A mixed-integer programming model for identifying intuitive ambulance dispatching policies
Markov decision process models and algorithms can be used to identify optimal policies for dispatching ambulances to spatially distributed customers, where the optimal policies indicate the ambulance to dispatch to each customer type in each state. Since the optimal solutions are dependent on Markov...
Gespeichert in:
| Veröffentlicht in: | The Journal of the Operational Research Society Jg. ahead-of-print; H. ahead-of-print; S. 1 - 12 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Taylor & Francis
02.11.2023
|
| Schlagworte: | |
| ISSN: | 0160-5682, 1476-9360 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Markov decision process models and algorithms can be used to identify optimal policies for dispatching ambulances to spatially distributed customers, where the optimal policies indicate the ambulance to dispatch to each customer type in each state. Since the optimal solutions are dependent on Markov state variables, they may not always correspond to a simple set of rules when implementing the policies in practice. Restricted policies that conform to a priority list for each type of customer may be desirable for use in practice, since such policies are transparent, explainable, and easy to implement. A priority list policy is an ordered list of ambulances that indicates the preferred order to dispatch the ambulances to a customer type subject to ambulance availability. This paper proposes a constrained Markov decision process model for identifying optimal priority list policies that is formulated as a mixed integer programming model, does not extend the Markov state space, and can be solved using standard algorithms. A series of computational examples illustrate the benefit of intuitive policies. The optimal mixed integer programming solutions to the computational examples have objective function values that are close to those of the unrestricted model and are superior to those of heuristics. |
|---|---|
| AbstractList | Markov decision process models and algorithms can be used to identify optimal policies for dispatching ambulances to spatially distributed customers, where the optimal policies indicate the ambulance to dispatch to each customer type in each state. Since the optimal solutions are dependent on Markov state variables, they may not always correspond to a simple set of rules when implementing the policies in practice. Restricted policies that conform to a priority list for each type of customer may be desirable for use in practice, since such policies are transparent, explainable, and easy to implement. A priority list policy is an ordered list of ambulances that indicates the preferred order to dispatch the ambulances to a customer type subject to ambulance availability. This paper proposes a constrained Markov decision process model for identifying optimal priority list policies that is formulated as a mixed integer programming model, does not extend the Markov state space, and can be solved using standard algorithms. A series of computational examples illustrate the benefit of intuitive policies. The optimal mixed integer programming solutions to the computational examples have objective function values that are close to those of the unrestricted model and are superior to those of heuristics. |
