Bayesian Compressive Sensing Using Laplace Priors
In this paper, we model the components of the compressive sensing (CS) problem, i.e., the signal acquisition process, the unknown signal coefficients and the model parameters for the signal and noise using the Bayesian framework. We utilize a hierarchical form of the Laplace prior to model the spars...
Saved in:
| Published in: | IEEE transactions on image processing Vol. 19; no. 1; pp. 53 - 63 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York, NY
IEEE
01.01.2010
Institute of Electrical and Electronics Engineers |
| Subjects: | |
| ISSN: | 1057-7149, 1941-0042, 1941-0042 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, we model the components of the compressive sensing (CS) problem, i.e., the signal acquisition process, the unknown signal coefficients and the model parameters for the signal and noise using the Bayesian framework. We utilize a hierarchical form of the Laplace prior to model the sparsity of the unknown signal. We describe the relationship among a number of sparsity priors proposed in the literature, and show the advantages of the proposed model including its high degree of sparsity. Moreover, we show that some of the existing models are special cases of the proposed model. Using our model, we develop a constructive (greedy) algorithm designed for fast reconstruction useful in practical settings. Unlike most existing CS reconstruction methods, the proposed algorithm is fully automated, i.e., the unknown signal coefficients and all necessary parameters are estimated solely from the observation, and, therefore, no user-intervention is needed. Additionally, the proposed algorithm provides estimates of the uncertainty of the reconstructions. We provide experimental results with synthetic 1-D signals and images, and compare with the state-of-the-art CS reconstruction algorithms demonstrating the superior performance of the proposed approach. |
|---|---|
| AbstractList | In this paper, we model the components of the compressive sensing (CS) problem, i.e., the signal acquisition process, the unknown signal coefficients and the model parameters for the signal and noise using the Bayesian framework. We utilize a hierarchical form of the Laplace prior to model the sparsity of the unknown signal. We describe the relationship among a number of sparsity priors proposed in the literature, and show the advantages of the proposed model including its high degree of sparsity. Moreover, we show that some of the existing models are special cases of the proposed model. Using our model, we develop a constructive (greedy) algorithm designed for fast reconstruction useful in practical settings. Unlike most existing CS reconstruction methods, the proposed algorithm is fully automated, i.e., the unknown signal coefficients and all necessary parameters are estimated solely from the observation, and, therefore, no user-intervention is needed. Additionally, the proposed algorithm provides estimates of the uncertainty of the reconstructions. We provide experimental results with synthetic 1-D signals and images, and compare with the state-of-the-art CS reconstruction algorithms demonstrating the superior performance of the proposed approach.In this paper, we model the components of the compressive sensing (CS) problem, i.e., the signal acquisition process, the unknown signal coefficients and the model parameters for the signal and noise using the Bayesian framework. We utilize a hierarchical form of the Laplace prior to model the sparsity of the unknown signal. We describe the relationship among a number of sparsity priors proposed in the literature, and show the advantages of the proposed model including its high degree of sparsity. Moreover, we show that some of the existing models are special cases of the proposed model. Using our model, we develop a constructive (greedy) algorithm designed for fast reconstruction useful in practical settings. Unlike most existing CS reconstruction methods, the proposed algorithm is fully automated, i.e., the unknown signal coefficients and all necessary parameters are estimated solely from the observation, and, therefore, no user-intervention