FaceNet recognition algorithm subject to multiple constraints: Assessment of the performance

Literature has it that the performance of most face recognition algorithms still decline in multiple constrained environments (Occlusions and Expressions), despite the achieved successes of deep learning face recognition algorithms. Using expression variant test face images synthetically occluded at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific African Jg. 23; S. e02007
Hauptverfasser: Mensah, Joseph A., Appati, Justice K., Boateng, Elijah K.A, Ocran, Eric, Asiedu, Louis
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.03.2024
Elsevier
Schlagworte:
ISSN:2468-2276, 2468-2276
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Literature has it that the performance of most face recognition algorithms still decline in multiple constrained environments (Occlusions and Expressions), despite the achieved successes of deep learning face recognition algorithms. Using expression variant test face images synthetically occluded at 30% and 40% rates, the study evaluated the performance of FaceNet deep learning model for face recognition under the aforementioned constraints and when three (3) statistical multiple imputation methods (Multivariable Imputation using Chain Equations (MICE), MissForest and Regularized Expectation Maximization (RegEM)) are adopted for occlusion recovery. Results of the study showed improved recognition rates of the study algorithm when the imputation-based recovered faces were used for recognition compared with using their multiple constrained counterparts. However, test faces reconstructed with the MissForest imputation method were more accurately recognized using the FaceNet deep learning algorithm. Furthermore, the study demonstrated that some simple augmentation schemes sufficed to further enhance the performance of the FaceNet model. Specifically, the FaceNet algorithms gave the highest average recognition rates (85.19% and 79.5% for 30% and 40% occlusion levels respectively) under augmentation scheme IV (slight rotations, horizontal flipping, shearing, brightness adjustments, and stretching) using MissForest as the de-occlusion mechanism. The study also found that, no disparity existed in its performance with the choice of either Support Vector Machines (SVM) or City Block (CB) for classification under augmentation scheme IV. The study recommends using the MissForest imputation method in dealing with moderately high occluded test faces with varying expressions to enhance the performance of the FaceNet face recognition model.
AbstractList Literature has it that the performance of most face recognition algorithms still decline in multiple constrained environments (Occlusions and Expressions), despite the achieved successes of deep learning face recognition algorithms. Using expression variant test face images synthetically occluded at 30% and 40% rates, the study evaluated the performance of FaceNet deep learning model for face recognition under the aforementioned constraints and when three (3) statistical multiple imputation methods (Multivariable Imputation using Chain Equations (MICE), MissForest and Regularized Expectation Maximization (RegEM)) are adopted for occlusion recovery. Results of the study showed improved recognition rates of the study algorithm when the imputation-based recovered faces were used for recognition compared with using their multiple constrained counterparts. However, test faces reconstructed with the MissForest imputation method were more accurately recognized using the FaceNet deep learning algorithm. Furthermore, the study demonstrated that some simple augmentation schemes sufficed to further enhance the performance of the FaceNet model. Specifically, the FaceNet algorithms gave the highest average recognition rates (85.19% and 79.5% for 30% and 40% occlusion levels respectively) under augmentation scheme IV (slight rotations, horizontal flipping, shearing, brightness adjustments, and stretching) using MissForest as the de-occlusion mechanism. The study also found that, no disparity existed in its performance with the choice of either Support Vector Machines (SVM) or City Block (CB) for classification under augmentation scheme IV. The study recommends using the MissForest imputation method in dealing with moderately high occluded test faces with varying expressions to enhance the performance of the FaceNet face recognition model.
ArticleNumber e02007
Author Appati, Justice K.
Ocran, Eric
Mensah, Joseph A.
Boateng, Elijah K.A
Asiedu, Louis
Author_xml – sequence: 1
  givenname: Joseph A.
  surname: Mensah
  fullname: Mensah, Joseph A.
  organization: Department of Computer Science, Ashesi University, No. 1 University Avenue, Berekuso, Eastern Region, Ghana
– sequence: 2
  givenname: Justice K.
  orcidid: 0000-0003-2798-4524
  surname: Appati
  fullname: Appati, Justice K.
  organization: Department of Computer Science, College of Basic and Applied Sciences, University of Ghana, Ghana
– sequence: 3
  givenname: Elijah K.A
  surname: Boateng
  fullname: Boateng, Elijah K.A
  organization: Department of Computer Science, Ashesi University, No. 1 University Avenue, Berekuso, Eastern Region, Ghana
– sequence: 4
  givenname: Eric
  surname: Ocran
  fullname: Ocran, Eric
  organization: Department of Statistics and Actuarial Science, College of Basic and Applied Sciences, University of Ghana, Ghana
– sequence: 5
  givenname: Louis
  orcidid: 0000-0002-2859-1215
  surname: Asiedu
  fullname: Asiedu, Louis
