A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images

Change detection in high resolution remote sensing images is crucial to the understanding of land surface changes. As traditional change detection methods are not suitable for the task considering the challenges brought by the fine image details and complex texture features conveyed in high resoluti...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:ISPRS journal of photogrammetry and remote sensing Ročník 166; s. 183 - 200
Hlavní autoři: Zhang, Chenxiao, Yue, Peng, Tapete, Deodato, Jiang, Liangcun, Shangguan, Boyi, Huang, Li, Liu, Guangchao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.08.2020
Témata:
ISSN:0924-2716, 1872-8235
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Change detection in high resolution remote sensing images is crucial to the understanding of land surface changes. As traditional change detection methods are not suitable for the task considering the challenges brought by the fine image details and complex texture features conveyed in high resolution images, a number of deep learning-based change detection methods have been proposed to improve the change detection performance. Although the state-of-the-art deep feature based methods outperform all the other deep learning-based change detection methods, networks in the existing deep feature based methods are mostly modified from architectures that are originally proposed for single-image semantic segmentation. Transferring these networks for change detection task still poses some key issues. In this paper, we propose a deeply supervised image fusion network (IFN) for change detection in high resolution bi-temporal remote sensing images. Specifically, highly representative deep features of bi-temporal images are firstly extracted through a fully convolutional two-stream architecture. Then, the extracted deep features are fed into a deeply supervised difference discrimination network (DDN) for change detection. To improve boundary completeness and internal compactness of objects in the output change maps, multi-level deep features of raw images are fused with image difference features by means of attention modules for change map reconstruction. DDN is further enhanced by directly introducing change map losses to intermediate layers in the network, and the whole network is trained in an end-to-end manner. IFN is applied to a publicly available dataset, as well as a challenging dataset consisting of multi-source bi-temporal images from Google Earth covering different cities in China. Both visual interpretation and quantitative assessment confirm that IFN outperforms four benchmark methods derived from the literature, by returning changed areas with complete boundaries and high internal compactness compared to the state-of-the-art methods.
AbstractList Change detection in high resolution remote sensing images is crucial to the understanding of land surface changes. As traditional change detection methods are not suitable for the task considering the challenges brought by the fine image details and complex texture features conveyed in high resolution images, a number of deep learning-based change detection methods have been proposed to improve the change detection performance. Although the state-of-the-art deep feature based methods outperform all the other deep learning-based change detection methods, networks in the existing deep feature based methods are mostly modified from architectures that are originally proposed for single-image semantic segmentation. Transferring these networks for change detection task still poses some key issues. In this paper, we propose a deeply supervised image fusion network (IFN) for change detection in high resolution bi-temporal remote sensing images. Specifically, highly representative deep features of bi-temporal images are firstly extracted through a fully convolutional two-stream architecture. Then, the extracted deep features are fed into a deeply supervised difference discrimination network (DDN) for change detection. To improve boundary completeness and internal compactness of objects in the output change maps, multi-level deep features of raw images are fused with image difference features by means of attention modules for change map reconstruction. DDN is further enhanced by directly introducing change map losses to intermediate layers in the network, and the whole network is trained in an end-to-end manner. IFN is applied to a publicly available dataset, as well as a challenging dataset consisting of multi-source bi-temporal images from Google Earth covering different cities in China. Both visual interpretation and quantitative assessment confirm that IFN outperforms four benchmark methods derived from the literature, by returning changed areas with complete boundaries and high internal compactness compared to the state-of-the-art methods.
Author Liu, Guangchao
Zhang, Chenxiao
Jiang, Liangcun
Huang, Li
Shangguan, Boyi
Yue, Peng
Tapete, Deodato
Author_xml – sequence: 1
  givenname: Chenxiao
  surname: Zhang
  fullname: Zhang, Chenxiao
  organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (LIESMARS), Wuhan University, Wuhan University, 129 Luoyu Road, Wuhan, Hubei 430079, China
– sequence: 2
  givenname: Peng
  orcidid: 0000-0003-3006-4542
  surname: Yue
  fullname: Yue, Peng
  email: pyue@whu.edu.cn
  organization: School of Remote Sensing and Information Engineering, Wuhan University, 129 Luoyu Road, Wuhan, Hubei 430079, China
– sequence: 3
  givenname: Deodato
  orcidid: 0000-0002-7242-4473
  surname: Tapete
  fullname: Tapete, Deodato
  organization: Italian Space Agency (ASI), Via del Politecnico snc, 00133, Rome, Italy
– sequence: 4
  givenname: Liangcun
  surname: Jiang
  fullname: Jiang, Liangcun
  organization: School of Remote Sensing and Information Engineering, Wuhan University, 129 Luoyu Road, Wuhan, Hubei 430079, China
– sequence: 5
  givenname: Boyi
  surname: Shangguan
  fullname: Shangguan, Boyi
  organization: School of Remote Sensing and Information Engineering, Wuhan University, 129 Luoyu Road, Wuhan, Hubei 430079, China
– sequence: 6
  givenname: Li
  surname: Huang
  fullname: Huang, Li
  organization: School of Remote Sensing and Information Engineering, Wuhan University, 129 Luoyu Road, Wuhan, Hubei 430079, China
– sequence: 7
  givenname: Guangchao
  surname: Liu
  fullname: Liu, Guangchao
  organization: School of Remote Sensing and Information Engineering, Wuhan University, 129 Luoyu Road, Wuhan, Hubei 430079, China
BookMark eNqNkE1v1DAQhi1UJLaF34CPXJKOP-LEBw6rClqkSr3A2XKcya63WTvYSVH_PV624tALHEYjzfuh0XNJLkIMSMhHBjUDpq4Ptc9zyocyNQcONagaQLwhG9a1vOq4aC7IBjSXFW-Zekcucz4AAGtUtyFpSwfEeXqmeZ0xPfmMA_VHu0M6rtnHQAMuv2J6pGNM1O1tKMqAC7rlJPpA9363pwlznNY_p95XCx7nmOxUzse4IM0Ysg-7c29-T96Odsr44WVfkR9fv3y_uavuH26_3WzvKyeZXCo9WqF7iQJ4r0CPzqlGCKY77lC2KEZl-6HpnHPIW9n3o1IoZA9SNRqEluKKfDr3zin-XDEv5uizw2myAeOaDdedAtkI3RZre7a6FHNOOJo5lWfTs2FgTpTNwfylbE6UDShTKJfk51dJ5xd7ArEk66f_yG_PeSwknjwmk53H4HDwqTA2Q_T_7PgNDbykNw
CitedBy_id crossref_primary_10_3390_rs15184609
crossref_primary_10_1109_TGRS_2024_3484178
crossref_primary_10_1109_TGRS_2022_3169479
crossref_primary_10_1109_TGRS_2025_3608816
crossref_primary_10_1016_j_jhydrol_2023_129455
crossref_primary_10_1109_JSTARS_2024_3379565
crossref_primary_10_1109_JSTARS_2025_3597194
crossref_primary_10_1016_j_isprsjprs_2025_07_034
crossref_primary_10_1109_JSTARS_2024_3402431
crossref_primary_10_1109_ACCESS_2022_3160163
crossref_primary_10_1109_TGRS_2021_3139077
crossref_primary_10_1109_JSTARS_2025_3555536
crossref_primary_10_3390_rs16081372
crossref_primary_10_1016_j_isprsjprs_2022_08_012
crossref_primary_10_3390_rs17132249
crossref_primary_10_1109_TGRS_2025_3550973
crossref_primary_10_1117_1_JRS_18_044510
crossref_primary_10_3390_rs14030722
crossref_primary_10_1109_TGRS_2023_3300533
crossref_primary_10_3390_rs13081440
crossref_primary_10_1016_j_isprsjprs_2023_11_004
crossref_primary_10_1080_22797254_2022_2047795
crossref_primary_10_1109_LGRS_2021_3050746
crossref_primary_10_1109_JSTARS_2024_3435575
crossref_primary_10_1109_JSTARS_2025_3601996
crossref_primary_10_1109_JSTARS_2025_3528185
crossref_primary_10_1109_JSTARS_2025_3567508
crossref_primary_10_1155_2022_3404858
crossref_primary_10_1109_TGRS_2024_3471075
crossref_primary_10_1109_TETCI_2025_3529893
crossref_primary_10_1155_2023_4200153
crossref_primary_10_1109_TGRS_2024_3365825
crossref_primary_10_1109_JSTARS_2023_3342989
crossref_primary_10_1109_JSTARS_2024_3409072
