Isolation and handling of sensor faults in nonlinear systems
This work considers the problem of sensor fault isolation and fault-tolerant control for nonlinear systems subject to input constraints. The key idea is to design fault detection residuals and fault isolation logic by exploiting model-based sensor redundancy through a state observer. To this end, a...
Uloženo v:
| Vydáno v: | Automatica (Oxford) Ročník 50; číslo 4; s. 1066 - 1074 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Kidlington
Elsevier Ltd
01.04.2014
Elsevier |
| Témata: | |
| ISSN: | 0005-1098, 1873-2836 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This work considers the problem of sensor fault isolation and fault-tolerant control for nonlinear systems subject to input constraints. The key idea is to design fault detection residuals and fault isolation logic by exploiting model-based sensor redundancy through a state observer. To this end, a high-gain observer is first presented, for which the convergence property is rigorously established, forming the basis of the residual design. A bank of residuals are then designed using a bank of observers, with each driven by a subset of measured outputs. A fault is isolated by checking which residuals breach their thresholds according to a logic rule. After the fault is isolated, the state estimate generated using measurements from the healthy sensors is used in closed-loop to maintain nominal operation. The implementation of the fault isolation and handling framework subject to uncertainty and measurement noise is illustrated using a chemical reactor example. |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| ISSN: | 0005-1098 1873-2836 |
| DOI: | 10.1016/j.automatica.2014.02.017 |