  email: lasiedu@ug.edu.gh
  organization: Department of Statistics and Actuarial Science, College of Basic and Applied Sciences, University of Ghana, Ghana
BookMark eNqFkd9KwzAUh4NMcM49gTd5gc4k_ZNW8GIMp4OhN3onhDQ92VLaZiSZ4NvbriLihV7lEM7345zvXKJJZztA6JqSBSU0u6kXXhmpF4yweAGEEcLP0JQlWR4xxrPJj_oCzb2vCSEsoazgyRS9raWCJwjYgbK7zgRjOyybnXUm7Fvsj2UNKuBgcXtsgjk0gJXtfHDSdMHf4qX34H0LXcBW47AHfACnrWtlp-AKnWvZeJh_vTP0ur5_WT1G2-eHzWq5jVRCkxBlVJYl5TrRKZfAYp0BEEL7qRMOKk9Lnse5LIss1ylUhOmq0Gkl41JTTlgF8QxtxtzKylocnGml-xBWGnH6sG4npAtGNSB4EQMUrGJZzBPgPC9lATnNScUKxqnus-IxSznrvQP9nUeJGHyLWpx8i8G3GH33VPGLUibIQeZgqvmHvRtZ6BW9G3BDD_T6KtMfJfQ7mD_5T7O3oJI
CitedBy_id crossref_primary_10_59573_emsj_9_4__2025_34
Cites_doi 10.3846/20294913.2012.661205
10.1016/j.chemolab.2012.11.010
10.1109/MSP.2010.936726
10.1186/s12874-020-01080-1
10.1155/2014/519158
10.1016/j.patcog.2008.10.010
10.1177/0962280216666564
10.1155/2021/7060270
10.3390/s19224933
10.1111/rssb.12279
10.1007/s00259-022-05746-4
10.1002/cpe.6629
10.1007/s42519-022-00292-6
10.1049/bme2.12029
10.1155/2020/9127465
10.20473/jisebi.7.1.22-30
10.1038/srep21689
10.1007/s10462-017-9578-y
10.17485/ijst/2017/v10i19/110646
10.1002/sim.8468
10.1016/j.inffus.2020.09.006
10.1016/S0262-8856(02)00009-4
10.1080/00401706.1979.10489751
10.11591/ijai.v11.i1.pp388-396
10.1109/CVPR.2015.7298682
10.1136/bmjopen-2013-002847
10.1155/2021/4981394
10.1093/aje/kwt312
10.3390/app12105195
10.1109/TSP.2004.831018
10.1145/2393216.2393308
10.1016/j.compeleceng.2020.106700
10.1145/3190618
10.1097/RLI.0b013e3182899104
10.1093/bioinformatics/btr597
10.1186/s40537-019-0197-0
10.1016/j.visres.2005.10.028
10.1016/j.jmir.2014.02.002
10.1109/CVPR46437.2021.01212
10.1080/00949655.2018.1530773
10.1001/jamainternmed.2018.7117
10.1186/1471-2288-14-28
10.1002/sim.5894
10.1109/CVPR.2016.527
10.1016/j.envint.2020.105713
10.1002/wics.49
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.sciaf.2023.e02007
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2468-2276
ExternalDocumentID oai_doaj_org_article_793ee92d26374e778ba9e8180d29271f
10_1016_j_sciaf_2023_e02007
S2468227623004611
GroupedDBID 0R~
0SF
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ADBBV
ADVLN
AEXQZ
AFTJW
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
FDB
GROUPED_DOAJ
M41
M~E
NCXOZ
OK1
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c414t-61abb17f4f57ae23f6ee00124647ec85b7838ab968f5ed02fd9f5da3bf1702de3
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001138837100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2468-2276
IngestDate Fri Oct 03 12:53:21 EDT 2025
Thu Nov 13 04:31:44 EST 2025
Tue Nov 18 22:14:22 EST 2025
Tue Oct 01 02:39:09 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Occlusion
Varying expressions
MissForest
Augmentation schemes
MICE
FaceNet algorithm
RegEM
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-61abb17f4f57ae23f6ee00124647ec85b7838ab968f5ed02fd9f5da3bf1702de3
ORCID 0000-0002-2859-1215
0000-0003-2798-4524
OpenAccessLink https://doaj.org/article/793ee92d26374e778ba9e8180d29271f
ParticipantIDs doaj_primary_oai_doaj_org_article_793ee92d26374e778ba9e8180d29271f
crossref_primary_10_1016_j_sciaf_2023_e02007
crossref_citationtrail_10_1016_j_sciaf_2023_e02007
elsevier_sciencedirect_doi_10_1016_j_sciaf_2023_e02007
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationTitle Scientific African
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References H. Chen, Y. Wang, T. Guo, C. Xu, Y. Deng, Z. Liu, S. Ma, C. Xu, C. Xu, W. Gao, Pre-trained image processing transformer, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 12299–12310.
Josphineleela, Raja Rao, Shaikh, Sudhakar (b22) 2023
Liu, Wang, Zou, Xia, Pang (b37) 2020; 139
Waljee, Mukherjee, Singal, Zhang, Warren, Balis, Marrero, Zhu, Higgins (b46) 2013; 3
Pisner, Schnyer (b55) 2020
Ganapathiraju, Hamaker, Picone (b58) 2004; 52
Deng, Da, Shao, Jiang (b4) 2020; 85
Tian, Shi, Liu (b56) 2012; 18
Chen, Chang, Chuang, Jeng (b62) 2022; 12
I. Kemelmacher-Shlizerman, S.M. Seitz, D. Miller, E. Brossard, The megaface benchmark: 1 million faces for recognition at scale, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 4873–4882.
Stekhoven, Bühlmann (b45) 2012; 28
Goren, Wilson (b5) 2006; 46
Mukkamala, Janoski, Sung (b57) 2002
Liu, Brown (b34) 2013; 120
Min, Hadid, Dugelay (b8) 2014; 2014
Jonsson, Kittler, Li, Matas (b59) 2002; 20
Resche-Rigon, White, Bartlett, Peters, Thompson, Group (b41) 2013; 32
Oyelade, Ezugwu (b21) 2022; 34
Liang, Jia, Xue, Li, Luo (b36) 2018; 80
Hong, Lynn (b44) 2020; 20
Chang, Lee, Lee, Yoon, Yu, Han, Choi (b13) 2013; 48
Lahasan, Lutfi, San-Segundo (b7) 2019; 52
Wang, Casalino, Khullar (b19) 2019; 179
Mensah, Asiedu, Mettle, Iddi (b65) 2021; 2021
Bovik (b31) 2010
Li, Prieto, Mery, Flynn (b1) 2018
Fessler (b11) 2010; 27
Vargas, Mosavi, Ruiz (b17) 2017
Alyüz, Gökberk, Spreeuwers, Veldhuis, Akarun (b6) 2012
Piccialli, Di Somma, Giampaolo, Cuomo, Fortino (b20) 2021; 66
A.K. Singh, G.C. Nandi, Face recognition using facial symmetry, in: Proceedings of the Second International Conference on Computational Science, Engineering and Information Technology, 2012, pp. 550–554.
Adhinata, Rakhmadani, Wijayanto (b28) 2021; 7
Wang (b54) 2005
Nakagawa, Ohtsuka (b60) 2022; 16
Resche-Rigon, White (b43) 2018; 27
William, Rachmawanto, Santoso, Sari (b50) 2019
G.B. Huang, M. Mattar, T. Berg, E. Learned-Miller, Labeled faces in the wild: A database forstudying face recognition in unconstrained environments, in: Workshop on Faces in‘Real-Life’Images: Detection, Alignment, and Recognition, 2008.
