Nowcasting GDP using machine-learning algorithms: A real-time assessment
Can machine-learning algorithms help central banks understand the current state of the economy? Our results say yes! We contribute to the emerging literature on forecasting macroeconomic variables using machine-learning algorithms by testing the nowcast performance of common algorithms in a full ‘re...
Gespeichert in:
| Veröffentlicht in: | International journal of forecasting Jg. 37; H. 2; S. 941 - 948 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.04.2021
|
| Schlagworte: | |
| ISSN: | 0169-2070, 1872-8200 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Can machine-learning algorithms help central banks understand the current state of the economy? Our results say yes! We contribute to the emerging literature on forecasting macroeconomic variables using machine-learning algorithms by testing the nowcast performance of common algorithms in a full ‘real-time’ setting—that is, with real-time vintages of New Zealand GDP growth (our target variable) and real-time vintages of around 600 predictors. Our results show that machine-learning algorithms are able to significantly improve over a simple autoregressive benchmark and a dynamic factor model. We also show that machine-learning algorithms have the potential to add value to, and in one case improve on, the official forecasts of the Reserve Bank of New Zealand. |
|---|---|
| ISSN: | 0169-2070 1872-8200 |
| DOI: | 10.1016/j.ijforecast.2020.10.005 |