crossref_primary_10_1109_TGRS_2025_3536473
crossref_primary_10_1016_j_isprsjprs_2025_06_022
crossref_primary_10_1109_TGRS_2024_3410977
crossref_primary_10_3390_app13106167
crossref_primary_10_1109_TGRS_2024_3419790
crossref_primary_10_1016_j_engappai_2024_108960
crossref_primary_10_1109_TGRS_2021_3095166
crossref_primary_10_3390_rs15081958
crossref_primary_10_3390_su14031319
crossref_primary_10_1016_j_isprsjprs_2023_11_023
crossref_primary_10_1109_TGRS_2025_3566097
crossref_primary_10_1109_JSTARS_2025_3554659
crossref_primary_10_1007_s00530_023_01063_4
crossref_primary_10_1109_TGRS_2023_3278739
crossref_primary_10_1109_TGRS_2024_3470808
crossref_primary_10_1016_j_patcog_2024_111266
crossref_primary_10_1007_s10489_023_04535_2
crossref_primary_10_1080_10095020_2025_2508224
crossref_primary_10_1080_15481603_2023_2257980
crossref_primary_10_1007_s40808_021_01258_6
crossref_primary_10_1109_JSEN_2025_3543717
crossref_primary_10_3390_rs13244971
crossref_primary_10_1109_TIM_2021_3096872
crossref_primary_10_3390_rs15030588
crossref_primary_10_1109_JSTARS_2024_3522910
crossref_primary_10_1109_JSTARS_2023_3327340
crossref_primary_10_1109_TGRS_2023_3286113
crossref_primary_10_3390_rs17172970
crossref_primary_10_1016_j_cageo_2025_105880
crossref_primary_10_3390_rs16050844
crossref_primary_10_1109_TGRS_2021_3066802
crossref_primary_10_1109_TGRS_2025_3591087
crossref_primary_10_3390_rs14040957
crossref_primary_10_3390_rs13234927
crossref_primary_10_1109_JSTARS_2023_3330753
crossref_primary_10_1109_TGRS_2024_3386934
crossref_primary_10_3390_app12157903
crossref_primary_10_1109_TGRS_2024_3432771
crossref_primary_10_1016_j_engappai_2023_106666
crossref_primary_10_1109_TGRS_2022_3168126
crossref_primary_10_1109_LGRS_2023_3319648
crossref_primary_10_3390_rs13183670
crossref_primary_10_1109_TGRS_2021_3134691
crossref_primary_10_3390_rs17172949
crossref_primary_10_3390_rs14246352
crossref_primary_10_3390_land12030681
crossref_primary_10_1109_JSTARS_2022_3177235
crossref_primary_10_1109_TGRS_2024_3432320
crossref_primary_10_1109_ACCESS_2020_3041759
crossref_primary_10_3390_rs15235459
crossref_primary_10_1080_01431161_2024_2398225
crossref_primary_10_1109_JSTARS_2024_3400458
crossref_primary_10_1109_TGRS_2024_3371463
crossref_primary_10_1109_JSTARS_2022_3200997
crossref_primary_10_1016_j_rse_2022_113371
crossref_primary_10_1109_TGRS_2024_3382116
crossref_primary_10_1109_JSTARS_2025_3559085
crossref_primary_10_1109_TGRS_2023_3241257
crossref_primary_10_1109_TGRS_2024_3491715
crossref_primary_10_1109_LGRS_2024_3461957
crossref_primary_10_1109_TGRS_2024_3502768
crossref_primary_10_1109_LGRS_2024_3359220
crossref_primary_10_1016_j_jag_2022_102676
crossref_primary_10_1109_TGRS_2021_3131993
crossref_primary_10_1109_JSTARS_2024_3413715
crossref_primary_10_1109_TGRS_2024_3361847
crossref_primary_10_1109_JSTARS_2024_3485687
crossref_primary_10_1109_TGRS_2024_3360516
crossref_primary_10_1007_s11263_024_02141_4
crossref_primary_10_1109_JSTARS_2024_3422687
crossref_primary_10_1109_TGRS_2023_3299642
crossref_primary_10_1109_TGRS_2024_3370556
crossref_primary_10_1109_TGRS_2025_3560724
crossref_primary_10_3390_rs16071169
crossref_primary_10_1109_TGRS_2022_3154390
crossref_primary_10_3390_rs14246361
crossref_primary_10_3390_app15168794
crossref_primary_10_1080_10095020_2022_2162980
crossref_primary_10_1109_TGRS_2024_3495216
crossref_primary_10_3390_rs15051232
crossref_primary_10_1016_j_isprsjprs_2023_05_011
crossref_primary_10_1109_JSTARS_2023_3278726
crossref_primary_10_1109_JSTARS_2025_3584959
crossref_primary_10_5772_geet_17
crossref_primary_10_3390_rs16224186
crossref_primary_10_1016_j_isprsjprs_2023_04_001
crossref_primary_10_1016_j_isprsjprs_2025_08_023
crossref_primary_10_3390_ijgi11040263
crossref_primary_10_1016_j_engappai_2025_111573
crossref_primary_10_1109_TGRS_2022_3168331
crossref_primary_10_1155_2023_4448861
crossref_primary_10_1109_TGRS_2023_3261273
crossref_primary_10_1007_s11220_022_00404_3
crossref_primary_10_1117_1_JRS_16_046509
crossref_primary_10_1109_LGRS_2021_3049370
crossref_primary_10_1007_s12145_024_01315_5
crossref_primary_10_1007_s41651_024_00202_3
crossref_primary_10_1016_j_isprsjprs_2023_05_033
crossref_primary_10_1109_TGRS_2024_3386918
crossref_primary_10_3390_rs14143464
crossref_primary_10_1109_ACCESS_2023_3292531
crossref_primary_10_1109_TGRS_2024_3476992
crossref_primary_10_1109_JSTARS_2025_3570108
crossref_primary_10_1109_JSTARS_2024_3432200
crossref_primary_10_1109_TGRS_2023_3271024
crossref_primary_10_1109_TIM_2025_3608333
crossref_primary_10_1016_j_jag_2021_102597
crossref_primary_10_1117_1_JRS_19_016515
crossref_primary_10_1109_LGRS_2023_3305623
crossref_primary_10_1109_LGRS_2023_3303200
crossref_primary_10_3390_rs14143297
crossref_primary_10_3390_rs14215379
crossref_primary_10_1016_j_jag_2021_102582
crossref_primary_10_1080_22797254_2022_2161419
crossref_primary_10_1109_JSTARS_2024_3384545
crossref_primary_10_1109_JSTARS_2025_3597817
crossref_primary_10_1016_j_jag_2021_102348
crossref_primary_10_1109_TGRS_2024_3486787
crossref_primary_10_3390_app15179407
crossref_primary_10_1080_01431161_2024_2343139
crossref_primary_10_1109_TGRS_2023_3345645
crossref_primary_10_1109_TGRS_2025_3556237
crossref_primary_10_1109_JSTARS_2025_3584758
crossref_primary_10_1109_JSTARS_2025_3601739
crossref_primary_10_1109_TGRS_2023_3241436
crossref_primary_10_1109_TGRS_2023_3334521
crossref_primary_10_1109_JSTARS_2025_3539674
crossref_primary_10_3390_su142013167
crossref_primary_10_3390_rs14215368
crossref_primary_10_3390_rs17101749
crossref_primary_10_1109_TGRS_2025_3560977
crossref_primary_10_1109_TGRS_2023_3337816
crossref_primary_10_1109_JSTARS_2024_3522066
crossref_primary_10_1109_TGRS_2023_3325829
crossref_primary_10_1016_j_isprsjprs_2023_06_017
crossref_primary_10_1109_LGRS_2024_3419155
crossref_primary_10_1109_LGRS_2024_3516775
crossref_primary_10_1109_TGRS_2024_3362914
crossref_primary_10_3390_rs15225268
crossref_primary_10_1109_TGRS_2023_3313619
crossref_primary_10_3390_rs14215598
crossref_primary_10_1109_TPAMI_2023_3237896
crossref_primary_10_1007_s00521_022_08122_3
crossref_primary_10_1080_01431161_2022_2131479
crossref_primary_10_1109_LGRS_2021_3103991
crossref_primary_10_1109_TGRS_2023_3344583
crossref_primary_10_1080_22797254_2023_2196641
crossref_primary_10_1007_s11042_021_11779_y
crossref_primary_10_1109_JSTARS_2025_3539416
crossref_primary_10_1117_1_JRS_19_016504
crossref_primary_10_1016_j_rsase_2024_101167
crossref_primary_10_1109_JSTARS_2024_3400925
crossref_primary_10_1109_TGRS_2024_3410389
crossref_primary_10_1109_TGRS_2025_3546808
crossref_primary_10_1016_j_eswa_2024_123731
crossref_primary_10_1109_JSTARS_2025_3526785
crossref_primary_10_3390_rs13224528
crossref_primary_10_3390_rs15082145
crossref_primary_10_1016_j_ijdrr_2025_105664
crossref_primary_10_1080_2150704X_2024_2424503
crossref_primary_10_3390_rs15061682
crossref_primary_10_1109_JSTARS_2023_3241157
crossref_primary_10_1016_j_imavis_2024_105157
crossref_primary_10_1088_1742_6596_1961_1_012028
crossref_primary_10_1109_TGRS_2025_3584092
crossref_primary_10_1016_j_imavis_2024_105150
crossref_primary_10_1109_TGRS_2025_3584094
crossref_primary_10_3390_rs15153799
crossref_primary_10_1109_JSTARS_2024_3358298
crossref_primary_10_1109_JSTARS_2024_3415171
crossref_primary_10_1109_TGRS_2023_3305554
crossref_primary_10_3390_rs15010087
crossref_primary_10_1109_JSTARS_2023_3337999
crossref_primary_10_1109_JSTARS_2024_3490754
crossref_primary_10_1080_13682199_2024_2410673
crossref_primary_10_1109_JSTARS_2023_3348630
crossref_primary_10_1016_j_isprsjprs_2024_09_024
crossref_primary_10_1109_ACCESS_2025_3572928
crossref_primary_10_3390_rs14215448
crossref_primary_10_3390_rs16101736
crossref_primary_10_1109_ACCESS_2025_3559992
crossref_primary_10_1109_TGRS_2023_3327139
crossref_primary_10_1109_TGRS_2024_3413677
crossref_primary_10_1016_j_isprsjprs_2024_09_027
crossref_primary_10_1109_JSTARS_2024_3487137
crossref_primary_10_3390_s25051345
crossref_primary_10_1007_s12046_023_02262_5
crossref_primary_10_1109_TGRS_2023_3272694
crossref_primary_10_1109_TGRS_2025_3544402
crossref_primary_10_1109_TGRS_2024_3357524
crossref_primary_10_1016_j_jclepro_2021_127640
crossref_primary_10_3390_rs15245670
crossref_primary_10_1016_j_isprsjprs_2022_05_001
crossref_primary_10_1007_s13042_023_01880_z
crossref_primary_10_1080_01431161_2022_2161856
crossref_primary_10_1109_JSEN_2025_3583301
crossref_primary_10_1016_j_jag_2022_103110
crossref_primary_10_1016_j_isprsjprs_2025_03_008
crossref_primary_10_1016_j_engappai_2024_108163
crossref_primary_10_1109_JSTARS_2021_3113831
crossref_primary_10_1109_JSTARS_2024_3373201
crossref_primary_10_1109_TGRS_2024_3427848
crossref_primary_10_1109_LGRS_2025_3551754
crossref_primary_10_1109_TGRS_2024_3383800
crossref_primary_10_1109_JSTARS_2024_3354944
crossref_primary_10_1109_LGRS_2023_3323367
crossref_primary_10_1016_j_isprsjprs_2024_09_002
crossref_primary_10_1109_JSTARS_2023_3298097
crossref_primary_10_1109_TPAMI_2025_3578494
crossref_primary_10_1016_j_isprsjprs_2021_10_015
crossref_primary_10_3390_rs15174285
crossref_primary_10_1109_JSTARS_2024_3511597
crossref_primary_10_1109_TGRS_2024_3500036
crossref_primary_10_1117_1_JRS_17_016515
crossref_primary_10_3390_rs15092395
crossref_primary_10_1109_JSTARS_2022_3204541
crossref_primary_10_3390_rs16203852
crossref_primary_10_1109_TGRS_2025_3592731
crossref_primary_10_1016_j_isprsjprs_2021_10_001
crossref_primary_10_1109_ACCESS_2022_3161978
crossref_primary_10_1109_JSTARS_2025_3567287
crossref_primary_10_3390_rs15040949
crossref_primary_10_1109_TGRS_2022_3171067
crossref_primary_10_1007_s12524_025_02265_1
crossref_primary_10_1109_LGRS_2023_3270799
crossref_primary_10_1038_s41598_024_63257_8
crossref_primary_10_1109_JSTARS_2023_3310208
crossref_primary_10_1007_s11227_025_07344_1
crossref_primary_10_1109_ACCESS_2022_3201129
crossref_primary_10_3390_rs14215402
crossref_primary_10_1109_TGRS_2024_3441944
crossref_primary_10_1109_TGRS_2024_3523128
crossref_primary_10_1117_1_JRS_19_024512
crossref_primary_10_1109_JSTARS_2024_3438246
crossref_primary_10_1109_TGRS_2023_3344751
crossref_primary_10_3390_rs15143517
crossref_primary_10_1109_LGRS_2021_3110302
crossref_primary_10_3390_s20236735
crossref_primary_10_1016_j_knosys_2023_110281
crossref_primary_10_1109_JSTARS_2024_3372386
crossref_primary_10_1109_LGRS_2023_3347765
crossref_primary_10_1109_LGRS_2024_3366981
crossref_primary_10_1109_JSTARS_2024_3422901
crossref_primary_10_1109_JSTARS_2024_3439340
crossref_primary_10_3390_sym14061138
crossref_primary_10_1109_TGRS_2022_3204834
crossref_primary_10_3390_rs14194895
crossref_primary_10_1109_TGRS_2024_3367778
crossref_primary_10_1016_j_engappai_2024_109213
crossref_primary_10_1109_TGRS_2025_3532468
crossref_primary_10_1016_j_isprsjprs_2025_02_004
crossref_primary_10_1109_TGRS_2024_3352050
crossref_primary_10_1109_TGRS_2023_3321637
crossref_primary_10_1016_j_jhydrol_2023_130601
crossref_primary_10_1016_j_jag_2024_103767
crossref_primary_10_3390_rs16234569
crossref_primary_10_1007_s11263_024_02247_9
crossref_primary_10_1016_j_jag_2024_103761
crossref_primary_10_1016_j_isprsjprs_2025_05_020
crossref_primary_10_1016_j_isprsjprs_2025_05_021
crossref_primary_10_1109_LGRS_2023_3323534
crossref_primary_10_1016_j_isprsjprs_2024_11_017
crossref_primary_10_1016_j_isprsjprs_2024_11_019
crossref_primary_10_1109_TGRS_2024_3367948
crossref_primary_10_3390_rs15092351
crossref_primary_10_1109_TGRS_2024_3458951
crossref_primary_10_1007_s10661_024_12598_y
crossref_primary_10_1109_JPROC_2022_3219376
crossref_primary_10_1109_TGRS_2023_3344083
crossref_primary_10_1080_01431161_2025_2457128
crossref_primary_10_1109_TPAMI_2025_3557581
crossref_primary_10_1080_01431161_2023_2243021
crossref_primary_10_1109_TGRS_2023_3314452
crossref_primary_10_1109_JSTARS_2025_3534583
crossref_primary_10_54097_mj2fea78
crossref_primary_10_1080_10106049_2021_2022013
crossref_primary_10_3390_rs14184478
crossref_primary_10_3390_rs16020266
crossref_primary_10_1109_LGRS_2025_3604651
crossref_primary_10_1109_TGRS_2023_3324025
crossref_primary_10_1109_JSTARS_2022_3176858
crossref_primary_10_1109_TGRS_2022_3165851
crossref_primary_10_1109_TGRS_2023_3348479
crossref_primary_10_3390_rs17020217
crossref_primary_10_1109_LGRS_2022_3188636
crossref_primary_10_1016_j_jag_2024_103785
crossref_primary_10_1109_JSTARS_2023_3280589
crossref_primary_10_1109_JSTARS_2023_3267137
crossref_primary_10_1109_JSTARS_2024_3373039
crossref_primary_10_1109_JSTARS_2024_3481424
crossref_primary_10_3390_rs15163972
crossref_primary_10_1007_s11432_022_3691_4
crossref_primary_10_1016_j_jag_2023_103258
crossref_primary_10_1155_2022_2189176
crossref_primary_10_1109_JSTARS_2024_3354310
crossref_primary_10_1109_TGRS_2024_3376673
crossref_primary_10_1109_TGRS_2023_3327780
crossref_primary_10_1016_j_jag_2023_103256
crossref_primary_10_3390_rs16183533
crossref_primary_10_3390_rs15040928
crossref_primary_10_1109_TGRS_2023_3348459
crossref_primary_10_3390_rs15184488
crossref_primary_10_1109_JSTARS_2024_3407972
crossref_primary_10_1109_TGRS_2025_3600397
crossref_primary_10_1016_j_isprsjprs_2024_10_010
crossref_primary_10_1109_JSTARS_2024_3414452
crossref_primary_10_1109_JSTARS_2023_3344635
crossref_primary_10_1109_JSTARS_2024_3439510
crossref_primary_10_3390_rs15153740
crossref_primary_10_1016_j_isprsjprs_2025_04_023
crossref_primary_10_1007_s13042_024_02284_3
crossref_primary_10_1109_TGRS_2025_3527009
crossref_primary_10_1109_TGRS_2023_3277496
crossref_primary_10_1109_TIP_2024_3349868
crossref_primary_10_1109_TGRS_2022_3227098
crossref_primary_10_1109_TGRS_2025_3555959
crossref_primary_10_1109_TGRS_2025_3545906
crossref_primary_10_1016_j_isprsjprs_2024_10_021
crossref_primary_10_1109_JSTARS_2021_3129318
crossref_primary_10_3390_rs15010045
crossref_primary_10_1109_JSTARS_2023_3317488
crossref_primary_10_1007_s00530_024_01623_2
crossref_primary_10_1109_JSTARS_2024_3405971
crossref_primary_10_3390_rs14122801
crossref_primary_10_1109_TGRS_2022_3213925
crossref_primary_10_1080_01431161_2023_2257860
crossref_primary_10_1109_JSTARS_2023_3344633
crossref_primary_10_3390_rs15071860
crossref_primary_10_1109_TGRS_2023_3245674
crossref_primary_10_1016_j_jag_2022_103141
crossref_primary_10_1109_JSTARS_2024_3452948
crossref_primary_10_1109_TGRS_2024_3365990
crossref_primary_10_1109_TVLSI_2024_3438728
crossref_primary_10_1109_TGRS_2024_3424532
crossref_primary_10_1016_j_knosys_2025_113994
crossref_primary_10_3390_electronics12010035
crossref_primary_10_1016_j_engappai_2024_108774
crossref_primary_10_1016_j_isprsjprs_2025_04_008
crossref_primary_10_1109_TCSVT_2024_3494820
crossref_primary_10_1109_JSTARS_2024_3482559
crossref_primary_10_1109_TGRS_2024_3433014
crossref_primary_10_1109_TGRS_2025_3583166
crossref_primary_10_1007_s42965_023_00318_5
crossref_primary_10_14358_PERS_23_00069R2
crossref_primary_10_1007_s12665_022_10713_1
crossref_primary_10_1109_JSTARS_2025_3531499
crossref_primary_10_1109_TGRS_2024_3369059
crossref_primary_10_1109_JSTARS_2025_3541260
crossref_primary_10_1109_TGRS_2024_3362895
crossref_primary_10_1109_LGRS_2025_3555584
crossref_primary_10_3390_rs14122834
crossref_primary_10_1109_TGRS_2023_3326813
crossref_primary_10_1007_s40808_024_02068_2
crossref_primary_10_3390_rs15102645
crossref_primary_10_1109_LGRS_2022_3144304
crossref_primary_10_1109_JSTARS_2023_3260006
crossref_primary_10_1109_LGRS_2024_3507760
crossref_primary_10_1109_TGRS_2025_3589090
crossref_primary_10_1109_TGRS_2024_3357085
crossref_primary_10_1016_j_neucom_2025_130607
crossref_primary_10_1109_JSTARS_2025_3530146
crossref_primary_10_1109_TGRS_2023_3275140
crossref_primary_10_1109_TGRS_2023_3320288
crossref_primary_10_3390_rs17132121
crossref_primary_10_1080_01431161_2021_2022241
crossref_primary_10_1109_TGRS_2023_3235917
crossref_primary_10_1109_JSTARS_2024_3461988
crossref_primary_10_1109_TGRS_2025_3535496
crossref_primary_10_3390_ijgi10090591
crossref_primary_10_1080_10095020_2024_2448232
crossref_primary_10_1109_TGRS_2024_3374421
crossref_primary_10_1109_TGRS_2024_3362680
crossref_primary_10_1109_JSTARS_2025_3577004
crossref_primary_10_1016_j_jag_2024_104008
crossref_primary_10_3390_rs14153548
crossref_primary_10_1016_j_isprsjprs_2024_04_013
crossref_primary_10_1109_JSTARS_2025_3556723
crossref_primary_10_1016_j_jag_2022_102940
crossref_primary_10_1109_TGRS_2024_3440001
crossref_primary_10_1109_JSTARS_2025_3528053
crossref_primary_10_1109_TGRS_2025_3548562
crossref_primary_10_1109_JSTARS_2025_3532783
crossref_primary_10_1080_01431161_2024_2334778
crossref_primary_10_3390_rs16173222
crossref_primary_10_1109_TGRS_2025_3545051
crossref_primary_10_1109_TGRS_2025_3540864
crossref_primary_10_1109_JSTARS_2025_3553206
crossref_primary_10_1109_LGRS_2024_3432077
crossref_primary_10_1109_TIP_2022_3226418
crossref_primary_10_1109_JSTARS_2025_3531658
crossref_primary_10_1109_JSTARS_2025_3601214
crossref_primary_10_1109_JSTARS_2023_3328315
crossref_primary_10_3390_rs14246213
crossref_primary_10_3390_rs17111849
crossref_primary_10_3390_rs14122874
crossref_primary_10_3390_s22124626
crossref_primary_10_1016_j_knosys_2025_113691
crossref_primary_10_1109_TGRS_2024_3402391
crossref_primary_10_3390_rs14092046
crossref_primary_10_3390_s25010103
crossref_primary_10_1007_s12145_024_01523_z
crossref_primary_10_3390_rs17111840
crossref_primary_10_3390_rs14040841
crossref_primary_10_1109_JSTARS_2023_3314133
crossref_primary_10_1080_01431161_2025_2496533
crossref_primary_10_1109_JSTARS_2022_3217082
crossref_primary_10_1109_TGRS_2023_3344284
crossref_primary_10_1016_j_jag_2021_102615
crossref_primary_10_1109_TGRS_2025_3597745
crossref_primary_10_1016_j_displa_2024_102840
crossref_primary_10_3390_rs13234802
crossref_primary_10_1109_TGRS_2023_3325536
crossref_primary_10_3390_rs17030369
crossref_primary_10_1109_LGRS_2022_3193502
crossref_primary_10_1109_TGRS_2025_3551504
crossref_primary_10_1109_ACCESS_2025_3560591
crossref_primary_10_3390_rs14225768
crossref_primary_10_1109_TGRS_2024_3360447
crossref_primary_10_1016_j_neucom_2024_128080
crossref_primary_10_1109_JSTARS_2025_3555849
crossref_primary_10_1109_TGRS_2022_3194732
crossref_primary_10_1109_JSTARS_2025_3589266
crossref_primary_10_1109_MGRS_2024_3412770
crossref_primary_10_3390_app15041904
crossref_primary_10_1109_JSTARS_2024_3387093
crossref_primary_10_1016_j_engappai_2025_111015
crossref_primary_10_1109_JSTARS_2024_3455261
crossref_primary_10_1038_s41598_022_16329_6
crossref_primary_10_3390_rs16173278
crossref_primary_10_1080_13682199_2023_2206761
crossref_primary_10_1016_j_isprsjprs_2022_02_021
crossref_primary_10_1109_TGRS_2025_3605637
crossref_primary_10_3390_rs14071580
crossref_primary_10_3390_rs15020463
crossref_primary_10_1016_j_jag_2023_103294
crossref_primary_10_1109_TGRS_2022_3159544
crossref_primary_10_1080_01431161_2023_2224100
crossref_primary_10_1109_TGRS_2025_3542814
crossref_primary_10_1109_TGRS_2022_3209972
crossref_primary_10_1016_j_isprsjprs_2024_05_011
crossref_primary_10_1109_TAES_2025_3558725
crossref_primary_10_1109_JSTARS_2023_3335287
crossref_primary_10_1007_s12524_025_02268_y
crossref_primary_10_1109_JSTARS_2023_3335281
crossref_primary_10_3788_AOS241759
crossref_primary_10_1016_j_inffus_2022_09_008
crossref_primary_10_3390_rs13030364
crossref_primary_10_1109_JSTARS_2022_3204191
crossref_primary_10_1109_JSTARS_2022_3217038
crossref_primary_10_1109_TGRS_2022_3203769
crossref_primary_10_1109_TGRS_2023_3330479
crossref_primary_10_1109_JSEN_2023_3271391
crossref_primary_10_1016_j_sigpro_2023_109203
crossref_primary_10_1109_TGRS_2024_3501303
crossref_primary_10_1109_ACCESS_2023_3235014
crossref_primary_10_3390_rs16142573
crossref_primary_10_1109_LGRS_2023_3267879
crossref_primary_10_1109_TGRS_2021_3106697
crossref_primary_10_3390_rs17050798
crossref_primary_10_1080_17538947_2024_2398051
crossref_primary_10_1109_TGRS_2024_3480091
crossref_primary_10_1080_15481603_2024_2380126
crossref_primary_10_1109_TGRS_2023_3263563
crossref_primary_10_3390_land11112028
crossref_primary_10_1109_TGRS_2021_3085870
crossref_primary_10_1080_10095020_2024_2338224
crossref_primary_10_1016_j_jag_2024_104077
crossref_primary_10_1016_j_isprsjprs_2024_06_013
crossref_primary_10_1109_TCSVT_2022_3176055
crossref_primary_10_1016_j_jag_2025_104550
crossref_primary_10_3390_rs15143566
crossref_primary_10_1109_TGRS_2025_3549818
crossref_primary_10_1109_ACCESS_2025_3575483
crossref_primary_10_1016_j_jag_2022_102769
crossref_primary_10_3390_rs13245084
crossref_primary_10_1111_tgis_12991
crossref_primary_10_1080_10106049_2024_2322080
crossref_primary_10_3390_s22030888
crossref_primary_10_1109_LGRS_2025_3562480
crossref_primary_10_3390_rs15082092
crossref_primary_10_1016_j_bspc_2024_107011
crossref_primary_10_1109_TGRS_2023_3280902
crossref_primary_10_3390_app14135415
crossref_primary_10_3390_rs14194972
crossref_primary_10_1109_JSTARS_2024_3522135
crossref_primary_10_1109_JSTARS_2024_3361507
crossref_primary_10_3390_rs16163037
crossref_primary_10_1016_j_isprsjprs_2025_01_007
crossref_primary_10_3390_rs15030694
crossref_primary_10_1038_s42256_025_01078_8
crossref_primary_10_1016_j_future_2025_107985
crossref_primary_10_1109_JSTARS_2024_3411622
crossref_primary_10_1109_LGRS_2025_3602854
crossref_primary_10_1109_TGRS_2024_3432819
crossref_primary_10_1007_s11760_023_02660_6
crossref_primary_10_1109_TIP_2024_3424335
crossref_primary_10_1109_TGRS_2022_3157721
crossref_primary_10_1111_phor_70021
crossref_primary_10_1109_TGRS_2024_3349638
crossref_primary_10_3390_rs13153053
crossref_primary_10_1016_j_image_2023_116964
crossref_primary_10_1016_j_imavis_2025_105639
crossref_primary_10_1038_s41598_025_10972_5
crossref_primary_10_1016_j_inffus_2025_103110
crossref_primary_10_1109_TGRS_2024_3405025
crossref_primary_10_3390_rs13245094
crossref_primary_10_3390_rs16193719
crossref_primary_10_1109_LGRS_2024_3452074
crossref_primary_10_3390_s24247887
crossref_primary_10_1109_JSTARS_2024_3424954
crossref_primary_10_3390_rs15225383
crossref_primary_10_3390_rs14133100
crossref_primary_10_1109_TGRS_2025_3590023
crossref_primary_10_3390_rs15082046
crossref_primary_10_1016_j_dsp_2025_105594
crossref_primary_10_1080_01431161_2024_2421935
crossref_primary_10_1109_JSTARS_2024_3373753
crossref_primary_10_1007_s12524_023_01737_6
crossref_primary_10_1016_j_asr_2025_07_023
crossref_primary_10_1109_TGRS_2023_3272006
crossref_primary_10_1109_LGRS_2024_3385404
crossref_primary_10_1038_s41598_025_15468_w
crossref_primary_10_3390_rs16101765
crossref_primary_10_1109_ACCESS_2023_3307642
crossref_primary_10_1109_JSTARS_2023_3285389
crossref_primary_10_1109_JSTARS_2022_3159528
crossref_primary_10_3390_rs16071269
crossref_primary_10_1016_j_compag_2021_106491
crossref_primary_10_1109_JSTARS_2024_3434966
crossref_primary_10_1016_j_jag_2024_104282
crossref_primary_10_1109_TGRS_2025_3545012
crossref_primary_10_1080_01431161_2023_2208711
crossref_primary_10_1109_ACCESS_2024_3350173
crossref_primary_10_1016_j_isprsjprs_2024_07_001
crossref_primary_10_1109_LGRS_2024_3474181
crossref_primary_10_1080_10106049_2024_2322053
crossref_primary_10_1109_TGRS_2024_3381738
crossref_primary_10_1371_journal_pone_0239371
crossref_primary_10_3390_rs16193651
crossref_primary_10_3390_rs17010159
crossref_primary_10_1016_j_inffus_2024_102358
crossref_primary_10_1109_TGRS_2023_3268294
crossref_primary_10_1109_TGRS_2023_3272550
crossref_primary_10_1109_TGRS_2023_3297850
crossref_primary_10_1016_j_isprsjprs_2024_01_016
crossref_primary_10_1109_TGRS_2024_3468008
crossref_primary_10_1109_TGRS_2024_3403727
crossref_primary_10_1109_TNNLS_2023_3282935
crossref_primary_10_1109_TGRS_2024_3381971
crossref_primary_10_1109_TGRS_2024_3400215
crossref_primary_10_1109_JSTARS_2023_3345017
crossref_primary_10_1007_s10044_025_01420_1
crossref_primary_10_1109_JSTARS_2025_3586607
crossref_primary_10_1016_j_rse_2025_114711
crossref_primary_10_1016_j_compbiomed_2025_110346
crossref_primary_10_3390_rs16193642
crossref_primary_10_1109_TGRS_2024_3480122
crossref_primary_10_1109_TGRS_2024_3407088
crossref_primary_10_3390_rs14215577
crossref_primary_10_1007_s11356_023_25685_3
crossref_primary_10_1109_TGRS_2023_3275819
crossref_primary_10_1016_j_isprsjprs_2024_01_002
crossref_primary_10_1016_j_isprsjprs_2024_01_004
crossref_primary_10_1109_TGRS_2025_3544737
crossref_primary_10_1109_TGRS_2025_3579617
crossref_primary_10_3390_app13021037
crossref_primary_10_1109_TGRS_2024_3376384
crossref_primary_10_1038_s41598_025_94544_7
crossref_primary_10_1109_ACCESS_2024_3520428
crossref_primary_10_3390_rs16224223
crossref_primary_10_1109_TGRS_2023_3331751
crossref_primary_10_1109_TGRS_2025_3541013
crossref_primary_10_1109_TGRS_2024_3425540
crossref_primary_10_3390_rs16030572
crossref_primary_10_1016_j_asoc_2025_113372
crossref_primary_10_1109_JSTARS_2025_3525595
crossref_primary_10_1109_TGRS_2023_3327253
crossref_primary_10_1109_TGRS_2022_3196040
crossref_primary_10_3390_rs17050824
crossref_primary_10_3390_rs15030842
crossref_primary_10_1016_j_jag_2025_104393
crossref_primary_10_1109_TGRS_2024_3381751
crossref_primary_10_3390_electronics12040898
crossref_primary_10_1049_ipr2_12505
crossref_primary_10_1109_TGRS_2024_3381752
crossref_primary_10_3390_electronics12132796
crossref_primary_10_1016_j_imavis_2024_105294
crossref_primary_10_3390_rs14184527
crossref_primary_10_1109_JSTARS_2025_3576831
crossref_primary_10_1080_01431161_2023_2221797
crossref_primary_10_1109_TGRS_2022_3221492
crossref_primary_10_1109_JSTARS_2023_3326958
crossref_primary_10_1109_JSTARS_2025_3569128
crossref_primary_10_1109_TGRS_2022_3174276
crossref_primary_10_1109_JSTARS_2025_3539733
crossref_primary_10_1109_TGRS_2024_3379431
crossref_primary_10_1109_ACCESS_2025_3605984
crossref_primary_10_1145_3721135