| Author | Albert, Laura A. |
| Author_xml | – sequence: 1 givenname: Laura A. orcidid: 0000-0001-7079-4473 surname: Albert fullname: Albert, Laura A. organization: University of Wisconsin-Madison |
| BookMark | eNqFkMtOwzAQRS1UJNrCJyDlB1LsJHVisaGqeEmV2MCGjeXYkzIosSPbBfr3JGrZsIDNXGnmnlmcGZlYZ4GQS0YXjFb0ijJOl7zKFhnNhsFywQt-QqasKHkqck4nZDp20rF0RmYhvFNKBWViSl5XSYdfYFK0Ebbgk967rVddh3abdM5AmzTOJ2jARmz243Zo7jDiBySqq3etshoSg6FXUb-N9961qBHCOTltVBvg4phz8nJ3-7x-SDdP94_r1SbVBStiWmpuRMUzXgrIS1FV3ADjS80Yr7kSHIqy0myIQpSZpqwqFa1NlhvNBLBa53NyffirvQvBQyM1RhXR2egVtpJROWqSP5rkqEkeNQ308hfde-yU3__L3Rw4tIOgTn063xoZ1b51vvGDFAwy__vFN68Uge0 |
| CitedBy_id | crossref_primary_10_2139_ssrn_4386239 crossref_primary_10_3390_app14188178 crossref_primary_10_3389_ffutr_2025_1540502 |
| Cites_doi | 10.1016/0305-0548(74)90076-8 10.1016/j.inffus.2019.12.012 10.1002/9780470316887 10.1287/msom.1120.0411 10.1007/978-0-387-88843-9_9 10.1287/mnsc.31.2.235 10.1016/j.cie.2013.01.002 10.1057/palgrave.jors.2602473 10.1080/01605682.2021.1999181 10.1007/s10729-016-9368-0 10.1007/s10479-009-0677-2 10.1016/j.ejor.2020.03.041 10.1016/j.ejor.2021.11.051 10.1002/nav.20267 10.1111/j.1937-5956.2012.01362.x 10.1057/palgrave.jors.2601991 10.1016/j.tre.2021.102405 10.1287/inte.2016.0860 10.1057/jors.2013.95 10.1287/ijoc.2019.0930 10.1073/pnas.1900654116 10.1016/j.omega.2018.12.009 10.1007/s10729-017-9409-3 10.1287/opre.1080.0591 10.1080/0740817X.2012.665200 10.1016/j.cor.2016.11.013 10.1057/jors.2014.83 10.1287/trsc.2015.0610 10.1609/aimag.v38i3.2741 10.1016/j.ejor.2011.10.043 |
| ContentType | Journal Article |
| Copyright | Operational Research Society 2022 2022 |
| Copyright_xml | – notice: Operational Research Society 2022 2022 |
| DBID | AAYXX CITATION |
| DOI | 10.1080/01605682.2022.2139646 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) Computer Science Business |
| EISSN | 1476-9360 |
| EndPage | 12 |
| ExternalDocumentID | 10_1080_01605682_2022_2139646 2139646 |
| Genre | Research Article |
| GroupedDBID | -~X .DC 0BK 0R~ 29L 30N 3R3 4.4 5GY 7WY 8R4 8R5 AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABJNI ABKVW ABLIJ ABLJU ABMNI ABPAQ ABPPZ ABXUL ABXYU ABYYQ ACGFO ACHQT ACIWK ACNCT ACREN ACTIO ADEPB ADFRT ADGTB ADMHG AEISY AENEX AEXYK AEYOC AFAIT AFRVT AFTQD AGAYW AGDLA AHAJD AHDZW AIYEW AJRNO AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMTXH AQRUH AQTUD ASPBG AVWKF AWYRJ BLEHA CCCUG CS3 DGEBU DU5 EBS F5P JAV JST KYCEM LJTGL M4Z MS~ O9- P2P Q2X RNANH ROSJB RPC RSV RTWRZ SOJ TAJZE TASJS TBQAZ TDBHL TEN TFL TFT TFW TN5 TTHFI TUROJ U5U WH7 XSW ZGOLN ~02 AAYXX CITATION |
| ID | FETCH-LOGICAL-c414t-7c6d9862679e379886de165c116b6a96e478c16e44972c0187a0bd23dc19e1bc3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000878959900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0160-5682 |