Mammone, Turchi, Cristianini (b53) 2009; 1
Wu, Chen (b24) 2015
Le, Beuran, Tan (b35) 2018
Hughes, White, Seaman, Carpenter, Tilling, Sterne (b42) 2014; 14
Liu (b12) 2014; 45
F. Schroff, D. Kalenichenko, J. Philbin, Facenet: A unified embedding for face recognition and clustering, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 815–823.
Asiedu, Mettle, Mensah (b32) 2020; 2020
Sundararajan, Woodard (b23) 2018; 51
Deng, Chang, Ido, Long (b40) 2016; 6
Shah, Bartlett, Carpenter, Nicholas, Hemingway (b48) 2014; 179
Galiano, Toledo, Blanes, Herranz, Batzelis (b61) 2022
Brownlee (b26) 2019; 21
Shorten, Khoshgoftaar (b49) 2019; 6
Slade, Naylor (b38) 2020; 39
Pain, Egan, Chen (b9) 2022; 49
Adhinata, Tanjung, Widayat, Pasfica, Satura (b29) 2022
Golla, Sharma (b30) 2019
Solaro, Barbiero, Manzi, Ferrari (b47) 2018; 88
Tabian, Fu, Sharif Khodaei (b10) 2019; 19
Chhabra, Vashisht, Ranjan (b39) 2017; 10
Ayiah-Mensah, Asiedu, Mettle, Minkah (b66) 2021; 2021
Cheon, Kim (b3) 2009; 42
Asiedu, Mensah, Ayiah-Mensah, Mettle (b14) 2021; 2021
Shinde, Shah (b16) 2018
Anwarul, Dahiya (b2) 2020
Golub, Heath, Wahba (b33) 1979; 21
Vu, Trieu, Nguyen (b27) 2022; 11
Zeng, Veldhuis, Spreeuwers (b64) 2021; 10
Animasaun, Shah, Wakif, Mahanthesh, Sivaraj, Koríko (b15) 2022
Shah (10.1016/j.sciaf.2023.e02007_b48) 2014; 179
Shinde (10.1016/j.sciaf.2023.e02007_b16) 2018
Min (10.1016/j.sciaf.2023.e02007_b8) 2014; 2014
Deng (10.1016/j.sciaf.2023.e02007_b4) 2020; 85
Chang (10.1016/j.sciaf.2023.e02007_b13) 2013; 48
Resche-Rigon (10.1016/j.sciaf.2023.e02007_b41) 2013; 32
Nakagawa (10.1016/j.sciaf.2023.e02007_b60) 2022; 16
Wu (10.1016/j.sciaf.2023.e02007_b24) 2015
William (10.1016/j.sciaf.2023.e02007_b50) 2019
Adhinata (10.1016/j.sciaf.2023.e02007_b29) 2022
Oyelade (10.1016/j.sciaf.2023.e02007_b21) 2022; 34
Fessler (10.1016/j.sciaf.2023.e02007_b11) 2010; 27
Goren (10.1016/j.sciaf.2023.e02007_b5) 2006; 46
Chhabra (10.1016/j.sciaf.2023.e02007_b39) 2017; 10
Stekhoven (10.1016/j.sciaf.2023.e02007_b45) 2012; 28
Galiano (10.1016/j.sciaf.2023.e02007_b61) 2022
Tabian (10.1016/j.sciaf.2023.e02007_b10) 2019; 19
Ayiah-Mensah (10.1016/j.sciaf.2023.e02007_b66) 2021; 2021
10.1016/j.sciaf.2023.e02007_b18
Vargas (10.1016/j.sciaf.2023.e02007_b17) 2017
Pain (10.1016/j.sciaf.2023.e02007_b9) 2022; 49
Josphineleela (10.1016/j.sciaf.2023.e02007_b22) 2023
Anwarul (10.1016/j.sciaf.2023.e02007_b2) 2020
Liu (10.1016/j.sciaf.2023.e02007_b12) 2014; 45
Solaro (10.1016/j.sciaf.2023.e02007_b47) 2018; 88
Chen (10.1016/j.sciaf.2023.e02007_b62) 2022; 12
Li (10.1016/j.sciaf.2023.e02007_b1) 2018
Pisner (10.1016/j.sciaf.2023.e02007_b55) 2020
Hughes (10.1016/j.sciaf.2023.e02007_b42) 2014; 14
Slade (10.1016/j.sciaf.2023.e02007_b38) 2020; 39
Wang (10.1016/j.sciaf.2023.e02007_b19) 2019; 179
Mensah (10.1016/j.sciaf.2023.e02007_b65) 2021; 2021
Alyüz (10.1016/j.sciaf.2023.e02007_b6) 2012
Liang (10.1016/j.sciaf.2023.e02007_b36) 2018; 80
Mammone (10.1016/j.sciaf.2023.e02007_b53) 2009; 1
Liu (10.1016/j.sciaf.2023.e02007_b34) 2013; 120
Ganapathiraju (10.1016/j.sciaf.2023.e02007_b58) 2004; 52
Vu (10.1016/j.sciaf.2023.e02007_b27) 2022; 11
Bovik (10.1016/j.sciaf.2023.e02007_b31) 2010
Le (10.1016/j.sciaf.2023.e02007_b35) 2018
Liu (10.1016/j.sciaf.2023.e02007_b37) 2020; 139
Deng (10.1016/j.sciaf.2023.e02007_b40) 2016; 6
10.1016/j.sciaf.2023.e02007_b51
10.1016/j.sciaf.2023.e02007_b52
Zeng (10.1016/j.sciaf.2023.e02007_b64) 2021; 10
Waljee (10.1016/j.sciaf.2023.e02007_b46) 2013; 3
10.1016/j.sciaf.2023.e02007_b25
Wang (10.1016/j.sciaf.2023.e02007_b54) 2005
Golub (10.1016/j.sciaf.2023.e02007_b33) 1979; 21
Brownlee (10.1016/j.sciaf.2023.e02007_b26) 2019; 21
Asiedu (10.1016/j.sciaf.2023.e02007_b14) 2021; 2021
Jonsson (10.1016/j.sciaf.2023.e02007_b59) 2002; 20
Asiedu (10.1016/j.sciaf.2023.e02007_b32) 2020; 2020
10.1016/j.sciaf.2023.e02007_b63
Hong (10.1016/j.sciaf.2023.e02007_b44) 2020; 20
Mukkamala (10.1016/j.sciaf.2023.e02007_b57) 2002
Cheon (10.1016/j.sciaf.2023.e02007_b3) 2009; 42
Golla (10.1016/j.sciaf.2023.e02007_b30) 2019
Adhinata (10.1016/j.sciaf.2023.e02007_b28) 2021; 7
Animasaun (10.1016/j.sciaf.2023.e02007_b15) 2022
Piccialli (10.1016/j.sciaf.2023.e02007_b20) 2021; 66
Sundararajan (10.1016/j.sciaf.2023.e02007_b23) 2018; 51
Tian (10.1016/j.sciaf.2023.e02007_b56) 2012; 18
Resche-Rigon (10.1016/j.sciaf.2023.e02007_b43) 2018; 27
Lahasan (10.1016/j.sciaf.2023.e02007_b7) 2019; 52
Shorten (10.1016/j.sciaf.2023.e02007_b49) 2019; 6
References_xml – volume: 2021
  start-page: 1
  year: 2021
  end-page: 9
  ident: b66
  article-title: Recognition of augmented frontal face images using FFT-PCA/SVD algorithm
  publication-title: Appl. Comput. Intell. Soft Comput.
– reference: F. Schroff, D. Kalenichenko, J. Philbin, Facenet: A unified embedding for face recognition and clustering, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 815–823.
– year: 2022
  ident: b15
  article-title: Ratio of Momentum Diffusivity to Thermal Diffusivity: Introduction, Meta-Analysis, and Scrutinization
– volume: 3
  year: 2013
  ident: b46
  article-title: Comparison of imputation methods for missing laboratory data in medicine
  publication-title: BMJ Open
– volume: 19
  start-page: 4933
  year: 2019
  ident: b10
  article-title: A convolutional neural network for impact detection and characterization of complex composite structures
  publication-title: Sensors
– volume: 16
  start-page: 62
  year: 2022
  ident: b60
  article-title: An asymptotic expansion for the distribution of euclidean distance-based discriminant function in normal populations
  publication-title: J. Stat. Theory Pract.
– reference: A.K. Singh, G.C. Nandi, Face recognition using facial symmetry, in: Proceedings of the Second International Conference on Computational Science, Engineering and Information Technology, 2012, pp. 550–554.
– year: 2017
  ident: b17
  article-title: Deep learning: a review
– volume: 21
  year: 2019
  ident: b26
  article-title: How to develop a face recognition system using FaceNet in keras
  publication-title: Mach. Learn. Mastery
– volume: 11
  start-page: 388
  year: 2022
  ident: b27
  article-title: Implementation of FaceNet and support vector machine in a real-time web-based timekeeping application
  publication-title: IAES Int. J. Artif. Intell.
– volume: 6
  start-page: 21689
  year: 2016
  ident: b40
  article-title: Multiple imputation for general missing data patterns in the presence of high-dimensional data
  publication-title: Sci. Rep.
– volume: 34
  year: 2022
  ident: b21
  article-title: Characterization of abnormalities in breast cancer images using nature-inspired metaheuristic optimized convolutional neural networks model
  publication-title: Concurr. Comput.: Pract. Exper.
– volume: 88
  start-page: 3588
  year: 2018
  end-page: 3619
  ident: b47
  article-title: A simulation comparison of imputation methods for quantitative data in the presence of multiple data patterns
  publication-title: J. Stat. Comput. Simul.
– volume: 139
  year: 2020
  ident: b37
  article-title: Spatial imputation for air pollutants data sets via low rank matrix completion algorithm
  publication-title: Environ. Int.
– start-page: 1
  year: 2023
  end-page: 17
  ident: b22
  article-title: A multi-stage faster RCNN-based isplinception for skin disease classification using novel optimization
  publication-title: J. Digit. Imaging
– volume: 179
  start-page: 764
  year: 2014
  end-page: 774
  ident: b48
  article-title: Comparison of random forest and parametric imputation models for imputing missing data using MICE: a CALIBER study
  publication-title: Am. J. Epidemiol.
– year: 2022
  ident: b61
  article-title: Photovoltaic single-diode model parametrization. An application to the calculus of the euclidean distance to an IV curve
– reference: I. Kemelmacher-Shlizerman, S.M. Seitz, D. Miller, E. Brossard, The megaface benchmark: 1 million faces for recognition at scale, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 4873–4882.
– start-page: 1
  year: 2018
  end-page: 6
  ident: b16
  article-title: A review of machine learning and deep learning applications
  publication-title: 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA)
– start-page: 317
  year: 2019
  end-page: 325
  ident: b30
  article-title: Performance evaluation of facenet on low resolution face images
  publication-title: Communication, Networks and Computing: First International Conference, CNC 2018, Gwalior, India, March 22-24, 2018, Revised Selected Papers 1
– volume: 18
  start-page: 5
  year: 2012
  end-page: 33
  ident: b56
  article-title: Recent advances on support vector machines research
  publication-title: Technol. Econ. Dev. Econ.
– start-page: 1702
  year: 2002
  end-page: 1707
  ident: b57
  article-title: Intrusion detection using neural networks and support vector machines
  publication-title: Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN’02 (Cat. No. 02CH37290), Vol. 2
– volume: 179
  start-page: 293
  year: 2019
  end-page: 294
  ident: b19
  article-title: Deep learning in medicine– promise, progress, and challenges
  publication-title: JAMA Internal Med.
– year: 2005
  ident: b54
  article-title: Support Vector Machines: Theory and Applications, Vol. 177
– volume: 49
  start-page: 3098
  year: 2022
  end-page: 3118
  ident: b9
  article-title: Deep learning-based image reconstruction and post-processing methods in positron emission tomography for low-dose imaging and resolution enhancement
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 12
  ident: b65
  article-title: Assessing the performance of DWT-PCA/SVD face recognition algorithm under multiple constraints
  publication-title: J. Appl. Math.
– volume: 66
  start-page: 111
  year: 2021
  end-page: 137
  ident: b20
  article-title: A survey on deep learning in medicine: Why, how and when?
  publication-title: Inf. Fusion
– volume: 7
  start-page: 22
  year: 2021
  end-page: 30
  ident: b28
  article-title: Fatigue detection on face image using FaceNet algorithm and K-nearest neighbor classifier
  publication-title: J. Inf. Syst. Eng. Bus. Intell.
– reference: G.B. Huang, M. Mattar, T. Berg, E. Learned-Miller, Labeled faces in the wild: A database forstudying face recognition in unconstrained environments, in: Workshop on Faces in‘Real-Life’Images: Detection, Alignment, and Recognition, 2008.
– volume: 52
  start-page: 2348
  year: 2004
  end-page: 2355
  ident: b58
  article-title: Applications of support vector machines to speech recognition
  publication-title: IEEE Trans. Signal Process.
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 11
  ident: b14
  article-title: Assessing the effect of data augmentation on occluded frontal faces using DWT-PCA/SVD recognition algorithm
  publication-title: Adv. Multimed.
– volume: 51
  start-page: 1
  year: 2018
  end-page: 34
  ident: b23
  article-title: Deep learning for biometrics: A survey
  publication-title: ACM Comput. Surv.
– volume: 6
  start-page: 1
  year: 2019
  end-page: 48
  ident: b49
  article-title: A survey on image data augmentation for deep learning
  publication-title: J. Big Data
– volume: 46
  start-page: 1253
  year: 2006
  end-page: 1262
  ident: b5
  article-title: Quantifying facial expression recognition across viewing conditions
  publication-title: Vis. Res.
– volume: 10
  start-page: 1
  year: 2017
  end-page: 7
  ident: b39
  article-title: A comparison of multiple imputation methods for data with missing values
  publication-title: Indian J. Sci. Technol.
– volume: 14
  start-page: 1
  year: 2014
  end-page: 10
  ident: b42
  article-title: Joint modelling rationale for chained equations
  publication-title: BMC Med. Res. Methodol.
– volume: 21
  start-page: 215
  year: 1979
  end-page: 223
  ident: b33
  article-title: Generalized cross-validation as a method for choosing a good ridge parameter
  publication-title: Technometrics
– year: 2018
  ident: b1
  article-title: Face recognition in low quality images: A survey
– volume: 10
  start-page: 581
  year: 2021
  end-page: 606
  ident: b64
  article-title: A survey of face recognition techniques under occlusion
  publication-title: IET Biom.
– volume: 120
  start-page: 106
  year: 2013
  end-page: 115
  ident: b34
  article-title: Comparison of five iterative imputation methods for multivariate classification
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 27
  start-page: 1634
  year: 2018
  end-page: 1649
  ident: b43
  article-title: Multiple imputation by chained equations for systematically and sporadically missing multilevel data
  publication-title: Stat. Methods Med. Res.
– volume: 32
  start-page: 4890
  year: 2013
  end-page: 4905
  ident: b41
  article-title: Multiple imputation for handling systematically missing confounders in meta-analysis of individual participant data
  publication-title: Stat. Med.
– volume: 48
  start-page: 598
  year: 2013
  end-page: 606
  ident: b13
  article-title: Assessment of a model-based, iterative reconstruction algorithm (MBIR) regarding image quality and dose reduction in liver computed tomography
  publication-title: Invest. Radiol.
– start-page: 1
  year: 2019
  end-page: 6
  ident: b50
  article-title: Face recognition using facenet (survey, performance test, and comparison)
  publication-title: 2019 Fourth International Conference on Informatics and Computing (ICIC)
– start-page: 101
  year: 2020
  end-page: 121
  ident: b55
  article-title: Support vector machine
  publication-title: Machine Learning
– volume: 39
  start-page: 1156
  year: 2020
  end-page: 1166
  ident: b38
  article-title: A fair comparison of tree-based and parametric methods in multiple imputation by chained equations
  publication-title: Stat. Med.
– volume: 85
  year: 2020
  ident: b4
  article-title: A multi-scale three-dimensional face recognition approach with sparse representation-based classifier and fusion of local covariance descriptors
  publication-title: Comput. Electr. Eng.
– volume: 12
  start-page: 5195
  year: 2022
  ident: b62
  article-title: Rough IPFCM clustering algorithm and its application on smart phones with euclidean distance
  publication-title: Appl. Sci.
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 8
  ident: b32
  article-title: Recognition of reconstructed frontal face images using fft-pca/svd algorithm
  publication-title: J. Appl. Math.
– reference: H. Chen, Y. Wang, T. Guo, C. Xu, Y. Deng, Z. Liu, S. Ma, C. Xu, C. Xu, W. Gao, Pre-trained image processing transformer, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 12299–12310.
– start-page: 247
  year: 2018
  end-page: 251
  ident: b35
  article-title: Comparison of the most influential missing data imputation algorithms for healthcare
  publication-title: 2018 10th International Conference on Knowledge and Systems Engineering (KSE)
– volume: 20
  start-page: 1
  year: 2020
  end-page: 12
  ident: b44
  article-title: Accuracy of random-forest-based imputation of missing data in the presence of non-normality, non-linearity, and interaction
  publication-title: BMC Med. Res. Methodol.
– year: 2010
  ident: b31
  article-title: Handbook of Image and Video Processing
– volume: 28
  start-page: 112
  year: 2012
  end-page: 118
  ident: b45
  article-title: MissForest– non-parametric missing value imputation for mixed-type data
  publication-title: Bioinformatics
– volume: 1
  start-page: 283
  year: 2009
  end-page: 289
  ident: b53
  article-title: Support vector machines
  publication-title: Wiley Interdiscip. Rev. Comput. Stat.
– volume: 80
  start-page: 899
  year: 2018
  end-page: 926
  ident: b36
  article-title: An imputation–regularized optimization algorithm for high dimensional missing data problems and beyond
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– start-page: 495
  year: 2020
  end-page: 514
  ident: b2
  article-title: A comprehensive review on face recognition methods and factors affecting facial recognition accuracy
  publication-title: Proceedings of ICRIC 2019: Recent Innovations in Computing
– volume: 52
  start-page: 949
  year: 2019
  end-page: 979
  ident: b7
  article-title: A survey on techniques to handle face recognition challenges: occlusion, single sample per subject and expression
  publication-title: Artif. Intell. Rev.
– volume: 45
  start-page: 131
  year: 2014
  end-page: 136
  ident: b12
  article-title: Model-based iterative reconstruction: a promising algorithm for today’s computed tomography imaging
  publication-title: J. Med. Imaging Radiat. Sci.
– start-page: 111
  year: 2012
  end-page: 118
  ident: b6
  article-title: Robust 3D face recognition in the presence of realistic occlusions
  publication-title: 2012 5th IAPR International Conference on Biometrics (ICB)
– volume: 20
  start-page: 369
  year: 2002
  end-page: 375
  ident: b59
  article-title: Support vector machines for face authentication
  publication-title: Image Vis. Comput.
– volume: 2014
  year: 2014
  ident: b8
  article-title: Efficient detection of occlusion prior to robust face recognition
  publication-title: Sci. World J.
– start-page: 542
  year: 2015
  end-page: 546
  ident: b24
  article-title: Image recognition based on deep learning
  publication-title: 2015 Chinese Automation Congress (CAC)
– volume: 27
  start-page: 81
  year: 2010
  end-page: 89
  ident: b11
  article-title: Model-based image reconstruction for MRI
  publication-title: IEEE Signal Process. Mag.
– start-page: 189
  year: 2022
  end-page: 202
  ident: b29
  article-title: Real-time masked face recognition using FaceNet and supervised machine learning
  publication-title: Proceedings of the 2nd International Conference on Electronics, Biomedical Engineering, and Health Informatics: ICEBEHI 2021, 3–4 November, Surabaya, Indonesia
– volume: 42
  start-page: 1340
  year: 2009
  end-page: 1350
  ident: b3
  article-title: Natural facial expression recognition using differential-AAM and manifold learning
  publication-title: Pattern Recognit.
– year: 2005
  ident: 10.1016/j.sciaf.2023.e02007_b54
– volume: 21
  year: 2019
  ident: 10.1016/j.sciaf.2023.e02007_b26
  article-title: How to develop a face recognition system using FaceNet in keras
  publication-title: Mach. Learn. Mastery
– volume: 18
  start-page: 5
  issue: 1
  year: 2012
  ident: 10.1016/j.sciaf.2023.e02007_b56
  article-title: Recent advances on support vector machines research
  publication-title: Technol. Econ. Dev. Econ.
  doi: 10.3846/20294913.2012.661205
– volume: 120
  start-page: 106
  year: 2013
  ident: 10.1016/j.sciaf.2023.e02007_b34
  article-title: Comparison of five iterative imputation methods for multivariate classification
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2012.11.010
– volume: 27
  start-page: 81
  issue: 4
  year: 2010
  ident: 10.1016/j.sciaf.2023.e02007_b11
  article-title: Model-based image reconstruction for MRI
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2010.936726
– volume: 20
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.sciaf.2023.e02007_b44
  article-title: Accuracy of random-forest-based imputation of missing data in the presence of non-normality, non-linearity, and interaction
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/s12874-020-01080-1
– year: 2022
  ident: 10.1016/j.sciaf.2023.e02007_b15
– volume: 2014
  year: 2014
  ident: 10.1016/j.sciaf.2023.e02007_b8
  article-title: Efficient detection of occlusion prior to robust face recognition
  publication-title: Sci. World J.
  doi: 10.1155/2014/519158
– start-page: 1702
  year: 2002
  ident: 10.1016/j.sciaf.2023.e02007_b57
  article-title: Intrusion detection using neural networks and support vector machines
– volume: 42
  start-page: 1340
  issue: 7
  year: 2009
  ident: 10.1016/j.sciaf.2023.e02007_b3
  article-title: Natural facial expression recognition using differential-AAM and manifold learning
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2008.10.010
– start-page: 1
  year: 2023
  ident: 10.1016/j.sciaf.2023.e02007_b22
  article-title: A multi-stage faster RCNN-based isplinception for skin disease classification using novel optimization
  publication-title: J. Digit. Imaging
– volume: 27
  start-page: 1634
  issue: 6
  year: 2018
  ident: 10.1016/j.sciaf.2023.e02007_b43
  article-title: Multiple imputation by chained equations for systematically and sporadically missing multilevel data
  publication-title: Stat. Methods Med. Res.
  doi: 10.1177/0962280216666564
– volume: 2021
  start-page: 1
  year: 2021
  ident: 10.1016/j.sciaf.2023.e02007_b65
  article-title: Assessing the performance of DWT-PCA/SVD face recognition algorithm under multiple constraints
  publication-title: J. Appl. Math.
  doi: 10.1155/2021/7060270
– volume: 2021
  start-page: 1
  year: 2021
  ident: 10.1016/j.sciaf.2023.e02007_b66
  article-title: Recognition of augmented frontal face images using FFT-PCA/SVD algorithm
  publication-title: Appl. Comput. Intell. Soft Comput.
– volume: 19
  start-page: 4933
  issue: 22
  year: 2019
  ident: 10.1016/j.sciaf.2023.e02007_b10
  article-title: A convolutional neural network for impact detection and characterization of complex composite structures
  publication-title: Sensors
  doi: 10.3390/s19224933
– volume: 80
  start-page: 899
  issue: 5
  year: 2018
  ident: 10.1016/j.sciaf.2023.e02007_b36
  article-title: An imputation–regularized optimization algorithm for high dimensional missing data problems and beyond
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/rssb.12279
– volume: 49
  start-page: 3098
  issue: 9
  year: 2022
  ident: 10.1016/j.sciaf.2023.e02007_b9
  article-title: Deep learning-based image reconstruction and post-processing methods in positron emission tomography for low-dose imaging and resolution enhancement
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-022-05746-4
– volume: 34
  issue: 4
  year: 2022
  ident: 10.1016/j.sciaf.2023.e02007_b21
  article-title: Characterization of abnormalities in breast cancer images using nature-inspired metaheuristic optimized convolutional neural networks model
  publication-title: Concurr. Comput.: Pract. Exper.
  doi: 10.1002/cpe.6629
– start-page: 542
  year: 2015
  ident: 10.1016/j.sciaf.2023.e02007_b24
  article-title: Image recognition based on deep learning
– volume: 16
  start-page: 62
  issue: 4
  year: 2022
  ident: 10.1016/j.sciaf.2023.e02007_b60
  article-title: An asymptotic expansion for the distribution of euclidean distance-based discriminant function in normal populations
  publication-title: J. Stat. Theory Pract.
  doi: 10.1007/s42519-022-00292-6
– volume: 10
  start-page: 581
  issue: 6
  year: 2021
  ident: 10.1016/j.sciaf.2023.e02007_b64
  article-title: A survey of face recognition techniques under occlusion
  publication-title: IET Biom.
