Innovative Second-Generation Wavelets Construction With Recurrent Neural Networks for Solar Radiation Forecasting

Solar radiation prediction is an important challenge for the electrical engineer because it is used to estimate the power developed by commercial photovoltaic modules. This paper deals with the problem of solar radiation prediction based on observed meteorological data. A 2-day forecast is obtained...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems Vol. 23; no. 11; pp. 1805 - 1815
Main Authors: Capizzi, G., Napoli, C., Bonanno, F.
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.11.2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2162-237X, 2162-2388, 2162-2388
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Solar radiation prediction is an important challenge for the electrical engineer because it is used to estimate the power developed by commercial photovoltaic modules. This paper deals with the problem of solar radiation prediction based on observed meteorological data. A 2-day forecast is obtained by using novel wavelet recurrent neural networks (WRNNs). In fact, these WRNNS are used to exploit the correlation between solar radiation and timescale-related variations of wind speed, humidity, and temperature. The input to the selected WRNN is provided by timescale-related bands of wavelet coefficients obtained from meteorological time series. The experimental setup available at the University of Catania, Italy, provided this information. The novelty of this approach is that the proposed WRNN performs the prediction in the wavelet domain and, in addition, also performs the inverse wavelet transform, giving the predicted signal as output. The obtained simulation results show a very low root-mean-square error compared to the results of the solar radiation prediction approaches obtained by hybrid neural networks reported in the recent literature.
AbstractList Solar radiation prediction is an important challenge for the electrical engineer because it is used to estimate the power developed by commercial photovoltaic modules. This paper deals with the problem of solar radiation prediction based on observed meteorological data. A 2-day forecast is obtained by using novel wavelet recurrent neural networks (WRNNs). In fact, these WRNNS are used to exploit the correlation between solar radiation and timescale-related variations of wind speed, humidity, and temperature. The input to the selected WRNN is provided by timescale-related bands of wavelet coefficients obtained from meteorological time series. The experimental setup available at the University of Catania, Italy, provided this information. The novelty of this approach is that the proposed WRNN performs the prediction in the wavelet domain and, in addition, also performs the inverse wavelet transform, giving the predicted signal as output. The obtained simulation results show a very low root-mean-square error compared to the results of the solar radiation prediction approaches obtained by hybrid neural networks reported in the recent literature.
Solar radiation prediction is an important challenge for the electrical engineer because it is used to estimate the power developed by commercial photovoltaic modules. This paper deals with the problem of solar radiation prediction based on observed meteorological data. A 2-day forecast is obtained by using novel wavelet recurrent neural networks (WRNNs). In fact, these WRNNS are used to exploit the correlation between solar radiation and timescale-related variations of wind speed, humidity, and temperature. The input to the selected WRNN is provided by timescale-related bands of wavelet coefficients obtained from meteorological time series. The experimental setup available at the University of Catania, Italy, provided this information. The novelty of this approach is that the proposed WRNN performs the prediction in the wavelet domain and, in addition, also performs the inverse wavelet transform, giving the predicted signal as output. The obtained simulation results show a very low root-mean-square error compared to the results of the solar radiation prediction approaches obtained by hybrid neural networks reported in the recent literature.Solar radiation prediction is an important challenge for the electrical engineer because it is used to estimate the power developed by commercial photovoltaic modules. This paper deals with the problem of solar radiation prediction based on observed meteorological data. A 2-day forecast is obtained by using novel wavelet recurrent neural networks (WRNNs). In fact, these WRNNS are used to exploit the correlation between solar radiation and timescale-related variations of wind speed, humidity, and temperature. The input to the selected WRNN is provided by timescale-related bands of wavelet coefficients obtained from meteorological time series. The experimental setup available at the University of Catania, Italy, provided this information. The novelty of this approach is that the proposed WRNN performs the prediction in the wavelet domain and, in addition, also performs the inverse wavelet transform, giving the predicted signal as output. The obtained simulation results show a very low root-mean-square error compared to the results of the solar radiation prediction approaches obtained by hybrid neural networks reported in the recent literature.