is needed. Additionally, the proposed algorithm provides estimates of the uncertainty of the reconstructions. We provide experimental results with synthetic 1-D signals and images, and compare with the state-of-the-art CS reconstruction algorithms demonstrating the superior performance of the proposed approach. In this paper, we model the components of the compressive sensing (CS) problem, i.e., the signal acquisition process, the unknown signal coefficients and the model parameters for the signal and noise using the Bayesian framework. We utilize a hierarchical form of the Laplace prior to model the sparsity of the unknown signal. We describe the relationship among a number of sparsity priors proposed in the literature, and show the advantages of the proposed model including its high degree of sparsity. Moreover, we show that some of the existing models are special cases of the proposed model. Using our model, we develop a constructive (greedy) algorithm designed for fast reconstruction useful in practical settings. Unlike most existing CS reconstruction methods, the proposed algorithm is fully automated, i.e., the unknown signal coefficients and all necessary parameters are estimated solely from the observation, and, therefore, no user-intervention is needed. Additionally, the proposed algorithm provides estimates of the uncertainty of the reconstructions. We provide experimental results with synthetic 1-D signals and images, and compare with the state-of-the-art CS reconstruction algorithms demonstrating the superior performance of the proposed approach. |
| Author | Katsaggelos, A.K. Molina, R. Babacan, S.D. |
| Author_xml | – sequence: 1 givenname: S.D. surname: Babacan fullname: Babacan, S.D. organization: Dept. of Electr. Eng. & Comput. Sci., Northwestern Univ., Evanston, IL, USA – sequence: 2 givenname: R. surname: Molina fullname: Molina, R. organization: Dept. de Cienc. de la Comput. e IA, Univ. de Granada, Granada, Spain – sequence: 3 givenname: A.K. surname: Katsaggelos fullname: Katsaggelos, A.K. organization: Dept. of Electr. Eng. & Comput. Sci., Northwestern Univ., Evanston, IL, USA |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22396855$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19775966$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kMtLAzEQh4NU7EPvgiC9iKetyea1OWrxUShYsD2HNDuRyD5qshX637u1aw-Cl5k5fL9h5huiXlVXgNAlwRNCsLpbzhaTFGPVFppmip2gAVGMJBiztNfOmMtEEqb6aBjjB8aEcSLOUJ8oKbkSYoDIg9lB9KYaT-tyEyBG_wXjN6iir97Hq586N5vCWBgvgq9DPEenzhQRLro-Qqunx-X0JZm_Ps-m9_PEMsKaRFoB0jmRZSaTueSO5oQ7CWKd51ZSbiTjSgK2gKkQlDqRr3meOicVd4LmdIRuD3s3of7cQmx06aOFojAV1NuoJWVEcZyxlrzuyO26hFxvgi9N2OnfL1vgpgNMtKZwwVTWxyOXplSJjPOWEwfOhjrGAE5b35jG11UTjC80wXqvXbfa9V677rS3QfwneLzh_8jVIeIB4IjzlAuaMvoNIJ-LQA |
| CODEN | IIPRE4 |
| CitedBy_id | crossref_primary_10_1002_dac_3314 crossref_primary_10_1109_TIM_2023_3332942 crossref_primary_10_1007_s10898_022_01126_2 crossref_primary_10_3390_s22186917 crossref_primary_10_1016_j_sigpro_2016_10_010 crossref_primary_10_12720_jcm_11_7_693_701 crossref_primary_10_1186_1687_6180_2013_160 crossref_primary_10_1109_TCOMM_2017_2695198 crossref_primary_10_1016_j_seta_2022_102834 crossref_primary_10_1007_s10851_015_0598_4 crossref_primary_10_1155_2011_817947 crossref_primary_10_1109_TGRS_2013_2296497 crossref_primary_10_1007_s00034_018_0909_2 crossref_primary_10_1049_iet_spr_2019_0245 crossref_primary_10_1049_rsn2_12187 crossref_primary_10_3390_rs17101719 crossref_primary_10_1109_ACCESS_2017_2765831 crossref_primary_10_1007_s11265_013_0759_x crossref_primary_10_1002_2017MS000962 crossref_primary_10_1109_JSTARS_2016_2611005 crossref_primary_10_1038_s41598_025_09466_1 crossref_primary_10_1109_TGRS_2013_2287795 crossref_primary_10_1016_j_ymssp_2019_106589 crossref_primary_10_1109_JPROC_2022_3155904 crossref_primary_10_1109_TCOMM_2019_2892719 crossref_primary_10_3390_rs14164120 crossref_primary_10_1016_j_ins_2015_07_017 crossref_primary_10_1109_TSP_2018_2875419 crossref_primary_10_1016_j_ymssp_2025_112511 crossref_primary_10_1016_j_imavis_2016_03_005 crossref_primary_10_1016_j_laa_2012_11_024 crossref_primary_10_1016_j_sigpro_2011_07_015 crossref_primary_10_1016_j_sigpro_2020_107952 