  doi: 10.1049/bme2.12029
– volume: 2020
  start-page: 1
  year: 2020
  ident: 10.1016/j.sciaf.2023.e02007_b32
  article-title: Recognition of reconstructed frontal face images using fft-pca/svd algorithm
  publication-title: J. Appl. Math.
  doi: 10.1155/2020/9127465
– volume: 7
  start-page: 22
  issue: 1
  year: 2021
  ident: 10.1016/j.sciaf.2023.e02007_b28
  article-title: Fatigue detection on face image using FaceNet algorithm and K-nearest neighbor classifier
  publication-title: J. Inf. Syst. Eng. Bus. Intell.
  doi: 10.20473/jisebi.7.1.22-30
– volume: 6
  start-page: 21689
  issue: 1
  year: 2016
  ident: 10.1016/j.sciaf.2023.e02007_b40
  article-title: Multiple imputation for general missing data patterns in the presence of high-dimensional data
  publication-title: Sci. Rep.
  doi: 10.1038/srep21689
– volume: 52
  start-page: 949
  year: 2019
  ident: 10.1016/j.sciaf.2023.e02007_b7
  article-title: A survey on techniques to handle face recognition challenges: occlusion, single sample per subject and expression
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-017-9578-y
– volume: 10
  start-page: 1
  issue: 19
  year: 2017
  ident: 10.1016/j.sciaf.2023.e02007_b39
  article-title: A comparison of multiple imputation methods for data with missing values
  publication-title: Indian J. Sci. Technol.
  doi: 10.17485/ijst/2017/v10i19/110646
– volume: 39
  start-page: 1156
  issue: 8
  year: 2020
  ident: 10.1016/j.sciaf.2023.e02007_b38
  article-title: A fair comparison of tree-based and parametric methods in multiple imputation by chained equations
  publication-title: Stat. Med.
  doi: 10.1002/sim.8468
– volume: 66
  start-page: 111
  year: 2021
  ident: 10.1016/j.sciaf.2023.e02007_b20
  article-title: A survey on deep learning in medicine: Why, how and when?
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.09.006
– ident: 10.1016/j.sciaf.2023.e02007_b51
– volume: 20
  start-page: 369
  issue: 5–6
  year: 2002
  ident: 10.1016/j.sciaf.2023.e02007_b59
  article-title: Support vector machines for face authentication
  publication-title: Image Vis. Comput.
  doi: 10.1016/S0262-8856(02)00009-4
– year: 2010
  ident: 10.1016/j.sciaf.2023.e02007_b31
– volume: 21
  start-page: 215
  issue: 2
  year: 1979
  ident: 10.1016/j.sciaf.2023.e02007_b33
  article-title: Generalized cross-validation as a method for choosing a good ridge parameter
  publication-title: Technometrics
  doi: 10.1080/00401706.1979.10489751
– volume: 11
  start-page: 388
  issue: 1
  year: 2022
  ident: 10.1016/j.sciaf.2023.e02007_b27
  article-title: Implementation of FaceNet and support vector machine in a real-time web-based timekeeping application
  publication-title: IAES Int. J. Artif. Intell.
  doi: 10.11591/ijai.v11.i1.pp388-396
– year: 2022
  ident: 10.1016/j.sciaf.2023.e02007_b61
– ident: 10.1016/j.sciaf.2023.e02007_b25
  doi: 10.1109/CVPR.2015.7298682
– volume: 3
  issue: 8
  year: 2013
  ident: 10.1016/j.sciaf.2023.e02007_b46
  article-title: Comparison of imputation methods for missing laboratory data in medicine
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2013-002847
– volume: 2021
  start-page: 1
  year: 2021
  ident: 10.1016/j.sciaf.2023.e02007_b14
  article-title: Assessing the effect of data augmentation on occluded frontal faces using DWT-PCA/SVD recognition algorithm
  publication-title: Adv. Multimed.
  doi: 10.1155/2021/4981394
– volume: 179
  start-page: 764
  issue: 6
  year: 2014
  ident: 10.1016/j.sciaf.2023.e02007_b48
  article-title: Comparison of random forest and parametric imputation models for imputing missing data using MICE: a CALIBER study
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/aje/kwt312
– year: 2018
  ident: 10.1016/j.sciaf.2023.e02007_b1
– volume: 12
  start-page: 5195
  issue: 10
  year: 2022
  ident: 10.1016/j.sciaf.2023.e02007_b62
  article-title: Rough IPFCM clustering algorithm and its application on smart phones with euclidean distance
  publication-title: Appl. Sci.
  doi: 10.3390/app12105195
– volume: 52
  start-page: 2348
  issue: 8
  year: 2004
  ident: 10.1016/j.sciaf.2023.e02007_b58
  article-title: Applications of support vector machines to speech recognition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2004.831018
– start-page: 111
  year: 2012
  ident: 10.1016/j.sciaf.2023.e02007_b6
  article-title: Robust 3D face recognition in the presence of realistic occlusions
– start-page: 247
  year: 2018
  ident: 10.1016/j.sciaf.2023.e02007_b35
  article-title: Comparison of the most influential missing data imputation algorithms for healthcare
– ident: 10.1016/j.sciaf.2023.e02007_b63
  doi: 10.1145/2393216.2393308
– start-page: 189
  year: 2022
  ident: 10.1016/j.sciaf.2023.e02007_b29
  article-title: Real-time masked face recognition using FaceNet and supervised machine learning
– year: 2017
  ident: 10.1016/j.sciaf.2023.e02007_b17
– volume: 85
  year: 2020
  ident: 10.1016/j.sciaf.2023.e02007_b4
  article-title: A multi-scale three-dimensional face recognition approach with sparse representation-based classifier and fusion of local covariance descriptors
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2020.106700
– start-page: 495
  year: 2020
  ident: 10.1016/j.sciaf.2023.e02007_b2
  article-title: A comprehensive review on face recognition methods and factors affecting facial recognition accuracy
– volume: 51
  start-page: 1
  issue: 3
  year: 2018
  ident: 10.1016/j.sciaf.2023.e02007_b23
  article-title: Deep learning for biometrics: A survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3190618
– start-page: 1
  year: 2018
  ident: 10.1016/j.sciaf.2023.e02007_b16
  article-title: A review of machine learning and deep learning applications
– volume: 48
  start-page: 598
  issue: 8
  year: 2013
  ident: 10.1016/j.sciaf.2023.e02007_b13
  article-title: Assessment of a model-based, iterative reconstruction algorithm (MBIR) regarding image quality and dose reduction in liver computed tomography
  publication-title: Invest. Radiol.
  doi: 10.1097/RLI.0b013e3182899104
– volume: 28
  start-page: 112
  issue: 1
  year: 2012
  ident: 10.1016/j.sciaf.2023.e02007_b45
  article-title: MissForest– non-parametric missing value imputation for mixed-type data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr597
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.sciaf.2023.e02007_b49
  article-title: A survey on image data augmentation for deep learning
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0197-0
– volume: 46
  start-page: 1253
  issue: 8–9
  year: 2006
  ident: 10.1016/j.sciaf.2023.e02007_b5
  article-title: Quantifying facial expression recognition across viewing conditions
  publication-title: Vis. Res.
  doi: 10.1016/j.visres.2005.10.028
– volume: 45
  start-page: 131
  issue: 2
  year: 2014
  ident: 10.1016/j.sciaf.2023.e02007_b12
  article-title: Model-based iterative reconstruction: a promising algorithm for today’s computed tomography imaging
  publication-title: J. Med. Imaging Radiat. Sci.
  doi: 10.1016/j.jmir.2014.02.002
– ident: 10.1016/j.sciaf.2023.e02007_b18
  doi: 10.1109/CVPR46437.2021.01212
– volume: 88
  start-page: 3588
  issue: 18
  year: 2018
  ident: 10.1016/j.sciaf.2023.e02007_b47
  article-title: A simulation comparison of imputation methods for quantitative data in the presence of multiple data patterns
  publication-title: J. Stat. Comput. Simul.
  doi: 10.1080/00949655.2018.1530773
– volume: 179
  start-page: 293
  issue: 3
  year: 2019
  ident: 10.1016/j.sciaf.2023.e02007_b19
  article-title: Deep learning in medicine– promise, progress, and challenges
  publication-title: JAMA Internal Med.
  doi: 10.1001/jamainternmed.2018.7117
– volume: 14
  start-page: 1
  year: 2014
  ident: 10.1016/j.sciaf.2023.e02007_b42
  article-title: Joint modelling rationale for chained equations
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/1471-2288-14-28
– start-page: 317
  year: 2019
  ident: 10.1016/j.sciaf.2023.e02007_b30
  article-title: Performance evaluation of facenet on low resolution face images
– volume: 32
  start-page: 4890
  issue: 28
  year: 2013
  ident: 10.1016/j.sciaf.2023.e02007_b41
  article-title: Multiple imputation for handling systematically missing confounders in meta-analysis of individual participant data
  publication-title: Stat. Med.
  doi: 10.1002/sim.5894
– ident: 10.1016/j.sciaf.2023.e02007_b52
  doi: 10.1109/CVPR.2016.527
– start-page: 1
  year: 2019
  ident: 10.1016/j.sciaf.2023.e02007_b50
  article-title: Face recognition using facenet (survey, performance test, and comparison)
– volume: 139
  year: 2020
  ident: 10.1016/j.sciaf.2023.e02007_b37
  article-title: Spatial imputation for air pollutants data sets via low rank matrix completion algorithm
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2020.105713
– volume: 1
  start-page: 283
  issue: 3
  year: 2009
  ident: 10.1016/j.sciaf.2023.e02007_b53
  article-title: Support vector machines
  publication-title: Wiley Interdiscip. Rev. Comput. Stat.
  doi: 10.1002/wics.49
– start-page: 101
  year: 2020
  ident: 10.1016/j.sciaf.2023.e02007_b55
  article-title: Support vector machine
SSID ssj0002412974
Score 2.2624495
Snippet Literature has it that the performance of most face recognition algorithms still decline in multiple constrained environments (Occlusions and Expressions),...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage e02007
SubjectTerms Augmentation schemes
FaceNet algorithm
MICE
MissForest
Occlusion
RegEM
Varying expressions
Title FaceNet recognition algorithm subject to multiple constraints: Assessment of the performance
URI https://dx.doi.org/10.1016/j.sciaf.2023.e02007
https://doaj.org/article/793ee92d26374e778ba9e8180d29271f
Volume 23
WOSCitedRecordID wos001138837100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2468-2276
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002412974
  issn: 2468-2276
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2468-2276
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002412974
  issn: 2468-2276
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYmBBIECUlzwwEkgcJ3bYCmrFABUDoA5IkR9nKCpJ1aaM_HbsvAhLWVg8WI5tfTn5vrPO3yF0JiHQTHHhsVCxsoSZJ4ivPMelfXA-opQvfr5joxEfj5OHTqkvlxNWyQNXwF1a-wFIiCZxyCgwxqVIwD1Q1iQhLDDu9LWspxNMuTPY-iVimXIjM1QmdFmXIpxoJwkvwHdXdL9cUanY3_FIHS8z3EZbNT3E_WpbO2gNsl30MhQKRlDgNtsnz7CYvuY2sH_7wIuldJcpuMhxkx6IlaN9rvpDsbjC_VZ9E-cGW8aHZz_PBfbQ03DweHPr1VURPEUDWthYT0gZMENNxIRF08QAjrTQmDJQPJKMh1zIJOYmAu0ToxMTaRFKEzCfaAj30XqWZ3CAsFQKTGC40ElCBQhudGwjQqqUjkXs8x4iDUCpqiXD3d6naZMb9p6WqKYO1bRCtYfO249mlWLG6uHXDvl2qJO7LjusEaS1EaR_GUEPxc1_S2vmUDECO9Vk1eqH_7H6Edq0U9IqM-0YrRfzJZygDfVZTBbz09IwbXv_NfgGHPPqeA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FaceNet+recognition+algorithm+subject+to+multiple+constraints%3A+Assessment+of+the+performance&rft.jtitle=Scientific+African&rft.au=Mensah%2C+Joseph+A.&rft.au=Appati%2C+Justice+K.&rft.au=Boateng%2C+Elijah+K.A&rft.au=Ocran%2C+Eric&rft.date=2024-03-01&rft.issn=2468-2276&rft.eissn=2468-2276&rft.volume=23&rft.spage=e02007&rft_id=info:doi/10.1016%2Fj.sciaf.2023.e02007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sciaf_2023_e02007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-2276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-2276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-2276&client=summon