Author Bonanno, F.
Capizzi, G.
Napoli, C.
Author_xml – sequence: 1
  givenname: G.
  surname: Capizzi
  fullname: Capizzi, G.
  email: gcapizzi@diees.unict.it
  organization: Dept. of Electr., Electron., & Inf. Eng., Univ. of Catania, Catania, Italy
– sequence: 2
  givenname: C.
  surname: Napoli
  fullname: Napoli, C.
  email: chnapoli@gmail.com
  organization: Dept. of Phys. & Astron., Univ. of Catania, Catania, Italy
– sequence: 3
  givenname: F.
  surname: Bonanno
  fullname: Bonanno, F.
  email: francesco.bonanno2@ingpec.eu
  organization: Dept. of Electr., Electron., & Inf. Eng., Univ. of Catania, Catania, Italy
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26593205$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24808074$$D View this record in MEDLINE/PubMed
BookMark eNqFkk9r3DAQxUVJaP40X6CFYiiBXryVZEm2jmVJ0sCyhWxKexOyPG6VeqVEkjf021cbbxLIodVlhuH3htHjHaE95x0g9JbgGSFYfrpeLherGcWEziglgjPxCh3mhpa0apq9p77-cYBOYrzB-QnMBZOv0QFlDW5wzQ7R3aVzfqOT3UCxAuNdV16Ag5An3hXf9QYGSLGYexdTGM00telXcQVmDAFcKpYwBj3kku59-B2L3odi5Qcdiivd2WnRuQ9gdEzW_XyD9ns9RDjZ1WP07fzsev6lXHy9uJx_XpSGEZZKUTcCGMhW14b2nGkJRBPW8o4BaTk1tcYidwRj1mgDhGpJO8YAg2klFtUx-jjtvQ3-boSY1NpGA8OgHfgxKsJpxTCTNf8_WhEueJU9zuiHF-iNH4PLH1GEkKqWhMg6U-931NiuoVO3wa51-KMefc_A6Q7Q0eihD9oZG585wWVF8fayZuJM8DEG6JWx6cHSFLQdFMFqmwb1kAa1TYPapSFL6Qvp4_Z_it5NIgsATwKRbxFcVH8Bdwu_tA
CODEN ITNNAL
CitedBy_id crossref_primary_10_1016_j_enconman_2020_112909
crossref_primary_10_1016_j_rser_2013_08_055
crossref_primary_10_3390_app121910056
crossref_primary_10_1016_j_rser_2017_08_017
crossref_primary_10_3390_app10134588
crossref_primary_10_1016_j_asoc_2017_08_057
crossref_primary_10_1016_j_jclepro_2020_120357
crossref_primary_10_1109_TSMC_2021_3093519
crossref_primary_10_1016_j_bspc_2023_104675
crossref_primary_10_1177_1687814017715983
crossref_primary_10_1007_s00202_023_02134_5
crossref_primary_10_1007_s11390_017_1746_7
crossref_primary_10_1016_j_apenergy_2024_123750
crossref_primary_10_3390_app9183670
crossref_primary_10_1007_s11063_018_9893_6
crossref_primary_10_1016_j_neunet_2016_07_004
crossref_primary_10_3390_en10070971
crossref_primary_10_1109_TII_2018_2882598
crossref_primary_10_3390_en18010205
crossref_primary_10_1016_j_pecs_2018_10_003
crossref_primary_10_3390_su10124863
crossref_primary_10_1007_s10479_018_2879_y
crossref_primary_10_3390_en15186624
crossref_primary_10_1016_j_renene_2021_02_161
crossref_primary_10_1080_10298436_2025_2472839
crossref_primary_10_1109_TNNLS_2015_2480709
crossref_primary_10_3390_en11040819
crossref_primary_10_1016_j_bica_2018_07_019
crossref_primary_10_1155_2015_807527
crossref_primary_10_1016_j_jastp_2015_09_014
crossref_primary_10_1109_TII_2020_3000184
crossref_primary_10_1109_TSG_2017_2718241
crossref_primary_10_1007_s11063_020_10350_4
crossref_primary_10_1016_j_renene_2016_01_058
crossref_primary_10_1016_j_automatica_2019_108688
crossref_primary_10_1016_j_apenergy_2016_01_130
crossref_primary_10_1109_ACCESS_2021_3122826
crossref_primary_10_1109_TSTE_2014_2313600
crossref_primary_10_1016_j_seta_2021_101248