crossref_primary_10_1049_el_2016_0912 crossref_primary_10_1002_dac_3576 crossref_primary_10_1017_aer_2024_65 crossref_primary_10_1109_TGRS_2015_2498158 crossref_primary_10_1049_iet_spr_2016_0033 crossref_primary_10_1109_TVT_2022_3212408 crossref_primary_10_1007_s11432_011_4452_z crossref_primary_10_1016_j_dsp_2019_01_002 crossref_primary_10_1186_s13634_018_0541_0 crossref_primary_10_1109_TVT_2023_3287400 crossref_primary_10_1186_s13634_025_01220_z crossref_primary_10_1016_j_cma_2019_04_046 crossref_primary_10_1155_2012_592471 crossref_primary_10_1016_j_aeue_2018_10_005 crossref_primary_10_1016_j_sigpro_2020_107944 crossref_primary_10_1002_stc_2343 crossref_primary_10_1109_TIP_2014_2311735 crossref_primary_10_1109_LCOMM_2020_3021120 crossref_primary_10_3390_s24092840 crossref_primary_10_1109_TASLP_2015_2412466 crossref_primary_10_1016_j_sigpro_2016_02_025 crossref_primary_10_1016_j_apm_2023_10_026 crossref_primary_10_2514_1_T7119 crossref_primary_10_3390_s18072377 crossref_primary_10_1002_stc_2699 crossref_primary_10_1109_TWC_2019_2915072 crossref_primary_10_3390_s18113725 crossref_primary_10_1121_10_0024360 crossref_primary_10_1016_j_dsp_2017_06_012 crossref_primary_10_1016_j_physd_2021_132843 crossref_primary_10_1109_TIM_2024_3398096 crossref_primary_10_1121_10_0024248 crossref_primary_10_1109_TSP_2021_3106741 crossref_primary_10_1016_j_sigpro_2021_108141 crossref_primary_10_1109_LSP_2021_3104503 crossref_primary_10_1109_TSP_2016_2546231 crossref_primary_10_1007_s11432_012_4606_7 crossref_primary_10_1109_ACCESS_2020_3015223 crossref_primary_10_1016_j_comcom_2021_07_011 crossref_primary_10_1109_TGRS_2020_2973969 crossref_primary_10_1109_TIM_2024_3381302 crossref_primary_10_1109_ACCESS_2020_2993908 crossref_primary_10_1109_LCOMM_2018_2863374 crossref_primary_10_1049_iet_spr_2019_0048 crossref_primary_10_1109_LCOMM_2022_3175176 crossref_primary_10_1364_AO_56_000530 crossref_primary_10_23919_cje_2023_00_130 crossref_primary_10_1016_j_dsp_2018_08_004 crossref_primary_10_1109_TWC_2024_3388449 crossref_primary_10_1109_TAES_2017_2701646 crossref_primary_10_1016_j_apacoust_2024_109987 crossref_primary_10_1007_s00366_011_0229_7 crossref_primary_10_1016_j_eswa_2025_126424 crossref_primary_10_1002_cem_2712 crossref_primary_10_1016_j_jcp_2020_109728 crossref_primary_10_1016_j_sigpro_2011_06_011 crossref_primary_10_1038_s41598_018_36896_x crossref_primary_10_1121_10_0006753 crossref_primary_10_1016_j_envsoft_2018_01_012 crossref_primary_10_1109_TSP_2018_2824286 crossref_primary_10_1109_TNNLS_2012_2188414 crossref_primary_10_3390_s22145229 crossref_primary_10_1109_TAP_2019_2934568 crossref_primary_10_3390_s19010126 crossref_primary_10_1007_s11431_013_5415_y crossref_primary_10_1016_j_cma_2017_01_033 crossref_primary_10_3390_e25030511 crossref_primary_10_4028_www_scientific_net_KEM_439_440_908 crossref_primary_10_1109_TIP_2021_3070442 crossref_primary_10_1049_ell2_13135 crossref_primary_10_1109_TAES_2022_3192223 crossref_primary_10_1016_j_dsp_2022_103482 crossref_primary_10_1016_j_procs_2017_03_110 crossref_primary_10_1155_2021_5541116 crossref_primary_10_1016_j_cie_2022_108028 crossref_primary_10_1016_j_patcog_2012_01_003 crossref_primary_10_1016_j_ymssp_2019_03_032 crossref_primary_10_1049_iet_rsn_2010_0375 crossref_primary_10_1109_TIP_2017_2675206 crossref_primary_10_1016_j_sigpro_2013_11_022 crossref_primary_10_1109_JSTARS_2019_2918189 crossref_primary_10_1016_j_jcp_2020_109962 crossref_primary_10_1109_MCI_2016_2601700 crossref_primary_10_1109_TSP_2023_3282062 crossref_primary_10_3390_electronics8050517 crossref_primary_10_1109_TAES_2023_3245060 crossref_primary_10_1186_s13634_021_00719_5 crossref_primary_10_1016_j_sigpro_2013_11_025 crossref_primary_10_1109_TIM_2022_3165275 crossref_primary_10_1007_s10915_019_00955_w crossref_primary_10_1186_s13636_021_00200_z crossref_primary_10_1016_j_neucom_2013_12_047 crossref_primary_10_3390_sym13030429 crossref_primary_10_1155_2020_6179280 crossref_primary_10_1109_JSEN_2017_2723611 crossref_primary_10_1109_TGRS_2020_2972972 crossref_primary_10_1016_j_jfranklin_2016_08_024 crossref_primary_10_1109_TIP_2020_2984896 crossref_primary_10_1109_TSP_2023_3262184 crossref_primary_10_1016_j_dsp_2022_103460 crossref_primary_10_1109_ACCESS_2018_2868612 crossref_primary_10_1109_JETCAS_2012_2220391 crossref_primary_10_1109_TNNLS_2024_3412870 crossref_primary_10_1007_s11760_014_0666_z crossref_primary_10_1016_j_dsp_2019_03_013 crossref_primary_10_1109_TSP_2020_3009875 crossref_primary_10_1016_j_strusafe_2020_102074 crossref_primary_10_1109_TSP_2012_2222378 crossref_primary_10_1016_j_apacoust_2024_110094 crossref_primary_10_3390_e23101268 crossref_primary_10_1016_j_sigpro_2016_12_002 crossref_primary_10_1002_qre_1259 crossref_primary_10_1109_TNSRE_2018_2848463 crossref_primary_10_1016_j_image_2017_08_009 crossref_primary_10_1016_j_probengmech_2021_103193 crossref_primary_10_1080_01621459_2021_1909600 crossref_primary_10_3390_s24092670 crossref_primary_10_1016_j_infrared_2017_04_005 crossref_primary_10_1007_s00034_024_02649_7 crossref_primary_10_1186_1687_6180_2013_91 crossref_primary_10_3390_s19235126 crossref_primary_10_1049_joe_2019_0129 crossref_primary_10_1109_LSP_2014_2364255 crossref_primary_10_1016_j_apacoust_2024_110190 crossref_primary_10_1007_s10483_017_2208_8 crossref_primary_10_3390_s24072336 crossref_primary_10_1016_j_advwatres_2019_01_002 crossref_primary_10_1109_TVT_2017_2707671 crossref_primary_10_3390_ma12081227 crossref_primary_10_1109_LSP_2013_2292589 crossref_primary_10_3389_fnins_2017_00635 crossref_primary_10_1016_j_probengmech_2024_103723 crossref_primary_10_1016_j_ymssp_2020_106701 crossref_primary_10_3390_s22072664 crossref_primary_10_1109_JSTSP_2015_2411575 crossref_primary_10_1007_s00034_020_01529_0 crossref_primary_10_1109_TSP_2016_2614484 crossref_primary_10_1109_TGRS_2021_3051955 crossref_primary_10_1109_TSP_2015_2403277 crossref_primary_10_1016_j_jsv_2023_117816 crossref_primary_10_1109_TSP_2016_2614489 crossref_primary_10_1186_s13634_023_00991_7 crossref_primary_10_1109_TSP_2012_2231076 crossref_primary_10_1109_TGRS_2021_3056187 crossref_primary_10_1109_ACCESS_2020_2965973 crossref_primary_10_1016_j_sigpro_2017_01_020 crossref_primary_10_3390_math11040847 crossref_primary_10_1109_TII_2020_3017080 crossref_primary_10_1016_j_dsp_2021_103322 crossref_primary_10_1007_s11760_020_01661_z crossref_primary_10_1016_j_sigpro_2023_109361 crossref_primary_10_1049_iet_map_2015_0628 crossref_primary_10_1007_s00607_018_0668_8 crossref_primary_10_1155_2022_4500243 crossref_primary_10_1109_TASL_2013_2281570 crossref_primary_10_1051_0004_6361_201219950 crossref_primary_10_1109_JSTARS_2016_2570947 crossref_primary_10_1016_j_apm_2023_05_005 crossref_primary_10_1049_iet_spr_2016_0408 crossref_primary_10_1186_1687_6180_2014_78 crossref_primary_10_1016_j_sigpro_2015_06_011 crossref_primary_10_1016_j_cma_2021_114130 crossref_primary_10_1016_j_sigpro_2017_01_035 crossref_primary_10_1109_ACCESS_2019_2937490 crossref_primary_10_3390_s20030865 crossref_primary_10_3390_s22155757 crossref_primary_10_1186_s13634_021_00741_7 crossref_primary_10_1016_j_jfranklin_2015_07_002 crossref_primary_10_1109_LGRS_2021_3064555 crossref_primary_10_3390_s23218907 crossref_primary_10_1016_j_image_2017_06_004 crossref_primary_10_1137_22M1506122 crossref_primary_10_1007_s00034_020_01484_w crossref_primary_10_32604_cmes_2022_018234 crossref_primary_10_1049_gtd2_13016 crossref_primary_10_1007_s12206_019_1007_5 crossref_primary_10_1016_j_jcp_2025_114255 crossref_primary_10_1109_TCI_2023_3236155 crossref_primary_10_1088_1361_6501_aaf4e7 crossref_primary_10_1109_TSP_2013_2280125 crossref_primary_10_1109_TSP_2018_2887400 crossref_primary_10_1109_ACCESS_2020_3005048 crossref_primary_10_1016_j_probengmech_2020_103082 crossref_primary_10_1088_1361_6420_acd851 crossref_primary_10_1016_j_dsp_2017_08_007 crossref_primary_10_1016_j_neunet_2016_06_001 crossref_primary_10_1038_s41598_022_25638_9 crossref_primary_10_1109_TSG_2019_2916819 crossref_primary_10_3390_electronics13153038 crossref_primary_10_3390_rs16040671 crossref_primary_10_1007_s11276_018_1815_z crossref_primary_10_1109_TWC_2022_3149111 crossref_primary_10_1016_j_sigpro_2018_02_027 crossref_primary_10_1049_ell2_12331 crossref_primary_10_1016_j_cageo_2017_04_001 crossref_primary_10_1109_LSP_2013_2272462 crossref_primary_10_1109_LCOMM_2025_3586688 crossref_primary_10_1109_TIM_2023_3243677 crossref_primary_10_3390_s140508330 