| IngestDate | Sat Nov 29 06:38:29 EST 2025 Tue Nov 18 22:25:25 EST 2025 Mon Oct 20 23:47:00 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | ahead-of-print |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c414t-7c6d9862679e379886de165c116b6a96e478c16e44972c0187a0bd23dc19e1bc3 |
| ORCID | 0000-0001-7079-4473 |
| OpenAccessLink | https://figshare.com/articles/dataset/A_mixed-integer_programming_model_for_identifying_intuitive_ambulance_dispatching_policies/21505070 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1080_01605682_2022_2139646 crossref_primary_10_1080_01605682_2022_2139646 informaworld_taylorfrancis_310_1080_01605682_2022_2139646 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-02 |
| PublicationDateYYYYMMDD | 2023-11-02 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationTitle | The Journal of the Operational Research Society |
| PublicationYear | 2023 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | e_1_3_2_27_1 e_1_3_2_28_1 e_1_3_2_29_1 e_1_3_2_20_1 e_1_3_2_21_1 e_1_3_2_22_1 e_1_3_2_23_1 e_1_3_2_24_1 e_1_3_2_25_1 e_1_3_2_26_1 e_1_3_2_16_1 e_1_3_2_9_1 e_1_3_2_17_1 e_1_3_2_8_1 e_1_3_2_18_1 e_1_3_2_7_1 e_1_3_2_19_1 e_1_3_2_2_1 e_1_3_2_31_1 e_1_3_2_30_1 e_1_3_2_10_1 e_1_3_2_11_1 e_1_3_2_32_1 e_1_3_2_6_1 e_1_3_2_12_1 Altman E. (e_1_3_2_3_1) 1999 e_1_3_2_5_1 e_1_3_2_13_1 e_1_3_2_4_1 e_1_3_2_14_1 e_1_3_2_15_1 |
| References_xml | – ident: e_1_3_2_18_1 doi: 10.1016/0305-0548(74)90076-8 – ident: e_1_3_2_5_1 doi: 10.1016/j.inffus.2019.12.012 – ident: e_1_3_2_23_1 doi: 10.1002/9780470316887 – ident: e_1_3_2_21_1 doi: 10.1287/msom.1120.0411 – ident: e_1_3_2_10_1 doi: 10.1007/978-0-387-88843-9_9 – ident: e_1_3_2_16_1 doi: 10.1287/mnsc.31.2.235 – ident: e_1_3_2_28_1 doi: 10.1016/j.cie.2013.01.002 – ident: e_1_3_2_27_1 doi: 10.1057/palgrave.jors.2602473 – ident: e_1_3_2_11_1 doi: 10.1080/01605682.2021.1999181 – ident: e_1_3_2_15_1 doi: 10.1007/s10729-016-9368-0 – ident: e_1_3_2_9_1 doi: 10.1007/s10479-009-0677-2 – ident: e_1_3_2_7_1 doi: 10.1016/j.ejor.2020.03.041 – ident: e_1_3_2_24_1 doi: 10.1016/j.ejor.2021.11.051 – ident: e_1_3_2_12_1 doi: 10.1002/nav.20267 – ident: e_1_3_2_2_1 doi: 10.1111/j.1937-5956.2012.01362.x – ident: e_1_3_2_13_1 doi: 10.1057/palgrave.jors.2601991 – ident: e_1_3_2_32_1 doi: 10.1016/j.tre.2021.102405 – ident: e_1_3_2_19_1 doi: 10.1287/inte.2016.0860 – ident: e_1_3_2_6_1 doi: 10.1057/jors.2013.95 – ident: e_1_3_2_17_1 doi: 10.1287/ijoc.2019.0930 – ident: e_1_3_2_22_1 doi: 10.1073/pnas.1900654116 – ident: e_1_3_2_25_1 doi: 10.1016/j.omega.2018.12.009 – ident: e_1_3_2_31_1 doi: 10.1007/s10729-017-9409-3 – ident: e_1_3_2_8_1 doi: 10.1287/opre.1080.0591 – ident: e_1_3_2_20_1 doi: 10.1080/0740817X.2012.665200 – ident: e_1_3_2_30_1 doi: 10.1016/j.cor.2016.11.013 – ident: e_1_3_2_29_1 doi: 10.1057/jors.2014.83 – ident: e_1_3_2_4_1 doi: 10.1287/trsc.2015.0610 – ident: e_1_3_2_14_1 doi: 10.1609/aimag.v38i3.2741 – ident: e_1_3_2_26_1 doi: 10.1016/j.ejor.2011.10.043 – volume-title: Constrained Markov decision processes year: 1999 ident: e_1_3_2_3_1 |
| SSID | ssj0009019 |
| Score | 2.403792 |
| Snippet | Markov decision process models and algorithms can be used to identify optimal policies for dispatching ambulances to spatially distributed customers, where the... |
| SourceID | crossref informaworld |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Ambulance dispatching constrained Markov decision processes mixed integer programming |
| Title | A mixed-integer programming model for identifying intuitive ambulance dispatching policies |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01605682.2022.2139646 |
| Volume | ahead-of-print |
| WOSCitedRecordID | wos000878959900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1476-9360 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009019 issn: 0160-5682 databaseCode: TFW dateStart: 19500301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8MwGH6RIaIH56ri_CIHD3qoNm2XNschDk_Dw8ThpaRJCoNtytqJP9-8aarbQT3opYXSpx_5fBOe93kALkRopp08Vb6MceuGMe6bqDU1q5RcCqq0DGRtNpEMh-l4zB8cm7B0tEpcQxe1UIQdq7Fzi7xsGHE3KIrWYymmUYXmYGIYFqPotonskdQ3Gjx9ye4G1toDET5Cmhye756yNjutaZeuzDqD9j987x7supCT9Os20oENPfdgq2G8e9BunB2I6-ge7KzIFHrQcddLculUqq_24blPZpN3rXwrOGHAjuk1MxBi_XWI-S0ysYnANpmKmDuXlqpExCxfTrG9ETUxQ1plCZ0EDSPMm8oDeBzcjW7vfWfUYGqYxpWfSKY4Lo0SriMUQGNKU9aTlLKcCc50nKSSmlPMk1CiDaAIchVGSlKuTaOIDqE1f5nrIyAppZLrohdqnsdMCR5EqOimWRAJ85KiC3FTQZl0KuZopjHNaCN26ko7w9LOXGl34foT9lrLePwG4Ku1n1V2_6SozU6y6Efs8R-wJ7CNhvY22zE8hVa1WOoz2JRv1aRcnNvG_QEc3vN4 |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFL2CgngMlBYQ5emBAYZAnKROPCJEVUTpVETFEiW2K0VqC2pTxOfj6zjQDsAASyJFOXnY10-dew7AWeLpYSeNpCMC3LphjDt61hrpVUoqEiqVcEVhNhF2u1G_z-dzYZBWiWvoQSEUYfpqbNy4GV1S4q5QFa3JIsyj8vRBT2JYwJZhBd3pkNbXaz19Ce-6xtwDIQ5iyiye7x6zMD4tqJfOjTut6n988TZs2VknuS7CpAZLalyHtZL0Xodqae5AbFuvw-acUmEdavb6lJxboeqLHXi-JqPsXUnHaE5osCV7jTSEGIsdov-LZCYX2ORTEX3nzLCVSDJKZ0MMOSIz3avlhtNJ0DNCv2m6C4-t295N27FeDbqSaZA7oWCS4-oo5MpHDTQmFWVNQSlLWcKZCsJIUH0KeOgJdAJM3FR6vhSUKx0X_h5Uxi9jtQ8kolRwNWh6iqcBkwl3fRR1U8z1E_2SQQOCsoZiYYXM0U9jGNNS79SWdoylHdvSbsDlJ-y1UPL4DcDnqz_OzRbKoPA7if0fsQd_wJ7Cerv30Ik7d937Q9hAf3uT_OgdQSWfzNQxrIq3PJtOTkykfwB-5veZ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwED1BQQgGPgqI8umBAYZAnKROPFZABAJVHUAgliixHalSW6omRfx8fI4DZQAGWBIpyosd-2yfrbv3AI5TTy87WSQdEeDRDWPc0V5rpHcpmUipVMIVldhE2O1GT0-8Z6MJCxtWiXvovCKKMHM1Du6xzOuIuHMkRWuzCNOoPH3RPgwL2DwsMPQHtEnfx4-fvLuu0fZAiIOYOonnu898WZ6-kJfOLDvx2j9UeB1Wrc9JOpWRbMCcGjVhqQ55b8JaLe1A7EhvwsoMT2ETNuzzgpxYmurTTXjukGH_TUnHME5osA31GmoIMQI7RP8W6ZtMYJNNRfSbUxOrRNJhNh2gwRHZ13NaaSI6CSpG6JKKLXiIr-4vrh2r1KC7mAalEwomOe6NQq58ZEBjUlHWFpSyjKWcqSCMBNW3gIeeQB3A1M2k50tBudJW4W9DY_QyUjtAIkoFV3nbUzwLmEy56yOlm2Kun-pC8hYEdQclwtKYo5rGIKE126lt7QRbO7Gt3YKzD9i44vH4DcBnez8pzQFKXqmdJP6P2N0_YI9gqXcZJ3c33ds9WEZxe5P56O1Do5xM1QEsiteyX0wOjZ2_A2UR9j0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+mixed-integer+programming+model+for+identifying+intuitive+ambulance+dispatching+policies&rft.jtitle=The+Journal+of+the+Operational+Research+Society&rft.au=Albert%2C+Laura+A.&rft.date=2023-11-02&rft.pub=Taylor+%26+Francis&rft.issn=0160-5682&rft.eissn=1476-9360&rft.volume=ahead-of-print&rft.issue=ahead-of-print&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1080%2F01605682.2022.2139646&rft.externalDocID=2139646 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0160-5682&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0160-5682&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0160-5682&client=summon |