crossref_primary_10_1049_iet_rpg_2016_1036
crossref_primary_10_1109_JSYST_2014_2305494
crossref_primary_10_1109_TNNLS_2021_3098866
crossref_primary_10_1038_s41598_024_54181_y
crossref_primary_10_1016_j_apenergy_2018_02_160
crossref_primary_10_1080_02522667_2022_2042093
crossref_primary_10_1109_JSYST_2015_2409888
crossref_primary_10_1016_j_jocs_2017_04_008
crossref_primary_10_1007_s40095_022_00501_9
crossref_primary_10_1016_j_renene_2018_06_022
crossref_primary_10_3390_su14084427
crossref_primary_10_1049_iet_rpg_2018_5779
crossref_primary_10_3390_en13153987
crossref_primary_10_1016_j_solener_2017_08_086
crossref_primary_10_1007_s00704_018_2627_x
crossref_primary_10_1109_TNNLS_2013_2276053
crossref_primary_10_1109_ACCESS_2019_2932999
crossref_primary_10_3390_su132111893
crossref_primary_10_1109_TNNLS_2019_2946414
crossref_primary_10_1016_j_eswa_2022_117831
crossref_primary_10_1016_j_eswa_2022_119215
crossref_primary_10_1016_j_energy_2018_08_207
crossref_primary_10_1109_TNNLS_2025_3529995
crossref_primary_10_3390_fractalfract7010093
crossref_primary_10_1016_j_enconman_2018_12_103
crossref_primary_10_1109_JSYST_2020_3007184
crossref_primary_10_1155_2014_858260
crossref_primary_10_1080_01430750_2022_2068069
crossref_primary_10_1016_j_pecs_2013_06_002
crossref_primary_10_3390_su12052011
crossref_primary_10_3390_su142417005
crossref_primary_10_1049_iet_rpg_2018_5649
crossref_primary_10_1016_j_micpro_2020_103001
crossref_primary_10_1109_TNNLS_2019_2918795
crossref_primary_10_1016_j_jclepro_2022_135680
crossref_primary_10_1109_TSTE_2018_2888548
crossref_primary_10_1007_s11069_024_06837_1
crossref_primary_10_1007_s12667_016_0218_4
crossref_primary_10_1080_01430750_2018_1507929
crossref_primary_10_55544_jrasb_3_6_22
crossref_primary_10_1007_s00521_017_3225_z
crossref_primary_10_1016_j_jclepro_2019_01_096
crossref_primary_10_3390_electronics9101717
crossref_primary_10_1109_TII_2020_2996235
crossref_primary_10_1016_j_energy_2022_123785
crossref_primary_10_1109_TII_2020_2987096
crossref_primary_10_1049_iet_gtd_2015_0175
crossref_primary_10_1016_j_ijepes_2020_106041
Cites_doi 10.1002/047084535X
10.1109/ICASSP.1998.681737
10.1080/09540098908915631
10.1109/TPWRS.2006.873421
10.1007/978-3-642-29347-4_3
10.1109/TSTE.2010.2076359
10.1109/18.57199
10.1109/72.279188
10.1017/S1743921311006806
10.1109/TNNLS.2012.2198074
10.1109/72.165591
10.1109/TSTE.2011.2157540
10.1016/0741-983X(89)90076-3
10.1016/0038-092X(92)90068-L
10.1002/0471427950
10.1109/TNN.2011.2170180
10.1016/S0960-1481(98)00068-8
10.1016/0927-0248(92)90125-9
10.1117/12.205451
10.1162/neco.1989.1.2.270
10.1016/0038-092X(91)90023-P
10.1016/S0038-092X(98)00078-4
10.1016/S0038-092X(99)00017-1
10.1137/S0036141095289051
10.1016/0168-1923(94)90103-1
10.1109/TNN.2010.2041068
10.1109/CIFER.2003.1196279
10.1017/S174392131100679X
10.1109/TSTE.2011.2159254
10.1109/TNN.2010.2066285
10.1016/0167-2789(86)90244-7
ContentType Journal Article
Copyright 2014 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2012
Copyright_xml – notice: 2014 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2012