crossref_primary_10_1016_j_jenvman_2025_124969
crossref_primary_10_1109_TGRS_2022_3176642
crossref_primary_10_3390_s25072149
crossref_primary_10_1117_1_JRS_18_016513
crossref_primary_10_1109_JSTARS_2024_3445908
crossref_primary_10_1109_MGRS_2021_3063465
crossref_primary_10_1109_TGRS_2025_3568521
crossref_primary_10_1109_JSTARS_2022_3150571
crossref_primary_10_1109_JSTARS_2025_3594028
crossref_primary_10_1109_TGRS_2021_3127580
crossref_primary_10_1111_phor_12492
crossref_primary_10_1109_JSTARS_2022_3174780
crossref_primary_10_1111_phor_12495
crossref_primary_10_1109_JSTARS_2025_3540925
crossref_primary_10_1109_JSTARS_2024_3491762
crossref_primary_10_1080_01431161_2023_2173031
crossref_primary_10_1080_01431161_2023_2173033
crossref_primary_10_3390_rs16061061
crossref_primary_10_1109_JSTARS_2025_3569104
crossref_primary_10_3390_rs16234494
crossref_primary_10_1109_TGRS_2024_3484526
crossref_primary_10_1109_JSTARS_2023_3335891
crossref_primary_10_1109_JSTARS_2025_3585568
crossref_primary_10_3390_su15043343
crossref_primary_10_1016_j_isprsjprs_2023_07_001
crossref_primary_10_3390_rs16061077
crossref_primary_10_1109_JSTARS_2024_3350044
crossref_primary_10_32604_cmc_2024_053206
crossref_primary_10_3390_rs15174141
crossref_primary_10_1016_j_isprsjprs_2022_12_009
crossref_primary_10_1109_LGRS_2021_3056416
crossref_primary_10_1109_LGRS_2025_3590959
crossref_primary_10_1109_TGRS_2022_3174009
crossref_primary_10_1016_j_asr_2023_07_069
crossref_primary_10_1109_TGRS_2024_3399215
crossref_primary_10_3390_rs15092237
crossref_primary_10_1109_JSTARS_2021_3077545
crossref_primary_10_1109_TGRS_2025_3525811
crossref_primary_10_1109_JSTARS_2024_3522329
crossref_primary_10_3390_rs13245152
crossref_primary_10_3390_rs17152575
crossref_primary_10_1109_TGRS_2025_3532349
crossref_primary_10_3390_rs14071552
crossref_primary_10_1109_TGRS_2022_3233849
crossref_primary_10_1109_TGRS_2024_3520630
crossref_primary_10_1109_TGRS_2025_3584126
crossref_primary_10_1016_j_jag_2023_103366
crossref_primary_10_1007_s11042_024_18766_z
crossref_primary_10_1016_j_ipm_2021_102726
crossref_primary_10_1109_TGRS_2022_3176603
crossref_primary_10_3390_rs15092470
crossref_primary_10_3390_rs15071770
crossref_primary_10_1016_j_eswa_2023_122089
crossref_primary_10_1109_TGRS_2023_3325220
crossref_primary_10_1007_s42452_025_06814_8
crossref_primary_10_1117_1_JRS_18_034523
crossref_primary_10_1109_TGRS_2025_3584115
crossref_primary_10_3390_rs16050804
crossref_primary_10_1109_TGRS_2024_3386334
crossref_primary_10_1016_j_jhazmat_2024_133721
crossref_primary_10_1109_TGRS_2022_3228016
crossref_primary_10_1111_tgis_13133
crossref_primary_10_1109_JSTARS_2023_3306274
crossref_primary_10_3390_rs15092464
crossref_primary_10_1109_JSTARS_2024_3402388
crossref_primary_10_1016_j_isprsjprs_2021_05_002
crossref_primary_10_1109_JSTARS_2025_3544235
crossref_primary_10_1016_j_engappai_2024_108446
crossref_primary_10_1080_10106049_2024_2353253
crossref_primary_10_3390_rs15020395
crossref_primary_10_1109_TGRS_2024_3356711
crossref_primary_10_1109_TGRS_2024_3421581
crossref_primary_10_3390_electronics12234823
crossref_primary_10_3390_rs16183424
crossref_primary_10_1109_JSTARS_2023_3268104
crossref_primary_10_3390_ijgi12090382
crossref_primary_10_1109_LGRS_2022_3154745
crossref_primary_10_3390_rs14092228
crossref_primary_10_1016_j_isprsjprs_2021_05_001
crossref_primary_10_1109_TGRS_2023_3244273
crossref_primary_10_1016_j_isprsjprs_2023_09_021
crossref_primary_10_1109_JSTARS_2024_3392917
crossref_primary_10_1109_TGRS_2025_3604400
crossref_primary_10_1109_ACCESS_2022_3170704
crossref_primary_10_1016_j_rse_2021_112589
crossref_primary_10_3390_rs15092433
crossref_primary_10_1016_j_patcog_2025_112169
crossref_primary_10_1109_JSTARS_2021_3108777
crossref_primary_10_1109_TGRS_2025_3540794
crossref_primary_10_1109_TGRS_2023_3305499
crossref_primary_10_1109_JSTARS_2022_3152775
crossref_primary_10_3390_s25185832
crossref_primary_10_3390_s25092836
crossref_primary_10_1080_2150704X_2023_2264493
crossref_primary_10_1109_LGRS_2022_3165885
crossref_primary_10_1109_TGRS_2023_3235981
crossref_primary_10_1111_phor_12462
crossref_primary_10_1109_LGRS_2024_3520133
crossref_primary_10_1109_TGRS_2025_3586102
crossref_primary_10_1109_ACCESS_2024_3350641
crossref_primary_10_3390_rs16173209
crossref_primary_10_1109_JSTARS_2025_3559708
crossref_primary_10_1109_TGRS_2023_3236664
crossref_primary_10_1109_JSTARS_2024_3508692
crossref_primary_10_1109_JSTARS_2025_3591834
crossref_primary_10_1109_LGRS_2023_3324946
crossref_primary_10_1109_LGRS_2025_3574068
crossref_primary_10_1109_LGRS_2023_3341045
crossref_primary_10_1109_TGRS_2024_3493886
crossref_primary_10_1109_ACCESS_2022_3194919
crossref_primary_10_1016_j_eswa_2025_127902
crossref_primary_10_1109_JSTARS_2022_3198517
crossref_primary_10_1109_JSTARS_2023_3247455
crossref_primary_10_1109_JSTARS_2023_3264802
crossref_primary_10_3390_rs14235969
crossref_primary_10_1109_TGRS_2024_3363431
crossref_primary_10_1080_10095020_2022_2157762
crossref_primary_10_1109_TIM_2024_3387494
crossref_primary_10_1109_LGRS_2022_3216627
crossref_primary_10_3390_rs17010135
crossref_primary_10_1109_JSTARS_2024_3374290
crossref_primary_10_1109_JSTARS_2023_3245062
crossref_primary_10_3390_rs15092406
crossref_primary_10_3390_rs15184555
crossref_primary_10_3390_rs17152742
crossref_primary_10_3390_app15063061
crossref_primary_10_1109_TGRS_2024_3433373
crossref_primary_10_1109_TGRS_2024_3523097
crossref_primary_10_1109_TGRS_2024_3454055
crossref_primary_10_5194_essd_15_4749_2023
crossref_primary_10_1080_01431161_2023_2225712
crossref_primary_10_1109_TIM_2024_3373089
crossref_primary_10_1007_s40031_024_01084_1
crossref_primary_10_1109_JSTARS_2022_3203508
crossref_primary_10_3390_rs16183466
crossref_primary_10_1007_s12652_020_02722_4
crossref_primary_10_1109_LGRS_2023_3238553
crossref_primary_10_1109_ACCESS_2024_3451473
crossref_primary_10_1109_LGRS_2021_3119885
crossref_primary_10_1109_ACCESS_2025_3580481
Cites_doi 10.1109/TGRS.2019.2930348
10.1109/LGRS.2018.2817522
10.1016/j.rse.2013.01.012
10.1007/978-3-030-01234-2_1
10.1016/0034-4257(83)90010-X
10.1109/CVPRW.2009.5206848
10.1109/LGRS.2009.2025059
10.1109/LGRS.2016.2601930
10.1080/01431161.2011.648285
10.1109/ACCESS.2019.2902613
10.1007/978-3-319-24574-4_28
10.3390/rs11111382
10.1109/TGRS.2019.2916212
10.1080/01431168908903939
10.1109/LGRS.2017.2766840
10.1080/01431160500117865
10.1007/s10661-009-0798-8
10.1109/ICIVC.2017.7984667
10.1109/TNNLS.2013.2248094
10.1109/IGARSS.2019.8900173
10.1109/LGRS.2018.2889307
10.1016/j.rse.2017.07.009
10.1109/TPAMI.2016.2572683
10.1109/ICIVC.2018.8492796
10.1117/1.JRS.13.024512
10.1007/s10514-018-9734-5
10.1080/01431160801950162
10.1109/TII.2018.2873492
ContentType Journal Article
Copyright 2020 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
Copyright_xml – notice: 2020 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.isprsjprs.2020.06.003
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1872-8235
EndPage 200
ExternalDocumentID 10_1016_j_isprsjprs_2020_06_003
S0924271620301532
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
T9H
WUQ
ZMT
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c414t-9fa39b4e302b609fcc65331982ce47e3f6abd58ccce274bbf66e34b0465903943
ISICitedReferencesCount 893
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000551268300015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-2716
IngestDate Thu Oct 02 16:30:03 EDT 2025
Tue Nov 18 21:12:36 EST 2025
Sat Nov 29 07:19:46 EST 2025
Fri Feb 23 02:47:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep supervision network
Change detection
High resolution remote sensing image
Image difference discrimination
Image fusion
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c414t-9fa39b4e302b609fcc65331982ce47e3f6abd58ccce274bbf66e34b0465903943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3006-4542
0000-0002-7242-4473
PQID 2986045397
PQPubID 24069
PageCount 18
ParticipantIDs proquest_miscellaneous_2986045397
crossref_primary_10_1016_j_isprsjprs_2020_06_003
crossref_citationtrail_10_1016_j_isprsjprs_2020_06_003
elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2020_06_003
PublicationCentury 2000
PublicationDate August 2020
2020-08-00
20200801
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationTitle ISPRS journal of photogrammetry and remote sensing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Singh (b0175) 1989; 10
Daudt, R.C., Saux, B. Le, Boulch, A., Gousseau, Y., 2018. High Resolution Semantic Change Detection. arXiv preprint arXiv:1810.08452.
Jackson (b0070) 1983; 13
Padron-Hidalgo, Laparra, Longbotham, Camps-Valls (b0140) 2019; 57
Shelhamer, Long, Darrell (b0165) 2017
Todd (b0185) 1977; 5
Lei, Zhang, Lv, Li, Liu, Nandi (b0100) 2019; 16
Jin, Yang, Danielson, Homer, Fry, Xian (b0080) 2013; 132
Lei, Liu, Shi, Lei, Wang (b0105) 2019
Deng, Wang, Deng, Qi (b0035) 2008; 16
Guo, E., Fu, X., Zhu, J., Deng, M., Liu, Y., Zhu, Q., Li, H., 2018. Learning to Measure Change: Fully Convolutional Siamese Metric Networks for Scene Change Detection. arXiv preprint arXiv:1810.09111.
Luppino, L.T., Bianchi, F.M., Moser, G., Anfinsen, S.N., 2019. Unsupervised image regression for heterogeneous change detection. IEEE Trans. Geosci. Remote Sens. https://doi.org/10.1109/TGRS.2019.2930348.
Woo, Park, Lee, Kweon (b0195) 2018
Glorot, Bordes, Bengio (b0050) 2011
Bromley, Guyon, LeCun, Säckinger, Shah (b0010) 1994
Kuncheva, Faithfull (b0085) 2014; 25
Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
Jia Deng, Wei Dong, Socher, R., Li-Jia Li, Kai Li, Li Fei-Fei, 2009. ImageNet: A large-scale hierarchical image database. pp. 248-255. https://doi.org/10.1109/cvprw.2009.5206848.
He, Zhang, Ren, Sun (b0060) 2015
Wang, Xu (b0190) 2010; 162
Zhou, Rahman Siddiquee, Tajbakhsh, Liang (b0215) 2018
Lebedev, Vizilter, Vygolov, Knyaz, Rubis (b0090) 2018; XLII–2
Mundia, Aniya (b0135) 2005; 26
Glorot, Bengio (b0045) 2010; 9
El Amin, A.M., Liu, Q., Wang, Y., 2017. Zoom out CNNs features for optical remote sensing change detection, in: 2017 2nd International Conference on Image, Vision and Computing, ICIVC 2017. 2, 812-817. https://doi.org/10.1109/ICIVC.2017.7984667.
Mao, T., Liu, W., Zhao, Y., Huang, J., 2018. Change Detection in Semantic Level for SAR Images, in: 2018 3rd IEEE International Conference on Image, Vision and Computing, ICIVC 2018. https://doi.org/10.1109/ICIVC.2018.8492796.
Hou, Wang, Liu (b0065) 2017; 14
Peng, Guan (b0145) 2019; 13
Celik (b0020) 2009; 6
Chen, Hay, Carvalho, Wulder (b0025) 2012; 33
Zhang, Gong, Zhang, Su, Shi (b0210) 2016; 13
Long, Shelhamer, Darrell (b0115) 2015
Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks for biomedical image segmentation, in: Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-319-24574-4_28.
Zerrouki, Harrou, Sun (b0205) 2018; 15
Liu, Gong, Qin, Tan (b0110) 2020
Lv, Chen, Qiu, Sangaiah (b0125) 2018; 14
Wu, Du, Cui, Zhang (b0200) 2017; 199
Alcantarilla, Stent, Ros, Arroyo, Gherardi (b0005) 2018; 42
Lee, Xie, Gallagher, Zhang, Tu (b0095) 2015
Peng, Zhang, Guan (b0150) 2019; 11
Saha, S., Bovolo, F., Bruzzone, L., 2019. Unsupervised deep change vector analysis for multiple-change detection in VHR Images. IEEE Trans. Geosci. Remote Sens. 57, 3677-3693. https://doi.org/10.1109/TGRS.2018.2886643Saha, S., Bovolo, F., Bruzzone, L., 2019. Unsupervised Multiple-Change Detection in VHR Multisensor Images Via Deep-Learning Based Adaptation, in: IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, 5033–5036. https://doi.org/10.1109/igarss.2019.8900173.
Caye Daudt, Le Saux, Boulch (b0015) 2018
Singh (b0180) 1986; Manag
10.1016/j.isprsjprs.2020.06.003_b0075
10.1016/j.isprsjprs.2020.06.003_b0130
10.1016/j.isprsjprs.2020.06.003_b0030
Long (10.1016/j.isprsjprs.2020.06.003_b0115) 2015
Mundia (10.1016/j.isprsjprs.2020.06.003_b0135) 2005; 26
10.1016/j.isprsjprs.2020.06.003_b0170
Glorot (10.1016/j.isprsjprs.2020.06.003_b0050) 2011
Caye Daudt (10.1016/j.isprsjprs.2020.06.003_b0015) 2018
Padron-Hidalgo (10.1016/j.isprsjprs.2020.06.003_b0140) 2019; 57
Alcantarilla (10.1016/j.isprsjprs.2020.06.003_b0005) 2018; 42
Deng (10.1016/j.isprsjprs.2020.06.003_b0035) 2008; 16
Lei (10.1016/j.isprsjprs.2020.06.003_b0100) 2019; 16
Lv (10.1016/j.isprsjprs.2020.06.003_b0125) 2018; 14
Wu (10.1016/j.isprsjprs.2020.06.003_b0200) 2017; 199
Glorot (10.1016/j.isprsjprs.2020.06.003_b0045) 2010; 9
Celik (10.1016/j.isprsjprs.2020.06.003_b0020) 2009; 6
Shelhamer (10.1016/j.isprsjprs.2020.06.003_b0165) 2017
Lee (10.1016/j.isprsjprs.2020.06.003_b0095) 2015
Peng (10.1016/j.isprsjprs.2020.06.003_b0145) 2019; 13
Bromley (10.1016/j.isprsjprs.2020.06.003_b0010) 1994
Hou (10.1016/j.isprsjprs.2020.06.003_b0065) 2017; 14
Kuncheva (10.1016/j.isprsjprs.2020.06.003_b0085) 2014; 25
Woo (10.1016/j.isprsjprs.2020.06.003_b0195) 2018
Zhou (10.1016/j.isprsjprs.2020.06.003_b0215) 2018
Todd (10.1016/j.isprsjprs.2020.06.003_b0185) 1977; 5
Lebedev (10.1016/j.isprsjprs.2020.06.003_b0090) 2018; XLII–2
Jin (10.1016/j.isprsjprs.2020.06.003_b0080) 2013; 132
Liu (10.1016/j.isprsjprs.2020.06.003_b0110) 2020
Singh (10.1016/j.isprsjprs.2020.06.003_b0175) 1989; 10
10.1016/j.isprsjprs.2020.06.003_b0120
10.1016/j.isprsjprs.2020.06.003_b0040
Chen (10.1016/j.isprsjprs.2020.06.003_b0025) 2012; 33
10.1016/j.isprsjprs.2020.06.003_b0160
Lei (10.1016/j.isprsjprs.2020.06.003_b0105) 2019
Singh (10.1016/j.isprsjprs.2020.06.003_b0180) 1986; Manag
Zerrouki (10.1016/j.isprsjprs.2020.06.003_b0205) 2018; 15
Jackson (10.1016/j.isprsjprs.2020.06.003_b0070) 1983; 13
Peng (10.1016/j.isprsjprs.2020.06.003_b0150) 2019; 11
Zhang (10.1016/j.isprsjprs.2020.06.003_b0210) 2016; 13
He (10.1016/j.isprsjprs.2020.06.003_b0060) 2015
Wang (10.1016/j.isprsjprs.2020.06.003_b0190) 2010; 162
10.1016/j.isprsjprs.2020.06.003_b0055
10.1016/j.isprsjprs.2020.06.003_b0155
References_xml – start-page: 640
  year: 2017
  end-page: 651
  ident: b0165
  article-title: Fully Convolutional Networks for Semantic Segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence.
– volume: 10
  start-page: 989
  year: 1989
  end-page: 1003
  ident: b0175
  article-title: Review Articlel: Digital change detection techniques using remotely-sensed data
  publication-title: Int. J. Remote Sens.
– reference: Guo, E., Fu, X., Zhu, J., Deng, M., Liu, Y., Zhu, Q., Li, H., 2018. Learning to Measure Change: Fully Convolutional Siamese Metric Networks for Scene Change Detection. arXiv preprint arXiv:1810.09111.
– volume: 11
  start-page: 1382
  year: 2019
  ident: b0150
  article-title: End-to-end change detection for high resolution satellite images using improved UNet++
  publication-title: Remote Sens.
– start-page: 4063
  year: 2018
  end-page: 4067
  ident: b0015
  article-title: Fully convolutional siamese networks for change detection
  publication-title: in: Proceedings - International Conference on Image Processing, ICIP
– volume: 25
  start-page: 69
  year: 2014
  end-page: 80
  ident: b0085
  article-title: PCA feature extraction for change detection in multidimensional unlabeled data
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 5
  start-page: 529
  year: 1977
  end-page: 534
  ident: b0185
  article-title: Urban and regional land use change detected by using Landsat data
  publication-title: J. Res. US Geol. Surv.
– volume: 15
  start-page: 927
  year: 2018
  end-page: 931
  ident: b0205
  article-title: Statistical Monitoring of Changes to Land Cover
  publication-title: IEEE Geosci. Remote Sens. Lett.
– start-page: 737
  year: 1994
  end-page: 744
  ident: b0010
  article-title: Signature verification using a“ siamese” time delay neural network
  publication-title: InAdvances in neural information processing systems.
– start-page: 315
  year: 2011
  end-page: 323
  ident: b0050
  article-title: Deep sparse rectifier neural networks
  publication-title: Journal of Machine Learning Research.
– start-page: 36600
  year: 2019
  end-page: 36616
  ident: b0105
  article-title: Multiscale Superpixel Segmentation with Deep Features for Change Detection. IEEE
  publication-title: Access.
– reference: Saha, S., Bovolo, F., Bruzzone, L., 2019. Unsupervised deep change vector analysis for multiple-change detection in VHR Images. IEEE Trans. Geosci. Remote Sens. 57, 3677-3693. https://doi.org/10.1109/TGRS.2018.2886643Saha, S., Bovolo, F., Bruzzone, L., 2019. Unsupervised Multiple-Change Detection in VHR Multisensor Images Via Deep-Learning Based Adaptation, in: IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, 5033–5036. https://doi.org/10.1109/igarss.2019.8900173.
– volume: 199
  start-page: 241
  year: 2017
  end-page: 255
  ident: b0200
  article-title: A post-classification change detection method based on iterative slow feature analysis and Bayesian soft fusion
  publication-title: Remote Sens. Environ.
– start-page: 3
  year: 2018
  end-page: 11
  ident: b0215
  article-title: Unet++: A nested u-net architecture for medical image segmentation
  publication-title: Lecture Notes in Computer Science.
– volume: 14
  start-page: 2418
  year: 2017
  end-page: 2422
  ident: b0065
  article-title: Change Detection Based on Deep Features and Low Rank
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 16
  start-page: 4823
  year: 2008
  end-page: 4838
  ident: b0035
  article-title: PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data
  publication-title: Int. J. Remote Sens.
– volume: Manag
  start-page: 237
  year: 1986
  end-page: 254
  ident: b0180
  article-title: Change detection in the tropical forest environment of northeastern India using Landsat
  publication-title: Remote Sens. Trop. L.
– reference: Mao, T., Liu, W., Zhao, Y., Huang, J., 2018. Change Detection in Semantic Level for SAR Images, in: 2018 3rd IEEE International Conference on Image, Vision and Computing, ICIVC 2018. https://doi.org/10.1109/ICIVC.2018.8492796.
– volume: 26
  start-page: 2831
  year: 2005
  end-page: 2849
  ident: b0135
  article-title: Analysis of land use/cover changes and urban expansion of Nairobi city using remote sensing and GIS
  publication-title: Int. J. Remote Sens.
– reference: Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
– start-page: 1026
  year: 2015
  end-page: 1034
  ident: b0060
  article-title: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
  publication-title: The IEEE International Conference on Computer Vision.
– start-page: 3431
  year: 2015
  end-page: 3440
  ident: b0115
  article-title: Fully Convolutional Networks for Semantic Segmentation
  publication-title: The IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Daudt, R.C., Saux, B. Le, Boulch, A., Gousseau, Y., 2018. High Resolution Semantic Change Detection. arXiv preprint arXiv:1810.08452.
– volume: 162
  start-page: 311
  year: 2010
  end-page: 326
  ident: b0190
  article-title: Comparison of remote sensing change detection techniques for assessing hurricane damage to forests
  publication-title: Environ. Monit. Assess.
– reference: El Amin, A.M., Liu, Q., Wang, Y., 2017. Zoom out CNNs features for optical remote sensing change detection, in: 2017 2nd International Conference on Image, Vision and Computing, ICIVC 2017. 2, 812-817. https://doi.org/10.1109/ICIVC.2017.7984667.
– start-page: 562
  year: 2015
  end-page: 570
  ident: b0095
  article-title: Deeply-supervised nets
  publication-title: Artificial intelligence and statistics.
– reference: Luppino, L.T., Bianchi, F.M., Moser, G., Anfinsen, S.N., 2019. Unsupervised image regression for heterogeneous change detection. IEEE Trans. Geosci. Remote Sens. https://doi.org/10.1109/TGRS.2019.2930348.
– volume: 33
  start-page: 4434
  year: 2012
  end-page: 4457
  ident: b0025
  article-title: Object-based change detection
  publication-title: Int. J. Remote Sens.
– reference: Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks for biomedical image segmentation, in: Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-319-24574-4_28.
– volume: 13
  start-page: 1666
  year: 2016
  end-page: 1670
  ident: b0210
  article-title: Feature-Level Change Detection Using Deep Representation and Feature Change Analysis for Multispectral Imagery
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 42
  start-page: 1301
  year: 2018
  end-page: 1322
  ident: b0005
  article-title: Street-view change detection with deconvolutional networks
  publication-title: Auton. Robots.
– volume: 14
  start-page: 5530
  year: 2018
  end-page: 5538
  ident: b0125
  article-title: Deep Learning and Superpixel Feature Extraction Based on Contractive Autoencoder for Change Detection in SAR Images
  publication-title: IEEE Trans. Ind. Informatics.
– volume: 9
  start-page: 249
  year: 2010
  end-page: 256
  ident: b0045
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Proceedings of the thirteenth international conference on artificial intelligence and statistics.
– volume: 57
  start-page: 7743
  year: 2019
  end-page: 7755
  ident: b0140
  article-title: Kernel Anomalous Change Detection for Remote Sensing Imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 3
  year: 2018
  end-page: 19
  ident: b0195
  article-title: CBAM: Convolutional block attention module
  publication-title: Lecture Notes in Computer Science.
– volume: 13
  start-page: 409
  year: 1983
  end-page: 421
  ident: b0070
  article-title: Spectral indices in N-Space
  publication-title: Remote Sens. Environ.
– volume: 16
  start-page: 982
  year: 2019
  end-page: 986
  ident: b0100
  article-title: Landslide Inventory Mapping From Bitemporal Images Using Deep Convolutional Neural Networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 132
  start-page: 159
  year: 2013
  end-page: 175
  ident: b0080
  article-title: A comprehensive change detection method for updating the National Land Cover Database to circa 2011
  publication-title: Remote Sens. Environ.
– volume: 13
  year: 2019
  ident: b0145
  article-title: Unsupervised change detection method based on saliency analysis and convolutional neural network
  publication-title: J. Appl. Remote Sens.
– reference: Jia Deng, Wei Dong, Socher, R., Li-Jia Li, Kai Li, Li Fei-Fei, 2009. ImageNet: A large-scale hierarchical image database. pp. 248-255. https://doi.org/10.1109/cvprw.2009.5206848.
– volume: 6
  start-page: 772
  year: 2009
  end-page: 776
  ident: b0020
  article-title: Unsupervised change detection in satellite images using principal component analysis and κ-means clustering
  publication-title: IEEE Geosci. Remote Sens. Lett.
– year: 2020
  ident: b0110
  article-title: Bipartite Differential Neural Network for Unsupervised Image Change Detection
– volume: XLII–2
  start-page: 565
  year: 2018
  end-page: 571
  ident: b0090
  article-title: Change detection in remote sensing images using conditional adversarial networks. ISPRS - Int. Arch. Photogramm. Remote Sens. Spat
  publication-title: Inf. Sci.
– ident: 10.1016/j.isprsjprs.2020.06.003_b0120
  doi: 10.1109/TGRS.2019.2930348
– ident: 10.1016/j.isprsjprs.2020.06.003_b0055
– ident: 10.1016/j.isprsjprs.2020.06.003_b0170
– volume: 15
  start-page: 927
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.06.003_b0205
  article-title: Statistical Monitoring of Changes to Land Cover
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2817522
– volume: 132
  start-page: 159
  year: 2013
  ident: 10.1016/j.isprsjprs.2020.06.003_b0080
  article-title: A comprehensive change detection method for updating the National Land Cover Database to circa 2011
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.01.012
– start-page: 3
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.06.003_b0195
  article-title: CBAM: Convolutional block attention module
  publication-title: Lecture Notes in Computer Science.
  doi: 10.1007/978-3-030-01234-2_1
– ident: 10.1016/j.isprsjprs.2020.06.003_b0030
– volume: 13
  start-page: 409
  year: 1983
  ident: 10.1016/j.isprsjprs.2020.06.003_b0070
  article-title: Spectral indices in N-Space
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(83)90010-X
– ident: 10.1016/j.isprsjprs.2020.06.003_b0075
  doi: 10.1109/CVPRW.2009.5206848
– start-page: 4063
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.06.003_b0015
  article-title: Fully convolutional siamese networks for change detection
– volume: 6
  start-page: 772
  year: 2009
  ident: 10.1016/j.isprsjprs.2020.06.003_b0020
  article-title: Unsupervised change detection in satellite images using principal component analysis and κ-means clustering
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2009.2025059
– volume: 9
  start-page: 249
  year: 2010
  ident: 10.1016/j.isprsjprs.2020.06.003_b0045
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Proceedings of the thirteenth international conference on artificial intelligence and statistics.
– start-page: 3431
  year: 2015
  ident: 10.1016/j.isprsjprs.2020.06.003_b0115
  article-title: Fully Convolutional Networks for Semantic Segmentation
  publication-title: The IEEE Conference on Computer Vision and Pattern Recognition.
– start-page: 1026
  year: 2015
  ident: 10.1016/j.isprsjprs.2020.06.003_b0060
  article-title: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
  publication-title: The IEEE International Conference on Computer Vision.
– volume: 13
  start-page: 1666
  year: 2016
  ident: 10.1016/j.isprsjprs.2020.06.003_b0210
  article-title: Feature-Level Change Detection Using Deep Representation and Feature Change Analysis for Multispectral Imagery
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2016.2601930
– volume: 33
  start-page: 4434
  year: 2012
  ident: 10.1016/j.isprsjprs.2020.06.003_b0025
  article-title: Object-based change detection
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2011.648285
– start-page: 36600
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.06.003_b0105
  article-title: Multiscale Superpixel Segmentation with Deep Features for Change Detection. IEEE
  publication-title: Access.
  doi: 10.1109/ACCESS.2019.2902613
– volume: XLII–2
  start-page: 565
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.06.003_b0090
  article-title: Change detection in remote sensing images using conditional adversarial networks. ISPRS - Int. Arch. Photogramm. Remote Sens. Spat
  publication-title: Inf. Sci.
– ident: 10.1016/j.isprsjprs.2020.06.003_b0155
  doi: 10.1007/978-3-319-24574-4_28
– start-page: 737
  year: 1994
  ident: 10.1016/j.isprsjprs.2020.06.003_b0010
  article-title: Signature verification using a“ siamese” time delay neural network
  publication-title: InAdvances in neural information processing systems.
– volume: 11
  start-page: 1382
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.06.003_b0150
  article-title: End-to-end change detection for high resolution satellite images using improved UNet++
  publication-title: Remote Sens.
  doi: 10.3390/rs11111382
– start-page: 3
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.06.003_b0215
  article-title: Unet++: A nested u-net architecture for medical image segmentation
  publication-title: Lecture Notes in Computer Science.
– volume: 57
  start-page: 7743
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.06.003_b0140
  article-title: Kernel Anomalous Change Detection for Remote Sensing Imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2916212
– volume: 10
  start-page: 989
  year: 1989
  ident: 10.1016/j.isprsjprs.2020.06.003_b0175
  article-title: Review Articlel: Digital change detection techniques using remotely-sensed data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431168908903939
– start-page: 315
  year: 2011
  ident: 10.1016/j.isprsjprs.2020.06.003_b0050
  article-title: Deep sparse rectifier neural networks
  publication-title: Journal of Machine Learning Research.
– volume: 14
  start-page: 2418
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.06.003_b0065
  article-title: Change Detection Based on Deep Features and Low Rank
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2766840
– volume: 26
  start-page: 2831
  year: 2005
  ident: 10.1016/j.isprsjprs.2020.06.003_b0135
  article-title: Analysis of land use/cover changes and urban expansion of Nairobi city using remote sensing and GIS
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160500117865
– year: 2020
  ident: 10.1016/j.isprsjprs.2020.06.003_b0110
– volume: Manag
  start-page: 237
  year: 1986
  ident: 10.1016/j.isprsjprs.2020.06.003_b0180
  article-title: Change detection in the tropical forest environment of northeastern India using Landsat
  publication-title: Remote Sens. Trop. L.
– volume: 162
  start-page: 311
  year: 2010
  ident: 10.1016/j.isprsjprs.2020.06.003_b0190
  article-title: Comparison of remote sensing change detection techniques for assessing hurricane damage to forests
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-009-0798-8
– ident: 10.1016/j.isprsjprs.2020.06.003_b0040
  doi: 10.1109/ICIVC.2017.7984667
– volume: 25
  start-page: 69
  year: 2014
  ident: 10.1016/j.isprsjprs.2020.06.003_b0085
  article-title: PCA feature extraction for change detection in multidimensional unlabeled data
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2013.2248094
– start-page: 562
  year: 2015
  ident: 10.1016/j.isprsjprs.2020.06.003_b0095
  article-title: Deeply-supervised nets
  publication-title: Artificial intelligence and statistics.
– ident: 10.1016/j.isprsjprs.2020.06.003_b0160
  doi: 10.1109/IGARSS.2019.8900173
– volume: 16
  start-page: 982
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.06.003_b0100
  article-title: Landslide Inventory Mapping From Bitemporal Images Using Deep Convolutional Neural Networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2889307
– volume: 5
  start-page: 529
  year: 1977
  ident: 10.1016/j.isprsjprs.2020.06.003_b0185
  article-title: Urban and regional land use change detected by using Landsat data
  publication-title: J. Res. US Geol. Surv.
– volume: 199
  start-page: 241
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.06.003_b0200
  article-title: A post-classification change detection method based on iterative slow feature analysis and Bayesian soft fusion
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.07.009
– start-page: 640
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.06.003_b0165
  article-title: Fully Convolutional Networks for Semantic Segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence.
  doi: 10.1109/TPAMI.2016.2572683
– ident: 10.1016/j.isprsjprs.2020.06.003_b0130
  doi: 10.1109/ICIVC.2018.8492796
– volume: 13
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.06.003_b0145
  article-title: Unsupervised change detection method based on saliency analysis and convolutional neural network
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.13.024512
– volume: 42
  start-page: 1301
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.06.003_b0005
  article-title: Street-view change detection with deconvolutional networks
  publication-title: Auton. Robots.
  doi: 10.1007/s10514-018-9734-5
– volume: 16
  start-page: 4823
  year: 2008
  ident: 10.1016/j.isprsjprs.2020.06.003_b0035
  article-title: PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160801950162
– volume: 14
  start-page: 5530
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.06.003_b0125
  article-title: Deep Learning and Superpixel Feature Extraction Based on Contractive Autoencoder for Change Detection in SAR Images
  publication-title: IEEE Trans. Ind. Informatics.
  doi: 10.1109/TII.2018.2873492
SSID ssj0001568
Score 2.7208545
Snippet Change detection in high resolution remote sensing images is crucial to the understanding of land surface changes. As traditional change detection methods are...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 183
SubjectTerms Change detection
China
cities
data collection
Deep supervision network
High resolution remote sensing image
Image difference discrimination
Image fusion
Internet
remote sensing
texture
Title A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images
URI https://dx.doi.org/10.1016/j.isprsjprs.2020.06.003
https://www.proquest.com/docview/2986045397
Volume 166
WOSCitedRecordID wos000551268300015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1872-8235
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001568
  issn: 0924-2716
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBehHWx7GFu3se4LDfZmPGxJlu29hdJtLaOUJYO8GVuWqUPqmNgu2d_Xf6wnS_7ostGNsYcYY6STyP1yvrvc_YTQ-5AHjAZJYnM_Tm3GE2bHhLi256ScEjfNXC9uD5vwz86CxSI8n0yuu16Yq5VfFMF2G5b_VdXwDJStWmf_Qt29UHgA96B0uILa4fpHip9aqZTl6odVNaUyBBW4lPmlKs3JGpUaswpd-d0WGOq-X5hRS9GVPSoGYwuicLNLK8ltQ2ClzgAA1UqrUmXvqhlGya3GDu7J7PzbbMxHUV6s67YE7FLWG032dFvITur66EIW2zxe9wap0Y1ochg7j5Wzr-3lOo3rfuxpboR8VTeiKcZZDTLU1JlU2067jc5ZEmYT3zXc2dpiBz6YdKI5T3qTzsdG2dVH5Zj3u2ZG3X116CzGElYqN9USPh_UvlpyV4cOb8u-hnGmdqM2Q1RU6VHwA_aJ74VgWvenJ8eL094hcHVHZr_7W2WGv1zud07ST-5C6wPNH6NHJnjBUw26J2giiwP0cERpeYDuf5aGBP0p2kyxhiIeoIhbyGANRWygiAGKWEMR91DEeYEVFPEARTyCItYowgZFWm71DH3_dDw_-mKbMz5swVxW22EW0zBhkjok4U6YCcEhAHHDgAjJfEkzHiepFwghJPFZkmScS8oSh3EvdGjI6HO0V6wL-QLhFFxtAeGFJwKHMRqD6AziG55lJBO-Iw4R777USBgCfHUOyyrqKh2XUa-NSGkjams-6SFy-oml5oC5e8rHTmuRcWW1ixoB3O6e_K7TcwTGXv2DFxdy3cCgMOAQg0EM8fJfFniFHgy_uddor9408g26J67qvNq8NfC9Af7C2wE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deeply+supervised+image+fusion+network+for+change+detection+in+high+resolution+bi-temporal+remote+sensing+images&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Zhang%2C+Chenxiao&rft.au=Yue%2C+Peng&rft.au=Tapete%2C+Deodato&rft.au=Jiang%2C+Liangcun&rft.date=2020-08-01&rft.pub=Elsevier+B.V&rft.issn=0924-2716&rft.eissn=1872-8235&rft.volume=166&rft.spage=183&rft.epage=200&rft_id=info:doi/10.1016%2Fj.isprsjprs.2020.06.003&rft.externalDocID=S0924271620301532
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon