An enhanced semi-supervised learning method with self-supervised and adaptive threshold for fault detection and classification in urban power grids
With the rapid development of urban power grids and the large-scale integration of renewable energy, traditional power grid fault diagnosis techniques struggle to address the complexities of diagnosing faults in intricate power grid systems. Although artificial intelligence technologies offer new so...
Gespeichert in:
| Veröffentlicht in: | Energy and AI Jg. 17; S. 100377 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.09.2024
Elsevier |
| Schlagworte: | |
| ISSN: | 2666-5468, 2666-5468 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!