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2012.2216546
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
MEDLINE
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Mathematics
Applied Sciences
Statistics
EISSN 2162-2388
EndPage 1815
ExternalDocumentID 2794254901
24808074
26593205
10_1109_TNNLS_2012_2216546
6320656
Genre orig-research
Journal Article
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
IQODW
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c414t-6786e4e9ba7c2f54a9e1a14b5d4e1b52c7a06e1b10048ace12a92d44e0ecb9063
IEDL.DBID RIE
ISICitedReferencesCount 136
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000310370300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sat Sep 27 17:06:26 EDT 2025
Tue Oct 07 09:32:47 EDT 2025
Sun Jun 29 12:41:52 EDT 2025
Mon Jul 21 05:54:45 EDT 2025
Wed Apr 02 07:15:13 EDT 2025
Sat Nov 29 01:39:46 EST 2025
Tue Nov 18 22:30:52 EST 2025
Tue Aug 26 17:19:20 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 11
Keywords Recurrent neural nets
Wind
Correlation
wavelet theory
recurrent neural networks (RNNs)
Methodological time series
Time series
Inverse transformation
Neural network
Experimental study
Mean square error
Photovoltaic power plant
Wavelet transformation
University
Humidity
prediction
Observation data
photovoltaic (PV) module
Solar radiation
Root mean square value
Meteorology
second-generation wavelets
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-6786e4e9ba7c2f54a9e1a14b5d4e1b52c7a06e1b10048ace12a92d44e0ecb9063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 24808074
PQID 1113791197
PQPubID 85436
PageCount 11
ParticipantIDs pubmed_primary_24808074
proquest_journals_1113791197
proquest_miscellaneous_1315653546
ieee_primary_6320656
proquest_miscellaneous_1523404975
crossref_citationtrail_10_1109_TNNLS_2012_2216546
crossref_primary_10_1109_TNNLS_2012_2216546
pascalfrancis_primary_26593205
PublicationCentury 2000
PublicationDate 2012-11-01
PublicationDateYYYYMMDD 2012-11-01
PublicationDate_xml – month: 11
  year: 2012
  text: 2012-11-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2012
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
mellit (ref20) 2004; 1
ref30
ref10
ref1
ref39
ref17
ref38
ref19
ref18
haykin (ref28) 2008
hokoi (ref3) 1990; 2
bonanno (ref32) 2010
yan (ref35) 2012; 23
capizzi (ref33) 2012
ref24
mallat (ref22) 2009
ref23
ref26
ref25
strang (ref16) 1996
ref21
kalogirou (ref11) 2002
ref27
ref29
ref8
ref7
ref9
ref4
mellit (ref2) 2003; 1
ref6
ref5
References_xml – ident: ref27
  doi: 10.1002/047084535X
– ident: ref29
  doi: 10.1109/ICASSP.1998.681737
– ident: ref26
  doi: 10.1080/09540098908915631
– ident: ref18
  doi: 10.1109/TPWRS.2006.873421
– start-page: 21
  year: 2012
  ident: ref33
  article-title: An innovative hybrid neuro-wavelet method for reconstruction of missing data in astronomical photometric surveys
  publication-title: Proc 11th Int Conf Artif Intell Soft Comput
  doi: 10.1007/978-3-642-29347-4_3
– ident: ref17
  doi: 10.1109/TSTE.2010.2076359
– start-page: 586
  year: 2010
  ident: ref32
  article-title: A wavelet based prediction for wind and solar energy for long-term simulation of integrated generation systems
  publication-title: Proc Int Symp Power Electron Elect Drives Autom Motion
– ident: ref13
  doi: 10.1109/18.57199
– ident: ref24
  doi: 10.1109/72.279188
– ident: ref31
  doi: 10.1017/S1743921311006806
– volume: 23
  start-page: 1028
  year: 2012
  ident: ref35
  article-title: Toward automatic time-series forecasting using neural networks
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2012.2198074
– year: 2008
  ident: ref28
  publication-title: Neural Networks and Learning Machines
– ident: ref15
  doi: 10.1109/72.165591
– ident: ref4
  doi: 10.1109/TSTE.2011.2157540
– ident: ref7
  doi: 10.1016/0741-983X(89)90076-3
– ident: ref5
  doi: 10.1016/0038-092X(92)90068-L
– ident: ref34
  doi: 10.1002/0471427950
– ident: ref37
  doi: 10.1109/TNN.2011.2170180
– ident: ref9
  doi: 10.1016/S0960-1481(98)00068-8
– year: 1996
  ident: ref16
  publication-title: Wavelets and Filter Banks
– year: 2009
  ident: ref22
  publication-title: The Sparse Way
– ident: ref1
  doi: 10.1016/0927-0248(92)90125-9
– ident: ref14
  doi: 10.1117/12.205451
– ident: ref25
  doi: 10.1162/neco.1989.1.2.270
– ident: ref6
  doi: 10.1016/0038-092X(91)90023-P
– ident: ref8
  doi: 10.1016/S0038-092X(98)00078-4
– ident: ref10
  doi: 10.1016/S0038-092X(99)00017-1
– volume: 1
  start-page: 353
  year: 2003
  ident: ref2
  article-title: Modelling of sizing the photovoltaic system parameters using artificial neural network
  publication-title: Proc IEEE Conf Control Appl
– ident: ref21
  doi: 10.1137/S0036141095289051
– ident: ref12
  doi: 10.1016/0168-1923(94)90103-1
– ident: ref39
  doi: 10.1109/TNN.2010.2041068
– ident: ref36
  doi: 10.1109/CIFER.2003.1196279
– volume: 1
  start-page: 95
  year: 2004
  ident: ref20
  article-title: An adaptive radial basis function, networks with IIR filter for sizing of stand-alone PV systems
  publication-title: Proc 10th IFAC/INFORS/IMACS/IFIP Symp Large Scale Syst Theory Appl
– ident: ref30
  doi: 10.1017/S174392131100679X
– start-page: 1
  year: 2002
  ident: ref11
  article-title: Prediction of maximum solar radiation using artificial neural networks
  publication-title: Proc World Renew Energy Congr
– ident: ref19
  doi: 10.1109/TSTE.2011.2159254
– volume: 2
  start-page: 245
  year: 1990
  ident: ref3
  article-title: Stochastic models of solar radiation and outdoor temperature
  publication-title: Proc Annu Conf Amer Soc Heat Refrigerat Air-Condition Eng
– ident: ref38
  doi: 10.1109/TNN.2010.2066285
– ident: ref23
  doi: 10.1016/0167-2789(86)90244-7
SSID ssj0000605649
Score 2.4678712
Snippet Solar radiation prediction is an important challenge for the electrical engineer because it is used to estimate the power developed by commercial photovoltaic...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1805
SubjectTerms Algorithms
Applied sciences
Artificial intelligence
Computer science; control theory; systems
Connectionism. Neural networks
Earth, ocean, space
Energy
Exact sciences and technology
External geophysics
Forecasting
Humans
Inference from stochastic processes; time series analysis
Mathematics
Meteorology
Methodological time series
Natural energy
Neural Networks (Computer)
Neurons
photovoltaic (PV) module
Photovoltaic conversion
prediction
Probability and statistics
Radiative transfer. Solar radiation
recurrent neural networks (RNNs)
Sciences and techniques of general use
second-generation wavelets
Solar Energy
Solar radiation
Statistics
Studies
Time series analysis
Vectors
Wavelet Analysis
wavelet theory
Wavelet transforms
Title Innovative Second-Generation Wavelets Construction With Recurrent Neural Networks for Solar Radiation Forecasting
URI https://ieeexplore.ieee.org/document/6320656
https://www.ncbi.nlm.nih.gov/pubmed/24808074
https://www.proquest.com/docview/1113791197
https://www.proquest.com/docview/1315653546
https://www.proquest.com/docview/1523404975
Volume 23
WOSCitedRecordID wos000310370300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB_a4oMvtrV-rLZHBN90283HJpfHIhaFskiv2ntbstksLcidutf-_c5ksysFK_gWSEKyOzNkJpn5_QDe6nknnQgqD8o3udIY7jjX2txLqRt6xyrihdu3c1NV8-XSftmC91MtTAghJp-FY2rGt_x27W_pquxES4Enpt6GbWPMUKs13acU6Jfr6O0KrkUupFmONTKFPbmsqvMFJXKJYyFiAQ-hACsCVTTq3pEUOVYoQ9L1-JO6gd3iYfczHkNnu__3AXvwJLmb7HTQj33YCqunsDtSObBk2Qfw83NiR70LbEExcpsPgNQkN3bliJ5i0zOi9xwBZ9nVzeaaXdB9PSE8MYL5wKWqIa-8Z-gNswUFzuyC8A_iFCIC9a6nVOtn8PXs4-WHT3liY8i94mqT46mmgwq2ccaLrlTOBu64aspWBd6UwhtXaGwRBN3c-cCFs6JVKhTBNxY9oeews1qvwktg0nZt49Gz6XhEtHcEaq8ajOWk59a4DPgokNonqHJizPhex5ClsHWUZ03yrJM8M3g3zfkxAHX8c_QBSWcamQSTweye3Kd-oUt0dIsyg8NREepk7D0FUdJYeo_N4M3UjWZKby9uFda3OEZioFzKuPSDY0ohFUZsBpd5MSjZnw0kXX31942_hsf0eUOR5CHsoCqEI3jk7zY3_a8Z2styPov28hsTiw9k
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9QwDLbGQIIXBoxBYYwg8Qbdmh9NL49o2rSJo0K7g91blaauNmm6A3rb30-cpkWTGBJvkZIoae0odmx_H8B7PWmlFahSVK5OlfbujrWNSZ2UuqY4VhYe3L5Pi7KcLBbm6wZ8HGthEDEkn-E-NUMsv1m5a3oqO9BS-BtT34P7uVKC99Va44tK5i1zHexdwbVIhSwWQ5VMZg7mZTmdUSqX2BcilPAQDrAiWMVC3bqUAssK5Ujazv-mtue3uNsADRfR8db_fcITeBwNTvap15CnsIHLZ7A1kDmweLa34edp5Ee9QTYjL7lJe0hqkhw7t0RQse4YEXwOkLPs_HJ9wc7oxZ4wnhgBffilyj6zvGPeHmYzcp3ZGSEghClEBepsR8nWz-Hb8dH88CSNfAypU1ytU3-vaVRoals40ebKGuSWqzpvFPI6F66wmfYtAqGbWIdcWCMapTBDVxtvC-3A5nK1xJfApGmb2nnbpuUB094SrL2qvTcnHTeFTYAPAqlcBCsnzoyrKjgtmamCPCuSZxXlmcCHcc6PHqrjn6O3STrjyCiYBPZuyX3sFzr3pm6WJ7A7KEIVj3tHbpQsDEVkE3g3dvuDStEXu8TVtR8jvaucy7D0nWNyIZX32Qq_zIteyf5sIOrqq79v_C08PJl_mVbT0_Lza3hEn9qXTO7CplcLfAMP3M36svu1F07Nb-kJEcM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Innovative+Second-Generation+Wavelets+Construction+With+Recurrent+Neural+Networks+for+Solar+Radiation+Forecasting&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Capizzi%2C+G.&rft.au=Napoli%2C+C.&rft.au=Bonanno%2C+F.&rft.date=2012-11-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=23&rft.issue=11&rft.spage=1805&rft.epage=1815&rft_id=info:doi/10.1109%2FTNNLS.2012.2216546&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2012_2216546
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon