Adaptive thermal error prediction for CNC machine tool spindle using online measurement and an improved recursive least square algorithm

Establishing models for predicting and compensating for spindle thermal errors is cost-effective and necessary to improve the accuracy of machine tools for smart manufacturing. However, the prediction performance of existing methods deteriorates significantly with dynamic working conditions of machi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Case studies in thermal engineering Ročník 56; s. 104239
Hlavní autori: Wei, Xinyuan, Ye, Honghan, Wang, Gao, Hu, Weidong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.04.2024
Elsevier
Predmet:
ISSN:2214-157X, 2214-157X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Establishing models for predicting and compensating for spindle thermal errors is cost-effective and necessary to improve the accuracy of machine tools for smart manufacturing. However, the prediction performance of existing methods deteriorates significantly with dynamic working conditions of machine tools because training from static conditions leads to the inability to adapt to dynamic conditions. Therefore, an adaptive thermal error modeling method using online measurement and an improved recursive least square algorithm is proposed to fill this research gap, which updates the thermal error model adaptively to ensure that dynamic working conditions are learned in real time. Particularly, Spearman's rank correlation coefficient method is first adopted for temperature-sensitive point selection to capture the nonlinear relationship between temperature and thermal error variables. Furthermore, a variable-forgetting factor-based recursive least square (VFF-RLS) algorithm is proposed to improve the prediction performance, in which the proposed variable forgetting factor is adaptively updated according to real-time thermal error data collected by online measurement. The experimental results showed that the proposed VFF-RLS method can maintain a high prediction accuracy of 1.75 μm and robustness of 0.16 μm on both constant and dynamic working conditions. The effectiveness of the VFF-RLS method is validated by verification experiments.
AbstractList Establishing models for predicting and compensating for spindle thermal errors is cost-effective and necessary to improve the accuracy of machine tools for smart manufacturing. However, the prediction performance of existing methods deteriorates significantly with dynamic working conditions of machine tools because training from static conditions leads to the inability to adapt to dynamic conditions. Therefore, an adaptive thermal error modeling method using online measurement and an improved recursive least square algorithm is proposed to fill this research gap, which updates the thermal error model adaptively to ensure that dynamic working conditions are learned in real time. Particularly, Spearman's rank correlation coefficient method is first adopted for temperature-sensitive point selection to capture the nonlinear relationship between temperature and thermal error variables. Furthermore, a variable-forgetting factor-based recursive least square (VFF-RLS) algorithm is proposed to improve the prediction performance, in which the proposed variable forgetting factor is adaptively updated according to real-time thermal error data collected by online measurement. The experimental results showed that the proposed VFF-RLS method can maintain a high prediction accuracy of 1.75 μm and robustness of 0.16 μm on both constant and dynamic working conditions. The effectiveness of the VFF-RLS method is validated by verification experiments.
ArticleNumber 104239
Author Ye, Honghan
Hu, Weidong
Wei, Xinyuan
Wang, Gao
Author_xml – sequence: 1
  givenname: Xinyuan
  orcidid: 0000-0002-8633-9990
  surname: Wei
  fullname: Wei, Xinyuan
  email: weixy@ahut.edu.cn
  organization: School of Electrical and Information Engineering, Anhui University of Technology, Ma'anshan, 230009, China
– sequence: 2
  givenname: Honghan
  orcidid: 0000-0001-5329-7344
  surname: Ye
  fullname: Ye, Honghan
  organization: Department of Statistics, School of Computer, Data & Information Sciences, College of Letters & Science, University of Wisconsin, Madison, WI, 53705, USA
– sequence: 3
  givenname: Gao
  surname: Wang
  fullname: Wang, Gao
  organization: School of Electrical and Information Engineering, Anhui University of Technology, Ma'anshan, 230009, China
– sequence: 4
  givenname: Weidong
  surname: Hu
  fullname: Hu, Weidong
  organization: School of Electrical and Information Engineering, Anhui University of Technology, Ma'anshan, 230009, China
BookMark eNqFkc2OFCEUhStmTBzHeQI3vEC3UAVU1cLFpOPPJBPdaOKO8HPpplMF5YXuxDfwsYeaNsa40AXhcrnnEM73srmKKULTvGZ0yyiTb45bm0OBbUtbXju87cZnzXXbMr5hov929Uf9ornN-UgpZX03MM6vm593Ti8lnIGUA-CsJwKICcmC4IItIUXi63H3aUdmbQ8h1sGUJpKXEN0E5JRD3JMUp_VmBp1PCDPEQnR0dZEwL5jO4AiCPWFeH5rqVCH5-0kjED3tE4ZymF81z72eMtz-2m-ar-_ffdl93Dx8_nC_u3vYWM542YzegxedGFvPhfDC9YMA5kVvRN8a2ZmWC0O5c7WW0g3SOD7QjoGUdmR66G6a-4uvS_qoFgyzxh8q6aCeGgn3SmMJdgI1yDVLzgYzApd-MNqMUtb0pNGOUlO9uouXxZQzgv_tx6ha2aijemKjVjbqwqaqxr9UNhS9Rl1Qh-k_2rcXLdSIzgFQZRsg2gqrBlzqH8I_9Y_InK_f
CitedBy_id crossref_primary_10_3390_lubricants13060269
crossref_primary_10_1007_s00170_025_16377_y
crossref_primary_10_1007_s00170_025_15021_z
crossref_primary_10_1016_j_ijmachtools_2025_104298
crossref_primary_10_1631_jzus_A2400287
crossref_primary_10_1016_j_measurement_2025_118389
crossref_primary_10_1016_j_icheatmasstransfer_2025_108977
crossref_primary_10_1038_s41598_024_77920_7
crossref_primary_10_1007_s00170_025_16433_7
crossref_primary_10_1016_j_measurement_2024_116341
crossref_primary_10_1016_j_ymssp_2025_112792
Cites_doi 10.1016/j.precisioneng.2021.10.007
10.1016/j.ymssp.2019.106397
10.3390/s22145085
10.1016/j.ijmachtools.2004.06.023
10.1016/j.precisioneng.2016.08.008
10.1016/j.csite.2022.102326
10.1016/j.measurement.2021.109891
10.1016/j.measurement.2023.112536
10.1016/j.ijmachtools.2021.103715
10.1016/j.cirp.2021.04.029
10.1016/j.cirp.2019.05.007
10.1016/j.ymssp.2019.106538
10.1016/j.csite.2022.102432
10.1016/j.measurement.2022.111121
10.1007/s40436-020-00342-x
10.1016/j.est.2023.107597
10.1016/j.precisioneng.2020.06.010
10.1016/j.cirp.2018.04.001
10.1016/j.cirp.2012.05.008
10.1016/j.cirpj.2019.04.002
10.1016/j.knosys.2021.107704
10.1016/j.mechmachtheory.2021.104639
10.1007/s00170-018-2918-5
10.1016/j.jmsy.2017.04.011
10.1109/TSP.2010.2040671
10.1016/j.csite.2023.103054
10.1016/j.precisioneng.2022.05.008
10.1016/j.ijmachtools.2016.10.005
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.csite.2024.104239
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-157X
ExternalDocumentID oai_doaj_org_article_864239418b9e46f8bab9660006bad00b
10_1016_j_csite_2024_104239
S2214157X24002703
GroupedDBID 0R~
0SF
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M~E
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c414t-9ffef53592f455f5d785e1f57b572b63b245b04ddb6366d86bd48031e66c91a83
IEDL.DBID DOA
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001206741600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2214-157X
IngestDate Fri Oct 03 12:51:49 EDT 2025
Wed Nov 05 20:52:40 EST 2025
Tue Nov 18 22:34:22 EST 2025
Sat Apr 13 16:37:45 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Thermal error modeling
Variable forgetting factor
Recursive least square algorithm
CNC machine tools
Adaptability
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-9ffef53592f455f5d785e1f57b572b63b245b04ddb6366d86bd48031e66c91a83
ORCID 0000-0001-5329-7344
0000-0002-8633-9990
OpenAccessLink https://doaj.org/article/864239418b9e46f8bab9660006bad00b
ParticipantIDs doaj_primary_oai_doaj_org_article_864239418b9e46f8bab9660006bad00b
crossref_primary_10_1016_j_csite_2024_104239
crossref_citationtrail_10_1016_j_csite_2024_104239
elsevier_sciencedirect_doi_10_1016_j_csite_2024_104239
PublicationCentury 2000
PublicationDate April 2024
2024-04-00
2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: April 2024
PublicationDecade 2020
PublicationTitle Case studies in thermal engineering
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Wang, Zhao (bib33) 2023
Fujishima, Narimatsu, Irino, Mori, Ibaraki (bib23) 2019; 25
Liu, Ma, Wang (bib6) 2020; 138
Liu, Du, Li, Deng, Feng, Yang (bib16) 2021; 9
Yang, Ni (bib5) 2005; 45
Li, Wang, Zhu, Wang, Zhu, Dai (bib12) 2022; 39
Chen, Chen, Xu (bib14) 2021; 184
Ma, Gui, Liu (bib36) 2021
Liu, Ma, Gui, Wang (bib17) 2022; 237
Volk, Groche, Brosius, Ghiotti, Kinsey, Liewald, Madej, Min, Yanagimoto (bib34) 2019; 68
Liu, Ma, Gui, Wang (bib9) 2022; 169
Wei, Ye, Feng (bib19) 2022; 22
Fu, Zhou, Zheng, Lu, Wang, Xie (bib25) 2022; 195
Xie, Wang, Zhang, Fan, Fernandez, Guerrero (bib31) 2023; 67
Liu, Ma, Wang (bib7) 2020; 135
Wei, Feng, Miao, Qian, Pan (bib27) 2022; 73
Mayr, Blaser, Ryser, Hernandez-Becerro (bib22) 2018; 67
Sun, Ji, Ren, Xie, Yan (bib30) 2019; 12
Mou, Liu (bib21) 1995; 117
Mayr, Blaser, Ryser, Hernandez-Becerro (bib35) 2018; 67
Mareš, Horejš, Havlík (bib10) 2020; 66
Wei, Ye, Miao, Pan (bib32) 2022; 77
Zhu, Yang, Feng, Du, Yang (bib15) 2022
Mayr, Jedrzejewski, Uhlmann, Alkan Donmez, Knapp, Härtig, Wendt, Moriwaki, Shore, Schmitt, Brecher, Würz, Wegener (bib1) 2012; 61
Cao, Zhang, Chen (bib2) 2017; 112
Weng, Gao, Zhang, Huang, Liu, Li, Zheng, Shi, Chang (bib8) 2021; 164
Wei, Miao, Liu, Liu, Chen (bib11) 2019; 101
(bib26) 2015
Blaser, Pavliček, Mori, Mayr, Weikert, Wegener (bib20) 2017; 44
Goel, Bernstein (bib29) 2018
Li, Wang, Zhu, Wang, Zhu (bib3) 2022; 38
Fu, Zheng, Zhou, Lu, Zhang, Wang, Wang (bib4) 2023; 210
Zimmermann, Breu, Mayr, Wegener (bib24) 2021; 70
Zhang, Gao, Yan (bib18) 2017; 47
Dai, Pang, Rui, Li, Wang, Li (bib13) 2023; 47
Skretting, Engan (bib28) 2010; 58
Zhang (10.1016/j.csite.2024.104239_bib18) 2017; 47
Fujishima (10.1016/j.csite.2024.104239_bib23) 2019; 25
(10.1016/j.csite.2024.104239_bib26) 2015
Liu (10.1016/j.csite.2024.104239_bib16) 2021; 9
Chen (10.1016/j.csite.2024.104239_bib14) 2021; 184
Dai (10.1016/j.csite.2024.104239_bib13) 2023; 47
Mareš (10.1016/j.csite.2024.104239_bib10) 2020; 66
Ma (10.1016/j.csite.2024.104239_bib36) 2021
Mayr (10.1016/j.csite.2024.104239_bib1) 2012; 61
Skretting (10.1016/j.csite.2024.104239_bib28) 2010; 58
Goel (10.1016/j.csite.2024.104239_bib29) 2018
Fu (10.1016/j.csite.2024.104239_bib4) 2023; 210
Wei (10.1016/j.csite.2024.104239_bib11) 2019; 101
Weng (10.1016/j.csite.2024.104239_bib8) 2021; 164
Blaser (10.1016/j.csite.2024.104239_bib20) 2017; 44
Liu (10.1016/j.csite.2024.104239_bib17) 2022; 237
Mayr (10.1016/j.csite.2024.104239_bib35) 2018; 67
Sun (10.1016/j.csite.2024.104239_bib30) 2019; 12
Wei (10.1016/j.csite.2024.104239_bib27) 2022; 73
Yang (10.1016/j.csite.2024.104239_bib5) 2005; 45
Mou (10.1016/j.csite.2024.104239_bib21) 1995; 117
Liu (10.1016/j.csite.2024.104239_bib9) 2022; 169
Mayr (10.1016/j.csite.2024.104239_bib22) 2018; 67
Wang (10.1016/j.csite.2024.104239_bib33) 2023
Liu (10.1016/j.csite.2024.104239_bib7) 2020; 135
Li (10.1016/j.csite.2024.104239_bib12) 2022; 39
Wei (10.1016/j.csite.2024.104239_bib19) 2022; 22
Li (10.1016/j.csite.2024.104239_bib3) 2022; 38
Xie (10.1016/j.csite.2024.104239_bib31) 2023; 67
Liu (10.1016/j.csite.2024.104239_bib6) 2020; 138
Volk (10.1016/j.csite.2024.104239_bib34) 2019; 68
Zimmermann (10.1016/j.csite.2024.104239_bib24) 2021; 70
Wei (10.1016/j.csite.2024.104239_bib32) 2022; 77
Cao (10.1016/j.csite.2024.104239_bib2) 2017; 112
Zhu (10.1016/j.csite.2024.104239_bib15) 2022
Fu (10.1016/j.csite.2024.104239_bib25) 2022; 195
References_xml – volume: 47
  year: 2017
  ident: bib18
  article-title: Thermal error characteristic analysis and modeling for machine tools due to time-varying environmental temperature
  publication-title: Precis. Eng.
– volume: 38
  year: 2022
  ident: bib3
  article-title: Thermal error modeling of electrical spindle based on optimized ELM with marine predator algorithm
  publication-title: Case Stud. Therm. Eng.
– year: 2015
  ident: bib26
  publication-title: ISO 230-3, Test Code for Machine Tools-Part 3: Determination of Thermal Effects
– volume: 117
  start-page: 389
  year: 1995
  end-page: 399
  ident: bib21
  article-title: An adaptive methodology for machine tool error correction
  publication-title: Journal of Manufacturing Science and Engineering, Transactions of the ASME
– volume: 70
  start-page: 431
  year: 2021
  end-page: 434
  ident: bib24
  article-title: Autonomously triggered model updates for self-learning thermal error compensation
  publication-title: CIRP Annals
– volume: 25
  start-page: 22
  year: 2019
  end-page: 25
  ident: bib23
  article-title: Adaptive thermal displacement compensation method based on deep learning
  publication-title: CIRP J Manuf Sci Technol
– volume: 135
  year: 2020
  ident: bib7
  article-title: Precision loss modeling method of ball screw pair
  publication-title: Mech. Syst. Signal Process.
– volume: 164
  year: 2021
  ident: bib8
  article-title: Analytical modelling method for thermal balancing design of machine tool structural components
  publication-title: Int J Mach Tools Manuf
– volume: 237
  year: 2022
  ident: bib17
  article-title: Transfer learning-based thermal error prediction and control with deep residual LSTM network
  publication-title: Knowl Based Syst
– volume: 9
  start-page: 235
  year: 2021
  end-page: 249
  ident: bib16
  article-title: Thermal error modeling based on BiLSTM deep learning for CNC machine tool
  publication-title: Adv. Manuf.
– volume: 138
  year: 2020
  ident: bib6
  article-title: Data-driven thermally-induced error compensation method of high-speed and precision five-axis machine tools
  publication-title: Mech. Syst. Signal Process.
– volume: 66
  year: 2020
  ident: bib10
  article-title: Thermal error compensation of a 5-axis machine tool using indigenous temperature sensors and CNC integrated Python code validated with a machined test piece
  publication-title: Precis. Eng.
– volume: 61
  start-page: 771
  year: 2012
  end-page: 791
  ident: bib1
  article-title: Thermal issues in machine tools
  publication-title: CIRP Ann Manuf Technol
– volume: 169
  year: 2022
  ident: bib9
  article-title: Simultaneous geometric and thermal error control of gear profile grinder based on analytical correlation between tooth surface error and position error of grinding wheel/workpiece
  publication-title: Mech Mach Theory
– volume: 67
  start-page: 551
  year: 2018
  end-page: 554
  ident: bib22
  article-title: An adaptive self-learning compensation approach for thermal errors on 5-axis machine tools handling an arbitrary set of sample rates
  publication-title: CIRP Annals
– start-page: 1
  year: 2023
  end-page: 25
  ident: bib33
  article-title: Three-stage feature selection approach for deep learning-based RUL prediction methods
  publication-title: Qual. Reliab. Eng. Int.
– volume: 112
  start-page: 21
  year: 2017
  end-page: 52
  ident: bib2
  article-title: The concept and progress of intelligent spindles: a review
  publication-title: Int J Mach Tools Manuf
– volume: 22
  start-page: 5085
  year: 2022
  ident: bib19
  article-title: Year‐round thermal error modeling and compensation for the spindle of machine tools based on ambient temperature intervals
  publication-title: Sensors
– volume: 67
  year: 2023
  ident: bib31
  article-title: Improved lumped electrical characteristic modeling and adaptive forgetting factor recursive least squares-linearized particle swarm optimization full-parameter identification strategy for lithium-ion batteries considering the hysteresis component effect
  publication-title: J. Energy Storage
– year: 2022
  ident: bib15
  article-title: Robust modeling method for thermal error of CNC machine tools based on random forest algorithm
  publication-title: J. Intell. Manuf.
– volume: 58
  start-page: 2121
  year: 2010
  end-page: 2130
  ident: bib28
  article-title: Recursive least squares dictionary learning algorithm
  publication-title: IEEE Trans. Signal Process.
– volume: 12
  year: 2019
  ident: bib30
  article-title: Adaptive forgetting factor recursive least square algorithm for online identification of equivalent circuit model parameters of a lithium-ion battery
  publication-title: Energies
– volume: 195
  year: 2022
  ident: bib25
  article-title: Improved unscented Kalman filter algorithm-based rapid identification of thermal errors of machine tool spindle for shortening thermal equilibrium time
  publication-title: Measurement
– volume: 68
  start-page: 775
  year: 2019
  end-page: 798
  ident: bib34
  article-title: Models and modelling for process limits in metal forming
  publication-title: CIRP Annals
– volume: 67
  start-page: 551
  year: 2018
  end-page: 554
  ident: bib35
  article-title: An adaptive self-learning compensation approach for thermal errors on 5-axis machine tools handling an arbitrary set of sample rates
  publication-title: CIRP Annals
– volume: 47
  year: 2023
  ident: bib13
  article-title: Thermal error prediction model of high-speed motorized spindle based on DELM network optimized by weighted mean of vectors algorithm
  publication-title: Case Stud. Therm. Eng.
– year: 2021
  ident: bib36
  article-title: Self learning-empowered thermal error control method of precision machine tools based on digital twin
  publication-title: J. Intell. Manuf.
– volume: 101
  start-page: 501
  year: 2019
  end-page: 509
  ident: bib11
  article-title: Two-dimensional thermal error compensation modeling for worktable of CNC machine tools
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 210
  year: 2023
  ident: bib4
  article-title: Look-ahead prediction of spindle thermal errors with on-machine measurement and the cubic exponential smoothing-unscented Kalman filtering-based temperature prediction model of the machine tools
  publication-title: Measurement
– volume: 77
  start-page: 65
  year: 2022
  end-page: 76
  ident: bib32
  article-title: Thermal error modeling and compensation based on Gaussian process regression for CNC machine tools
  publication-title: Precis. Eng.
– volume: 39
  year: 2022
  ident: bib12
  article-title: Thermal error modeling of high-speed electric spindle based on Aquila Optimizer optimized least squares support vector machine
  publication-title: Case Stud. Therm. Eng.
– volume: 45
  start-page: 1
  year: 2005
  end-page: 11
  ident: bib5
  article-title: Adaptive model estimation of machine-tool thermal errors based on recursive dynamic modeling strategy
  publication-title: Int J Mach Tools Manuf
– volume: 184
  year: 2021
  ident: bib14
  article-title: A data-driven model for thermal error prediction considering thermoelasticity with gated recurrent unit attention
  publication-title: Measurement
– volume: 44
  start-page: 302
  year: 2017
  end-page: 309
  ident: bib20
  article-title: Adaptive learning control for thermal error compensation of 5-axis machine tools
  publication-title: J. Manuf. Syst.
– year: 2018
  ident: bib29
  article-title: A targeted forgetting factor for recursive least squares
  publication-title: Proceedings of the IEEE Conference on Decision and Control
– volume: 73
  start-page: 313
  year: 2022
  end-page: 325
  ident: bib27
  article-title: Sub-regional thermal error compensation modeling for CNC machine tool worktables
  publication-title: Precis. Eng.
– volume: 73
  start-page: 313
  year: 2022
  ident: 10.1016/j.csite.2024.104239_bib27
  article-title: Sub-regional thermal error compensation modeling for CNC machine tool worktables
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2021.10.007
– volume: 135
  year: 2020
  ident: 10.1016/j.csite.2024.104239_bib7
  article-title: Precision loss modeling method of ball screw pair
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.106397
– volume: 22
  start-page: 5085
  year: 2022
  ident: 10.1016/j.csite.2024.104239_bib19
  article-title: Year‐round thermal error modeling and compensation for the spindle of machine tools based on ambient temperature intervals
  publication-title: Sensors
  doi: 10.3390/s22145085
– volume: 45
  start-page: 1
  year: 2005
  ident: 10.1016/j.csite.2024.104239_bib5
  article-title: Adaptive model estimation of machine-tool thermal errors based on recursive dynamic modeling strategy
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2004.06.023
– volume: 47
  year: 2017
  ident: 10.1016/j.csite.2024.104239_bib18
  article-title: Thermal error characteristic analysis and modeling for machine tools due to time-varying environmental temperature
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2016.08.008
– volume: 38
  year: 2022
  ident: 10.1016/j.csite.2024.104239_bib3
  article-title: Thermal error modeling of electrical spindle based on optimized ELM with marine predator algorithm
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2022.102326
– volume: 184
  year: 2021
  ident: 10.1016/j.csite.2024.104239_bib14
  article-title: A data-driven model for thermal error prediction considering thermoelasticity with gated recurrent unit attention
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109891
– volume: 210
  year: 2023
  ident: 10.1016/j.csite.2024.104239_bib4
  article-title: Look-ahead prediction of spindle thermal errors with on-machine measurement and the cubic exponential smoothing-unscented Kalman filtering-based temperature prediction model of the machine tools
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.112536
– year: 2022
  ident: 10.1016/j.csite.2024.104239_bib15
  article-title: Robust modeling method for thermal error of CNC machine tools based on random forest algorithm
  publication-title: J. Intell. Manuf.
– volume: 164
  year: 2021
  ident: 10.1016/j.csite.2024.104239_bib8
  article-title: Analytical modelling method for thermal balancing design of machine tool structural components
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2021.103715
– volume: 70
  start-page: 431
  year: 2021
  ident: 10.1016/j.csite.2024.104239_bib24
  article-title: Autonomously triggered model updates for self-learning thermal error compensation
  publication-title: CIRP Annals
  doi: 10.1016/j.cirp.2021.04.029
– volume: 68
  start-page: 775
  year: 2019
  ident: 10.1016/j.csite.2024.104239_bib34
  article-title: Models and modelling for process limits in metal forming
  publication-title: CIRP Annals
  doi: 10.1016/j.cirp.2019.05.007
– volume: 138
  year: 2020
  ident: 10.1016/j.csite.2024.104239_bib6
  article-title: Data-driven thermally-induced error compensation method of high-speed and precision five-axis machine tools
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.106538
– volume: 39
  year: 2022
  ident: 10.1016/j.csite.2024.104239_bib12
  article-title: Thermal error modeling of high-speed electric spindle based on Aquila Optimizer optimized least squares support vector machine
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2022.102432
– volume: 195
  year: 2022
  ident: 10.1016/j.csite.2024.104239_bib25
  article-title: Improved unscented Kalman filter algorithm-based rapid identification of thermal errors of machine tool spindle for shortening thermal equilibrium time
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111121
– year: 2015
  ident: 10.1016/j.csite.2024.104239_bib26
– volume: 9
  start-page: 235
  year: 2021
  ident: 10.1016/j.csite.2024.104239_bib16
  article-title: Thermal error modeling based on BiLSTM deep learning for CNC machine tool
  publication-title: Adv. Manuf.
  doi: 10.1007/s40436-020-00342-x
– volume: 67
  year: 2023
  ident: 10.1016/j.csite.2024.104239_bib31
  article-title: Improved lumped electrical characteristic modeling and adaptive forgetting factor recursive least squares-linearized particle swarm optimization full-parameter identification strategy for lithium-ion batteries considering the hysteresis component effect
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.107597
– volume: 66
  year: 2020
  ident: 10.1016/j.csite.2024.104239_bib10
  article-title: Thermal error compensation of a 5-axis machine tool using indigenous temperature sensors and CNC integrated Python code validated with a machined test piece
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2020.06.010
– volume: 67
  start-page: 551
  year: 2018
  ident: 10.1016/j.csite.2024.104239_bib35
  article-title: An adaptive self-learning compensation approach for thermal errors on 5-axis machine tools handling an arbitrary set of sample rates
  publication-title: CIRP Annals
  doi: 10.1016/j.cirp.2018.04.001
– volume: 61
  start-page: 771
  year: 2012
  ident: 10.1016/j.csite.2024.104239_bib1
  article-title: Thermal issues in machine tools
  publication-title: CIRP Ann Manuf Technol
  doi: 10.1016/j.cirp.2012.05.008
– year: 2021
  ident: 10.1016/j.csite.2024.104239_bib36
  article-title: Self learning-empowered thermal error control method of precision machine tools based on digital twin
  publication-title: J. Intell. Manuf.
– volume: 25
  start-page: 22
  year: 2019
  ident: 10.1016/j.csite.2024.104239_bib23
  article-title: Adaptive thermal displacement compensation method based on deep learning
  publication-title: CIRP J Manuf Sci Technol
  doi: 10.1016/j.cirpj.2019.04.002
– volume: 237
  year: 2022
  ident: 10.1016/j.csite.2024.104239_bib17
  article-title: Transfer learning-based thermal error prediction and control with deep residual LSTM network
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2021.107704
– start-page: 1
  year: 2023
  ident: 10.1016/j.csite.2024.104239_bib33
  article-title: Three-stage feature selection approach for deep learning-based RUL prediction methods
  publication-title: Qual. Reliab. Eng. Int.
– volume: 169
  year: 2022
  ident: 10.1016/j.csite.2024.104239_bib9
  article-title: Simultaneous geometric and thermal error control of gear profile grinder based on analytical correlation between tooth surface error and position error of grinding wheel/workpiece
  publication-title: Mech Mach Theory
  doi: 10.1016/j.mechmachtheory.2021.104639
– volume: 101
  start-page: 501
  year: 2019
  ident: 10.1016/j.csite.2024.104239_bib11
  article-title: Two-dimensional thermal error compensation modeling for worktable of CNC machine tools
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-018-2918-5
– volume: 117
  start-page: 389
  year: 1995
  ident: 10.1016/j.csite.2024.104239_bib21
  article-title: An adaptive methodology for machine tool error correction
  publication-title: Journal of Manufacturing Science and Engineering, Transactions of the ASME
– volume: 44
  start-page: 302
  year: 2017
  ident: 10.1016/j.csite.2024.104239_bib20
  article-title: Adaptive learning control for thermal error compensation of 5-axis machine tools
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2017.04.011
– volume: 58
  start-page: 2121
  year: 2010
  ident: 10.1016/j.csite.2024.104239_bib28
  article-title: Recursive least squares dictionary learning algorithm
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2010.2040671
– volume: 67
  start-page: 551
  year: 2018
  ident: 10.1016/j.csite.2024.104239_bib22
  article-title: An adaptive self-learning compensation approach for thermal errors on 5-axis machine tools handling an arbitrary set of sample rates
  publication-title: CIRP Annals
  doi: 10.1016/j.cirp.2018.04.001
– volume: 47
  year: 2023
  ident: 10.1016/j.csite.2024.104239_bib13
  article-title: Thermal error prediction model of high-speed motorized spindle based on DELM network optimized by weighted mean of vectors algorithm
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2023.103054
– volume: 77
  start-page: 65
  year: 2022
  ident: 10.1016/j.csite.2024.104239_bib32
  article-title: Thermal error modeling and compensation based on Gaussian process regression for CNC machine tools
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2022.05.008
– volume: 112
  start-page: 21
  year: 2017
  ident: 10.1016/j.csite.2024.104239_bib2
  article-title: The concept and progress of intelligent spindles: a review
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2016.10.005
– volume: 12
  year: 2019
  ident: 10.1016/j.csite.2024.104239_bib30
  article-title: Adaptive forgetting factor recursive least square algorithm for online identification of equivalent circuit model parameters of a lithium-ion battery
  publication-title: Energies
– year: 2018
  ident: 10.1016/j.csite.2024.104239_bib29
  article-title: A targeted forgetting factor for recursive least squares
SSID ssj0001738144
Score 2.3608124
Snippet Establishing models for predicting and compensating for spindle thermal errors is cost-effective and necessary to improve the accuracy of machine tools for...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 104239
SubjectTerms Adaptability
CNC machine tools
Recursive least square algorithm
Thermal error modeling
Variable forgetting factor
Title Adaptive thermal error prediction for CNC machine tool spindle using online measurement and an improved recursive least square algorithm
URI https://dx.doi.org/10.1016/j.csite.2024.104239
https://doaj.org/article/864239418b9e46f8bab9660006bad00b
Volume 56
WOSCitedRecordID wos001206741600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2214-157X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001738144
  issn: 2214-157X
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2214-157X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001738144
  issn: 2214-157X
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07b9swECaKoEM7BGnaIm6T4IaMNWJLJEWNjmEjQ2JkSAtvAl9yFdiWI7sdM-dn546SHU3OkkGCQJxIgnfiHe9O3zF2IbDVxz7uWt7HAwr9o5uqPCEg5FhHJrU-IDH9uUkmEzWdpnetUl-UE1bDA9cLd6kkQdTxvjKp5zJXRhsClERhMdr1eoZ2316Stg5TwbuSoCbifAszFBK6bAjH4mGfU2AzovLgLVUUEPtbGqmlZcZH7LAxD2FQT-sL--CXx-xzCzTwK3seOL2iTQrIdlsgta-qsoJVRTEXWmdAQxSGkyEsQqYkEpblHNarggAVgDLdZ1AjZMDi1UUIeunwgiK4GbyDilzxlN0OcyrwA-tHFCcPej4rq2Lzd_GN_R6P7ofX3aaeAjGCb7ppnvtcxCKNci5ELlyihO_nIjEiiYyMTcSF6XHn8FlKp6RxXOFH76W0aV-r-Ds7WJZLf8LAcikIys7FXlOoV4lEx5EVFjdQiz13WLRd2sw2YONU82KebbPKHrLAj4z4kdX86LBfu5dWNdbGfvIr4tmOlICyQwOKT9aIT_aW-HSY3HI8a2yO2pbArop9o_94j9F_sk_UZZ0JdMoONtU_f8Y-2v-bYl2dB5HG--3T6AXGDv1N
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+thermal+error+prediction+for+CNC+machine+tool+spindle+using+online+measurement+and+an+improved+recursive+least+square+algorithm&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=Wei%2C+Xinyuan&rft.au=Ye%2C+Honghan&rft.au=Wang%2C+Gao&rft.au=Hu%2C+Weidong&rft.date=2024-04-01&rft.pub=Elsevier+Ltd&rft.issn=2214-157X&rft.eissn=2214-157X&rft.volume=56&rft_id=info:doi/10.1016%2Fj.csite.2024.104239&rft.externalDocID=S2214157X24002703
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon