91J5ToyqRRuBBsd4UaPyFE7eGkqt_x52Fsgwu4RBw2BIjzn6wh-IKhnDa8akXft1yCadbwtLlR5s450hjbob7jhjMgLQ9h2HdgvH2wU9mr35K_Jg-48HZBhtbpRb8i99La6Wq8OyZ5YyEPkw1-lGr-z
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+of+ChatGPT+on+Specialty+Certificate+Examination+in+Dermatology+multiple-choice+questions&rft.jtitle=Clinical+and+experimental+dermatology&rft.au=Passby%2C+Lauren&rft.au=Jenko%2C+Nathan&rft.au=Wernham%2C+Aaron&rft.date=2024-06-25&rft.pub=Oxford+University+Press&rft.issn=0307-6938&rft.eissn=1365-2230&rft.volume=49&rft.issue=7&rft.spage=722&rft.epage=727&rft_id=info:doi/10.1093%2Fced%2Fllad197&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-6938&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-6938&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-6938&client=summon