crossref_primary_10_1049_iet_spr_2014_0157 crossref_primary_10_1109_JOE_2016_2576198 crossref_primary_10_1049_iet_rsn_2012_0175 crossref_primary_10_1007_s11277_017_4211_6 crossref_primary_10_1139_cgj_2017_0254 crossref_primary_10_1049_iet_spr_2016_0738 crossref_primary_10_1016_j_neucom_2016_11_008 crossref_primary_10_1109_TSP_2013_2282919 crossref_primary_10_1016_j_sigpro_2014_09_018 crossref_primary_10_1051_0004_6361_201321833 crossref_primary_10_1109_TGRS_2022_3203807 crossref_primary_10_1109_TIP_2013_2255305 crossref_primary_10_1007_s11071_019_04769_1 crossref_primary_10_1109_TSP_2017_2764855 crossref_primary_10_1109_TIP_2016_2598652 crossref_primary_10_1016_j_neucom_2017_06_076 crossref_primary_10_1016_j_sigpro_2024_109422 crossref_primary_10_1109_TWC_2020_2988907 crossref_primary_10_1016_j_jsv_2022_117209 crossref_primary_10_3390_app4020128 crossref_primary_10_1109_TGRS_2018_2863743 crossref_primary_10_1016_j_ijepes_2023_109469 crossref_primary_10_1155_2014_927894 crossref_primary_10_1109_TAES_2015_140939 crossref_primary_10_1155_2012_478931 crossref_primary_10_1016_j_ress_2024_110226 crossref_primary_10_1109_TII_2020_2995997 crossref_primary_10_1016_j_ress_2020_107087 crossref_primary_10_3390_s24082485 crossref_primary_10_1109_TGRS_2023_3302027 crossref_primary_10_1088_1742_6596_1592_1_012011 crossref_primary_10_1109_ACCESS_2023_3238100 crossref_primary_10_1049_iet_spr_2014_0129 crossref_primary_10_1049_iet_rsn_2020_0160 crossref_primary_10_1109_TIP_2019_2944722 crossref_primary_10_1186_1687_4722_2013_18 crossref_primary_10_1179_1743131X14Y_0000000073 crossref_primary_10_1109_TGRS_2025_3543670 crossref_primary_10_1117_1_JEI_34_2_023068 crossref_primary_10_1080_01431161_2017_1339922 crossref_primary_10_1109_TCSII_2021_3109339 crossref_primary_10_1109_TVT_2024_3365654 crossref_primary_10_1016_j_probengmech_2023_103454 crossref_primary_10_1109_TGRS_2013_2258468 crossref_primary_10_1109_TSP_2022_3141889 crossref_primary_10_1016_j_sandf_2024_101528 crossref_primary_10_1109_TGRS_2018_2821168 crossref_primary_10_1016_j_isprsjprs_2020_10_013 crossref_primary_10_1109_TAES_2021_3068431 crossref_primary_10_1016_j_jsv_2019_01_001 crossref_primary_10_1109_ACCESS_2019_2932098 crossref_primary_10_1016_j_sigpro_2015_03_013 crossref_primary_10_1109_JSTARS_2014_2359250 crossref_primary_10_1049_iet_rsn_2014_0542 crossref_primary_10_3390_s19153279 crossref_primary_10_3390_rs14163906 crossref_primary_10_3390_jlpea5010003 crossref_primary_10_1016_j_jsv_2023_117780 crossref_primary_10_1109_TWC_2021_3087501 crossref_primary_10_1016_j_dsp_2025_105508 crossref_primary_10_1109_LCOMM_2021_3117843 crossref_primary_10_1016_j_commatsci_2023_112229 crossref_primary_10_1109_LSP_2014_2321256 crossref_primary_10_1121_1_5042222 crossref_primary_10_1016_j_jprocont_2024_103173 crossref_primary_10_1155_2014_214302 crossref_primary_10_1016_j_cpc_2020_107577 crossref_primary_10_1109_TSP_2024_3484908 crossref_primary_10_3390_s16050611 crossref_primary_10_1109_MSP_2016_2573847 crossref_primary_10_1016_j_apenergy_2021_118063 crossref_primary_10_1007_s00034_023_02597_8 crossref_primary_10_1109_TIM_2025_3565060 crossref_primary_10_1016_j_apacoust_2024_110025 crossref_primary_10_3390_s121013034 crossref_primary_10_1109_TGRS_2022_3154635 crossref_primary_10_1049_ipr2_12545 crossref_primary_10_1109_JSTSP_2016_2627184 crossref_primary_10_1109_JOE_2023_3235055 crossref_primary_10_1109_TWC_2024_3414119 crossref_primary_10_1109_LSP_2015_2438255 crossref_primary_10_1016_j_pmcj_2017_03_001 crossref_primary_10_1109_TCOMM_2023_3324658 crossref_primary_10_3390_s23239422 crossref_primary_10_3390_s18082735 crossref_primary_10_1049_iet_spr_2013_0501 crossref_primary_10_1109_TIP_2017_2681436 crossref_primary_10_3390_s18061815 crossref_primary_10_1109_TSP_2013_2256901 crossref_primary_10_5402_2012_982792 crossref_primary_10_1016_j_energy_2024_133166 crossref_primary_10_1109_TCSVT_2018_2809585 crossref_primary_10_1109_TSP_2013_2278814 crossref_primary_10_3390_rs13091751 crossref_primary_10_1016_j_dsp_2024_104564 crossref_primary_10_3390_electronics7120422 crossref_primary_10_1002_jbio_201700214 crossref_primary_10_1109_TNNLS_2015_2476656 crossref_primary_10_1109_LAWP_2015_2425011 crossref_primary_10_1007_s11760_021_01860_2 crossref_primary_10_1049_iet_rsn_2017_0401 crossref_primary_10_1137_18M1174076 crossref_primary_10_1016_j_neucom_2020_06_007 crossref_primary_10_1007_s11045_021_00804_w crossref_primary_10_1137_23M1545379 crossref_primary_10_1016_j_measurement_2023_112730 crossref_primary_10_1109_JSTARS_2025_3596383 crossref_primary_10_1109_TVT_2024_3450012 crossref_primary_10_1109_TSP_2014_2338839 crossref_primary_10_1007_s00366_025_02112_4 crossref_primary_10_3390_app8081293 crossref_primary_10_1016_j_cma_2024_117693 crossref_primary_10_1109_ACCESS_2022_3232812 crossref_primary_10_1109_ACCESS_2019_2903906 crossref_primary_10_1109_TSP_2025_3566404 crossref_primary_10_3390_machines10050311 crossref_primary_10_1109_TIT_2014_2298453 crossref_primary_10_1109_TSP_2017_2777407 crossref_primary_10_1088_1361_6501_ac2316 crossref_primary_10_1109_JBHI_2023_3303470 crossref_primary_10_1016_j_patcog_2025_112022 crossref_primary_10_1016_j_asoc_2021_107524 crossref_primary_10_1109_TAC_2023_3281349 crossref_primary_10_1109_TVT_2022_3205162 crossref_primary_10_1016_j_cma_2023_116554 crossref_primary_10_1049_sil2_12134 crossref_primary_10_1109_ACCESS_2023_3297884 crossref_primary_10_1109_TAP_2020_3028212 crossref_primary_10_1109_TSP_2011_2168217 crossref_primary_10_1109_TSP_2020_2967665 crossref_primary_10_1007_s11760_016_0922_5 crossref_primary_10_1109_TCYB_2021_3090204 crossref_primary_10_1109_TSP_2022_3144948 crossref_primary_10_1155_2014_612326 crossref_primary_10_1016_j_apacoust_2023_109340 crossref_primary_10_1109_TNNLS_2020_3049056 crossref_primary_10_1109_TGRS_2013_2286402 crossref_primary_10_1109_JSTARS_2024_3448365 crossref_primary_10_1016_j_compmedimag_2022_102048 crossref_primary_10_1109_LSP_2022_3221344 crossref_primary_10_1109_TWC_2012_081612_110612 crossref_primary_10_1016_j_patcog_2015_09_034 crossref_primary_10_1155_2018_3505918 crossref_primary_10_3390_electronics13010234 crossref_primary_10_1109_TIP_2013_2266100 crossref_primary_10_3390_s18124343 crossref_primary_10_1177_14759217221130132 crossref_primary_10_1109_TKDE_2018_2847707 crossref_primary_10_1109_TSP_2015_2451071 crossref_primary_10_1049_iet_rsn_2018_5628 crossref_primary_10_1016_j_asoc_2024_112499 crossref_primary_10_1109_ACCESS_2019_2913744 crossref_primary_10_1109_TSP_2011_2174052 crossref_primary_10_1016_j_cma_2024_117418 crossref_primary_10_3390_rs14153520 crossref_primary_10_3390_s23125666 crossref_primary_10_1080_03610918_2023_2272230 crossref_primary_10_3390_s23125661 crossref_primary_10_3390_s19102356 crossref_primary_10_1016_j_asoc_2025_113762 crossref_primary_10_1016_j_physa_2019_123605 crossref_primary_10_1109_TCCN_2023_3319539 crossref_primary_10_1109_LSP_2023_3295750 crossref_primary_10_1109_TAES_2023_3321585 crossref_primary_10_1109_TSP_2016_2563409 crossref_primary_10_1016_j_ins_2019_03_033 crossref_primary_10_1049_iet_com_2014_1155 crossref_primary_10_1109_ACCESS_2018_2885615 crossref_primary_10_1007_s00180_023_01354_4 crossref_primary_10_1016_j_ymssp_2024_111563 crossref_primary_10_1109_JMMCT_2020_3007839 crossref_primary_10_1007_s11590_020_01685_x crossref_primary_10_1109_TGRS_2022_3183441 crossref_primary_10_1016_j_jmsy_2020_12_011 crossref_primary_10_1109_TCOMM_2016_2615106 crossref_primary_10_1016_j_compgeo_2020_103537 crossref_primary_10_1016_j_tafmec_2024_104639 crossref_primary_10_1109_TGRS_2017_2735488 crossref_primary_10_1016_j_soildyn_2025_109738 crossref_primary_10_1016_j_ymssp_2020_107377 crossref_primary_10_3390_rs14010026 crossref_primary_10_1111_mice_12408 crossref_primary_10_1121_10_0000920 crossref_primary_10_1016_j_phycom_2016_05_002 crossref_primary_10_1109_TSP_2018_2881665 crossref_primary_10_3389_fnins_2023_978527 crossref_primary_10_1016_j_jvcir_2021_103274 crossref_primary_10_1002_tee_22199 crossref_primary_10_1109_MAP_2015_2397092 crossref_primary_10_1007_s11277_021_08607_9 crossref_primary_10_1016_j_strusafe_2024_102450 crossref_primary_10_1109_TWC_2024_3441556 crossref_primary_10_1016_j_neucom_2018_04_084 crossref_primary_10_1109_TNNLS_2018_2797539 crossref_primary_10_3390_s23010307 crossref_primary_10_1016_j_knosys_2021_107475 crossref_primary_10_1016_j_sigpro_2022_108756 crossref_primary_10_1109_TWC_2022_3158616 crossref_primary_10_1109_TSP_2016_2645543 crossref_primary_10_1109_TIT_2024_3447552 |
| Cites_doi | 10.1109/TSP.2008.2005866 10.1002/mrm.21391 10.1073/pnas.0502269102 10.1109/TIT.2005.862083 10.1162/15324430152748236 10.1109/TSP.2007.914345 10.1162/089976601753196003 10.1145/1390156.1390271 10.1109/TPAMI.2003.1227989 10.1007/s00041-008-9043-z 10.1109/83.743857 10.1016/j.jco.2007.04.002 10.1016/j.sigpro.2005.05.029 10.1137/S1064827596304010 10.1109/TSP.2007.916124 10.1109/TIT.2007.909108 10.1109/TSP.2004.831016 10.1162/neco.1992.4.3.415 10.1109/JSTSP.2007.910281 10.1109/TIT.2006.871582 10.1109/TIP.2007.916051 10.1109/MSP.2007.914732 |
| ContentType | Journal Article |
| Copyright | 2015 INIST-CNRS |
| Copyright_xml | – notice: 2015 INIST-CNRS |
| DBID | 97E RIA RIE AAYXX CITATION IQODW NPM 7X8 |
| DOI | 10.1109/TIP.2009.2032894 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1941-0042 |
| EndPage | 63 |
| ExternalDocumentID | 19775966 22396855 10_1109_TIP_2009_2032894 5256324 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION IQODW RIG AAYOK NPM PKN Z5M 7X8 |
| ID | FETCH-LOGICAL-c414t-7c6e7ff688a87d75f3d15f7e6bddc735a74597e0ce036633f6db5d2ff795f63d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 628 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000272844000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1057-7149 1941-0042 |
| IngestDate | Sun Sep 28 06:23:53 EDT 2025 Wed Feb 19 01:56:32 EST 2025 Mon Jul 21 09:16:59 EDT 2025 Tue Nov 18 22:35:35 EST 2025 Sat Nov 29 03:20:43 EST 2025 Tue Aug 26 17:12:25 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Bayes estimation Performance evaluation State of the art Vector method Inverse problem Learning relevance vector machine (RVM) Acquisition process Relevance criterion Bayesian methods inverse problems Greedy algorithm Bayes methods Signal detection compressive sensing sparse Bayesian learning User need |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c414t-7c6e7ff688a87d75f3d15f7e6bddc735a74597e0ce036633f6db5d2ff795f63d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 19775966 |
| PQID | 734195084 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_734195084 pascalfrancis_primary_22396855 ieee_primary_5256324 crossref_citationtrail_10_1109_TIP_2009_2032894 crossref_primary_10_1109_TIP_2009_2032894 pubmed_primary_19775966 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-Jan. 2010-01-00 2010 2010-Jan 20100101 |
| PublicationDateYYYYMMDD | 2010-01-01 |
| PublicationDate_xml | – month: 01 year: 2010 text: 2010-Jan. |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: United States |
| PublicationTitle | IEEE transactions on image processing |
| PublicationTitleAbbrev | TIP |
| PublicationTitleAlternate | IEEE Trans Image Process |
| PublicationYear | 2010 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
| References | ref13 ref12 ref15 wipf (ref17) 2004 ref14 ref30 ref11 ref10 ref2 wipf (ref19) 2007 ref1 ref16 bishop (ref22) 2006 (ref31) 0 mardia (ref23) 1979 tipping (ref27) 2003 donoho (ref29) 2006 golub (ref24) 1996 ref26 ref25 ref20 palmer (ref18) 2006 ref21 ref28 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref28 doi: 10.1109/TSP.2008.2005866 – ident: ref5 doi: 10.1002/mrm.21391 – ident: ref10 doi: 10.1073/pnas.0502269102 – ident: ref1 doi: 10.1109/TIT.2005.862083 – ident: ref15 doi: 10.1162/15324430152748236 – ident: ref13 doi: 10.1109/TSP.2007.914345 – year: 0 ident: ref31 publication-title: Sparselab – ident: ref20 doi: 10.1162/089976601753196003 – ident: ref14 doi: 10.1145/1390156.1390271 – ident: ref16 doi: 10.1109/TPAMI.2003.1227989 – ident: ref4 doi: 10.1007/s00041-008-9043-z – ident: ref26 doi: 10.1109/83.743857 – year: 2006 ident: ref22 publication-title: Pattern Recognition and Machine Learning – year: 1979 ident: ref23 publication-title: Multivariate Analysis – ident: ref3 doi: 10.1016/j.jco.2007.04.002 – ident: ref30 doi: 10.1016/j.sigpro.2005.05.029 – ident: ref7 doi: 10.1137/S1064827596304010 – start-page: 1059 year: 2006 ident: ref18 publication-title: Advances in Neural Information Processing Systems 18 – ident: ref11 doi: 10.1109/TSP.2007.916124 – ident: ref9 doi: 10.1109/TIT.2007.909108 – ident: ref12 doi: 10.1109/TSP.2004.831016 – ident: ref25 doi: 10.1162/neco.1992.4.3.415 – year: 2006 ident: ref29 publication-title: Sparse Solution of Underdetermined Linear Equations by Stagewise Orthogonal Matching Pursuit – year: 1996 ident: ref24 publication-title: Matrix Computations Johns Hopkins Studies in Math Sciences – ident: ref8 doi: 10.1109/JSTSP.2007.910281 – year: 2007 ident: ref19 article-title: performance analysis of latent variable models with sparse priors publication-title: IEEE Int Conf Acoustics Speech and Signal Processing (ICASSP) – ident: ref2 doi: 10.1109/TIT.2006.871582 – ident: ref21 doi: 10.1109/TIP.2007.916051 – year: 2003 ident: ref27 article-title: fast marginal likelihood maximisation for sparse bayesian models publication-title: Proc 5th Int Workshop Artificial Intelligence and Statistics – year: 2004 ident: ref17 article-title: perspectives on sparse bayesian learning publication-title: Advances in neural information processing systems – ident: ref6 doi: 10.1109/MSP.2007.914732 |
| SSID | ssj0014516 |
| Score | 2.5432777 |
| Snippet | In this paper, we model the components of the compressive sensing (CS) problem, i.e., the signal acquisition process, the unknown signal coefficients and the... |
| SourceID | proquest pubmed pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 53 |
| SubjectTerms | Algorithm design and analysis Applied sciences Bayesian methods compressive sensing Detection, estimation, filtering, equalization, prediction Exact sciences and technology Image coding Image processing Image reconstruction Image sampling Image sensors Information, signal and communications theory inverse problems Reconstruction algorithms relevance vector machine (RVM) Signal and communications theory Signal processing Signal sampling Signal, noise sparse Bayesian learning Telecommunications and information theory Time measurement |
| Title | Bayesian Compressive Sensing Using Laplace Priors |
| URI | https://ieeexplore.ieee.org/document/5256324 https://www.ncbi.nlm.nih.gov/pubmed/19775966 https://www.proquest.com/docview/734195084 |
| Volume | 19 |
| WOSCitedRecordID | wos000272844000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1941-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014516 issn: 1057-7149 databaseCode: RIE dateStart: 19920101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ni9swEB2S0EN72N0m_Uh3N-jQS6Fu4tjSWMdt2WUXQgg0LbkZWR8lUJwSJ4H999XIjtNCW-jNYNkWM5L1pHkzD-CtFqhsGlNMXagoVa6IiolSEU4VKcOaxIQM768znM-z1UouOvC-zYWx1gbymf1AlyGWbzZ6T0dlY-7XZw8AutBFFHWuVhsxIMHZENnkGKGH_ceQ5ESOlw-LujAlqYVnMkjxeNjDZSiNeFqNgrwKkSNV5e3jamGLvyPPsALdnf9f3y_grEGa7KYeGs-hY8s-nDeokzVzuurDs19KEg4g_qgeLSVWMvpTBJLswbLPRHMvv7FAMGAzFZhcbLFdb7bVC_hyd7v8dB81sgqRTuN0F6EWFp0TWaYyNMhdYmLu0IrCGI0JV5j6XYadkJKYxyOJE6bgZuocSu5EYpKX0Cs3pX0NTEqXFh7RSWt0isIVSaKNJdJc7HdKRTGE8dG8uW5qjpP0xfc87D0mMve-ISVMmTe-GcK79okfdb2Nf7QdkJ3bdo2JhzD6zYPtfY-EpMg4HwI7ujT3k4kiJKq0m32VI1W385DVv-NV7epTJ5oR8-bPH72EpzWvgA5nrqC32-7tNTzRh9262o78gF1lozBgfwIYeeO8 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED6VDgl44Ddb2QZ-4AWJ0IbEdvy4TatAK1UlCuItcvxjQprSqWkr7b_H57gBJEDaW6Q4iXVnx599390HcKIYlyaNMabOZJRKW0RFT8qIX0hUhtWJ9hnedwM-HGb392LUgrMmF8YY48ln5hwvfSxfT9Qcj8q61K3PDgCswAdUzgrZWk3MACVnfWyT8og74L8MSvZEd3w1qktTol54JrwYjwM-VPjiiE_rkRdYQXqkrJyFbC1t8Tb29GtQf-v_er8NmwFrkm_14NiBlil3YSvgThJmdbULG8-KEu5B_F3-M5haSfBf4WmyC0NukOhe_iaeYkAG0nO5yGj6MJlW-3Db_zn-cRkFYYVIpXE6i7hihlvLskxmXHNqEx1Tyw0rtFY8oZKnbp9heqgl5hBJYpkuqL6wlgtqWaKTA2iXk9J8AiKETQuH6YTRKuXMFkmitEHaXOz2SkXRge7SvLkKVcdR_OJP7ncfPZE736AWpsiDbzpw2jzxt6648U7bPbRz0y6YuANHLzzY3HdYSLCM0g6QpUtzN50wRiJLM5lXOcf6dg60und8rF391IkwYg5f_-gxrF2Orwf54Gr46zOs1ywDPKr5Au3ZdG6-wqpazB6q6ZEfto_AauYd |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+Compressive+Sensing+Using+Laplace+Priors&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=DERIN+BABACAN%2C+S&rft.au=MOLINA%2C+Rafael&rft.au=KATSAGGELOS%2C+Aggelos+K&rft.date=2010&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1057-7149&rft.volume=19&rft.issue=1&rft.spage=53&rft.epage=63&rft_id=info:doi/10.1109%2Ftip.2009.2032894&rft.externalDBID=n%2Fa&rft.externalDocID=22396855 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |